
Master Thesis

An Obligation Framework and Language for
Data Handling in Service Composition

Muhammad Ali
Matriculation number: 284152

June 10, 2009

Reviewers:
Prof. Dr. Otto Spaniol
Prof. Dr. Ulrike Meyer

University Supervisor: Dr. Dirk Thissen
Industry Supervisor: Dr. Laurent Bussard(Microsoft)

Dedicated to my father (May his soul rest in peace) and my
mother. May Lord be merciful to them for they have brought me

up in my childhood and always supported and prayed for me.

Declaration

I hereby declare that this thesis is my own unaided work except for the official assis-
tance provided by my supervisors as mentioned. Furthermore, this work has not been
submitted in any form for any other degree at any university or educational institu-
tion. Information derived from the published or unpublished work of others have been
acknowledged in the text and list of referenced literature has been provided in the bib-
liography section.

Aachen, June 10, 2009
Muhammad Ali

v

Acknowledgements

I am deeply thankful to all those who helped me directly or indirectly during the time
I had been working on this thesis.

I would like to express my sincere gratitude to Prof. Dr. Otto Spaniol and Prof. Dr.
Ulrike Meyer for approving this thesis and giving me the opportunity to perform this
thesis under their supervision.

Special thanks to my immediate supervisors including Dr. Laurent Bussard and
Dr. Ulrich Pinsdorf from European Microsoft Innovation Center Aachen and Dr. Dirk
Thissen from i4 Chair for their continuous guidance and supervision during the course
of this work. This would not have been possible without their support and valuable
feedback on my work.

I would also like to thank all my team members and colleagues at European Microsoft
Innovation Center Aachen who provided their valuable opinion on the work and direction.

This work is being done under EU FP7 PrimeLife project and I am thankful to all
the project partners for their valuable feedback during the thesis.

Finally, thanks to all my friends in Aachen for their encouragement and support.

vii

Abstract

Today’s access control languages and other privacy policy languages recognize the impor-
tance of usage control/obligations by foreseeing placeholders in the syntax for obligations.
However, most of these existing policy languages do not provide any concrete language
constructs to actually express obligations. This is a real problem since obligations play
an important role in daily business. User privacy is one of the major concerns in today’s
world with most of the businesses have adhoc and inflexible processes to keep track on
customer data. We address this problem and develop a general language for expressing
obligations. It is independent from the enveloping policy languages and thus can be used
e.g. in XACML. We also provide an enforcement framework design that keeps track of
and enforce obligations committed by service providers with its customers.

ix

Contents

1. Introduction 1
1.1. Problem Scenario . 3
1.2. Major Requirements of the Language and Framework 5
1.3. Stakeholders of the System . 7

2. State of the Art 9

3. Obligations 13
3.1. Definition . 13
3.2. Aspects of Obligations . 13

3.2.1. Enforcement Mechanism . 14
3.2.2. Conditionality . 15
3.2.3. Iteration . 16
3.2.4. Stateful Obligations . 16
3.2.5. Time Boundedness . 16
3.2.6. Observability . 17
3.2.7. Delegation . 18

3.3. Formal Obligation Model . 19
3.3.1. Obligation Rule . 20
3.3.2. Rule Set . 24
3.3.3. Policy . 24

3.4. Integration with Existing Policy Languages 25
3.5. Properties of Policy Language . 26

3.5.1. Consistency . 26
3.5.2. Safety . 28

3.6. Formalization of Obligation Statements 29

4. Implementation 33
4.1. Policy Generation Components . 34
4.2. Generic Components . 36
4.3. Obligation Runtime . 36

4.3.1. Policy extractor and translator plug-ins 36
4.3.2. Scheduler . 37
4.3.3. Event Engine . 38
4.3.4. Event Engine Plugins . 38
4.3.5. Policy Processor . 38
4.3.6. Obligations Engine . 38

xi

Contents

4.3.7. Action Plugins . 39
4.3.8. Policy Repository . 40

4.4. Internal Working of the System . 40
4.4.1. Trigger Sources . 42
4.4.2. Message Types . 42
4.4.3. Forms of Trigger . 44

4.5. Demo Scenarios . 45
4.5.1. Demo Scenario 1 . 45
4.5.2. Demo Scenario 2 . 46

4.6. Deployments . 47
4.6.1. Desktop framework deployment . 48
4.6.2. Server Deployments . 48
4.6.3. Cloud Deployments . 50

4.7. Correlation with Design Requirements . 51

5. Evaluation 53
5.1. Comparison with HP’s Obligation Management System 53

5.1.1. Approach . 53
5.1.2. Scenario . 54
5.1.3. Representation . 55
5.1.4. Enforcement Architecture . 56

5.2. System Evaluation . 56
5.2.1. System Testing . 56
5.2.2. Optimizations . 64

6. Conslusion and Future Work 67

A. Policy Schema and Example Policies 75
A.1. XML Schema of the Language . 75
A.2. Example: Deleted and Notify Proactive Obligations 77
A.3. Example: Preventive Obligation . 78

B. Classification of Triggers 81

xii

List of Figures

1.1. Service and User Interplay . 3
1.2. Complete Scenario Illustration . 4
1.3. System Stakeholders . 7

3.1. Observability of obligations with respect to the scope of evaluators 18
3.2. Policy Schema Illustration . 25

4.1. Obligation Framework Architecture . 33
4.2. Policy Generation Activity . 34
4.3. Policy extraction mechanism . 37
4.4. Policy extraction mechanism . 37
4.5. Policy Processing Interplay. This sequence starts after the client receives

a valid policy as shown in Figure 4.2 . 39
4.6. Action Invoke Mechanism . 40
4.7. Synchronous operation for obligation enforcement (Proactive or Preventive) 41
4.8. Asynchronous operation for obligation enforcement

(Proactive or Preventive) . 42
4.9. Base message format received by event engine 43
4.10. Demo Scenario: Deletion and Notification Obligations cascaded together. 46
4.11. Demo Scenario: Prevention of Deletion. 47
4.12. A:Deployment with Single framework and having single organization wide

policy B:Deployment with Single framework but each service has its own
policy alongside an organization wide policy. 49

4.13. Single framework deployed within an organization having multiple data
repositories (each modeled as a single organization) 49

4.14. Policy mapping with multiple frameworks deployed 50

5.1. Our Approach . 54
5.2. Distributed Composite Service Scenario 55
5.3. Modified Architecture . 57
5.4. A) Presents the average transaction processing time measured at Client

side B) Distribution of processing time between framework and additional
WS-Call overhead represented in percentage 61

5.5. Complete distribution of processing time in base mode. 62
5.6. A) Presents the average transaction processing time measured at Client

side B) Presents increase in PII insertion processing time because of in-
crease in DB. 62

xiii

List of Figures

5.7. Complete distribution of processing time in mode 1. 63

B.1. Hierarchy of Triggers . 81
B.2. Hierarchy with additional plug-ins . 82

xiv

1. Introduction

New technological advancements, increasing capacity of hardware and decreasing costs
allowed the expansion of the Internet and inspired many businesses to go digital. This not
only brought change for existing businesses but also instigated new business scenarios
to be realized through the modern computer systems. Service oriented architectures
provide a new way to automate existing and new business processes and opened the
possibilities of new business dynamics. End users can now interact with the service
providers electronically and the interaction, which could be in multiple iterations, is
completed within seconds which would otherwise be a long tedious process. Further
complex forms of scenarios have been discussed in the literature with multiple businesses
interacting or chains of services called to provide the required service.

As the new scenarios emerged, they also brought a new set of problems and areas of
research which should be addressed to achieve the full potential of the new technology
without any negative repercussions. Security concerns from the perspective of service
providers like access to services only to authenticated and authorized users, non repudi-
ation, impersonation by malign requestors etc came to light. On the other side the end
user’s privacy concerns about the usage and handling of her data are also some of the
problems emerged.

Before the advent of the modern policy based management systems, adhoc mechanisms
were used to provide such capabilities like tagging user data, incorporating constraints
in the functionality etc. These were not extendible, unstructured and informal mecha-
nisms and the need to have policy based systems was first realized among the research
community. The result is that now we witness the existence of many of such policy
languages targeting different classes of problems like access control, data handling etc.

Traditional access control mechanisms provides the answer to the question whether
access to specific resource by a specific requestor is granted or not?. It is designed to
accommodate the concerns of service providers who control the access to resources1 under
their ownership. On the other hand, the concept of data handling, usage control and
obligations defines how the resource is handled and used once the access was granted.
It is also important to note that the roles resource owner and service provider are not
mutually exclusive and it is also usual that entities may have been behaving both as a
resource owner at one instant and resource consumer at another.

We consider that obligations are themselves complex enough to be considered as a
separate problem rather than considering them as a sub component of a data handling
policy. In reality, they are not just a sub part of a data handling policies but are
used widely in other forms of policies. Many of today’s access control languages and

1 The word resource is generic and it could be any physical or logical resource under the direct ownership
of a service provider including its customer’s data

1

1. Introduction

other privacy policy languages recognize the importance of obligations by providing
placeholders in the syntax of their language structure for obligations. However, most
of the languages we examined, including XACML [24, 29] and PRIME-DHP [4], have
this placeholder but do not provide concrete language constructs to actually express
obligations. Usually obligations are defined and enforced within a single trust domain
and it is up to the service provider to define and enforce application specific obligations
in an arbitrary way.

We also consider that obligation rules and data handling rules are somewhat over-
lapping and one form of statement can be translated into other e.g. X can share U’s
data with its business partners is a data handling statement. However, a corresponding
obligation could be X commits not to share U’s data anyone other than its business part-
ners. The obligation statements depict a binding or commitment on the declarer while
data handling rules express rights of the declarer. However, the relationship between the
two forms is fuzzy and an open area of research for translating one form of statements
to the other which is out of scope of our current work. This thesis work focuses on the
problem of expressing and enforcing obligations. The major contributions of this work
are mentioned below.

• We formalize real world obligation statements and derive requirements for a gen-
eral, well formed obligation language (Sect. 1.2).

• We formally describe a syntax fulfilling those abstract requirements (Sect. 3.3).
The language is intended for general purposes but it is rich enough to express
complex real-world obligations. Moreover it can be extended with domain spe-
cific triggers and actions which simplify the process of policy writing in a specific
application context.

• The language is generic enough to be independent from the enveloping policy
languages, e.g. XACML. This allows combining our work with other languages,
which leads to interoperability and enables general post-processing of obligations
in the service back end.

• We describe a software framework that keeps track of and enacts obligations (Sect.
4). Although we implemented the obligation engine to verify our assumptions, we
deliberately describe the architecture in a generic way so that our findings can be
reused for other implementations of obligation engines.

• We give an overview of related approaches in Section 2 and position our work
within the state of the art.

As it is evident from the discussion until now that different forms of policy languages
like access control policy, data handling policies and obligations address different prob-
lems and are neither entirely mutually exclusive nor completely overlapping. It is also
not clear whether any parent child relationship or containment relationship exists be-
tween these different forms of policy languages. We can even assume that there could
be a recursive relationship between these forms of privacy policies which means that an

2

1.1. Problem Scenario

access control policy can embed data handling rules and obligation rules which in turn
can embed access control rules and so on. The enforcement platforms are independent
of, but could be integrated with, each other.

In the next section, we present one of the problem scenarios where we would like to
apply our solution. However, it is important to note that our results are not restricted
to this problem only.

1.1. Problem Scenario

The current work primarily focuses on the application of our obligation policies and
their enforcement in a service oriented paradigm. Figure 1.1 shows the traditional and
modified user-service provider interplay. In the classical scenario, in Figure 1.1(a), the
data owner (or the end user or client) did not have any involvement in the handling of her
data. However to involve the data owner, the interplay is modified as shown in Figure
1.1 (b). On request for a new service, the service provider sends back the customizable
policy to the client. The client accepts the policy and customizes it and finally sends it
back to the provider along with her data.

Service ProviderClient/End User

1. Request for Service

2. Ask for required data

3. Provide data

Service ProviderClient/End User

1. Request for Service

2. Send Policy

4. Customized policy and data

5. Service Provided

3. Accept and customize

4. Service Provided

(b)(a)

Figure 1.1.: Service and User Interplay

It is important to note the following

• The policy as sent by the service provider, in Figure 1.1(b) step (2), could be a
data handling policy, obligation policy message or the combination of the two. We
want to keep the obligation policy language design independent of the protocol
used.

• This is a service provider dominated scenario where the policy is being provided by
the provider and the end user only customize it within defined limits and guidelines.
This ensures that even after customization2 of the policy the provider is able to
handle and enforce it. The other way could be that the end users send their policy

2 In general the customization of the policy could also involve a real multi-round negotiation protocol
between user and service provider.

3

1. Introduction

to the provider but this creates the problem of ensuring whether the provider is
capable to enforce such policies or not.

• The last step shows that the end user send the data along with the policy back to
the provider. This is a sticky policy paradigm [10, 9], where policy and data travel
together through the system. We make no assumption how the policy sticks to the
data. For reasoning throughout this report, we assume that obligations are part
of a policy which stays with the data throughout the data’s lifetime.

Figure 1.2 shows the complete illustration of the scenario.

WS1

WS2

WSi

S1

Front End
Components
(Web Servers

etc)

Backend
Infrastructure

Obligation Policy
Management &

Enforcement

Repositories

Exposed
Services

Obligation
Enforcement

S2

S3

Sn
S1 to n = Subjects or service providers.
WS1 to i = Web services exposed by S1.

U1 to j = End Users/ Clients of S1.

End Users Secondary Subjects/
Data consumers

User data (PIIS1,i,j)

+ Customized

Policy (SPS1,i,j)

U1

U2

U3

Uj

Obligation
Enforcement

Obligation
Enforcement

Downstream
Integration

Downstream channel
(can be a WS)

Customizable

Policy (Ps1,i)

Primary
Data consumer

Figure 1.2.: Complete Scenario Illustration

In this thesis we focus on the expression of policies travelling between the users and
service providers and the design of the policy management and enforcement framework.
These components are illustrated in violet color (dark gray for black and white prints) in
Figure 1.2. For clarity we have also illustrated the secondary service providers (S2 to n)
who use the data from the primary provider (S1). Each service provider can have multiple

4

1.2. Major Requirements of the Language and Framework

services (WS1 to i) exposed for its clients/End users (U1 to j) who utilize different services.
Here S1 is behaving as a primary data consumer and U1 to j are data owners.

The customizable policy PS1,i represents policy sent by the provider S1 via WSi to
any of its users. This corresponds to Figure 1.1 Part (B) Step [2]. The expression of
obligation policy language to express this customizable policy is one of the goals of this
thesis.

The user data PIIS1,i,j represents Personally Idenfiable Information by Uj for WSi at
S1. Customized policy SPS1,i,j represents the policy as returned by the Uj to WSi at
S1. This returned policy is named as sticky policy thus we used SP. This corresponds to
Figure 1.1 Part (B) Step [4].

Personally Idenfiable Information(PII) is any piece of information which can be used
to identify an individual uniquely like Email address, social security number, passport
number, national ID card etc.

When interacting with secondary data consumers on the downstream channel, S1

behaves as a data owner. The decision to share any data with secondary consumers
depend on the policies applied on the specific piece of requested information. Thus,
the user privacy is preserved and the usage and handling of information is restricted
by the promises made in the policy and accepted by the actual data owners (U1 to j).
The dynamics of downstream data sharing and usage has not been investigated in detail
as it was dependent on the expression of obligation policies and enforcement platform.
However, this is one of the important parts of future work to enhance the work done in
this thesis and extend it to chains of service providers.

Next Section 1.2 presents major requirements of the language and framework. We
covered these requirements in our design.

1.2. Major Requirements of the Language and Framework

There has been quite a lot of work done in the area of obligations with different re-
searchers’ targeted different problems in expressing and enforcing of obligations. We
considered major existing classifications and forms of obligations discussed in literature
and developed a set of obligation attributes and types which could cover wide range of
real world obligations. Based on our classification, we formulized obligations and de-
veloped a specification policy language which could express all such obligations. The
final major contribution is the implementation of the obligation enforcement framework
which manages the obligation policies expressed in our proposed language.

Except HP’s work [7], we have not been able to cite any real implementations of
obligation enforcement platforms. Most of the work done in literature targeted towards
specification and theoretical approaches to express obligations. Pretschner et. al [28]
proposed obligation specification language (OSL) but provided translation mechanisms
to translate their language in Rights expression languages (RELs) like Open Digital
Rights Language(ODRL) [16] to utilize existing REL enforcement platforms. Thus, we
fill this missing part and believe that existing obligation expression approaches could be
translated into our language and enforced with our platform.

5

1. Introduction

We now present the set of requirements which we have currently addressed in our
implementation and then we present additional requirements which are currently not
taken into account but are important enough to be mentioned in the text. We compiled
this list by looking at scenarios and requirements in [7, 4, 17, 24, 29, 22] and some other
published literature.

• Independence from policy language. Obligations can be enforced independently
from the embedding policy languages offering the placeholder for the obligation.
Consecutively, the policy can stand by its own without being embedded inside
any other policy. This totally depends on the application and scenario. Thus the
obligation framework needs to be technically decoupled from the policy engine.

• Independence from data repositories. The obligation handling must be indepen-
dent from the concrete data repositories. The obligation travels with the data and
should be stored along with the data so that the reference does not get lost. How-
ever, the important difference is that either we manage both policy and data within
our framework or we only allow the obligation framework to manage policies with
data stored externally. The policies keep the reference of the data. This design
allows easy integration with the existing systems without the need to have huge
migration effort. The obligation may refer to personal data stored in a database
or to documents stored in a file system.

• Independence from communication protocols. The framework must be independent
from the communication protocol. For instance, Web Services, REST, or plain
HTTP could be used to exchange data and obligations.

• Support for common obligations. The obligation handling language should be ex-
tendible but not empty. Usual actions such as, for instance, delete, anonymize,
notify user, get approval from user, log should be available with different imple-
mentations. Triggers for a time-based and an event-based execution need to be
defined.

• Support for domain specific obligations. The framework must be open to define
additional domain specific obligations. This requires mechanisms to define new
types of actions and triggers. In any case the semantic of these new elements has
to be understood by all involved communication partners.

• Support for abstraction of actions. The obligation language must offer abstract
actions which are configurable for the specific purpose. For instance, a notify user
action might be implemented as sending an e-mail, sending an SMS, sending a
voice message, or calling (and authenticating to) a web service.

• Support for abstraction of triggers. The obligation language must offer abstract
and configurable triggers. For instance, a trigger ”access PII” may react both to
a query on a database and to a read operation on a file server.

6

1.3. Stakeholders of the System

• Support for distributed deployment. Depending on the scenario of the service
provider, different deployments of the obligation handling framework can be envi-
sioned. A corporate-wide obligation framework could handle obligations associated
with data stored in multiple data bases. A local obligation framework hosted on
user’s machine could address obligations associated with local files. Finally, the
obligation framework could also be offered as a ”cloud service”. We assume that
only one obligation framework can be in charge of enforcing obligations regarding
a specific piece of data.

• Support for preventive obligations. The obligation language shall be able to express
preventive statements or negative obligations that forbid the execution of an action.
For instance, the obligation to store logs six months will forbid deletion of log files.

Before we go into the details of the obligation language and the design architecture,
it is important to briefly identify the stakeholders of such a system. This is important
as the decision to procure, deploy and operate any business application depends on the
vested interests of stakeholders. The next section discusses briefly some of these actors.

1.3. Stakeholders of the System

Figure 1.3 shows the potential stakeholders of the system who may have direct or indirect
interest within the solution provided.

Subject

Obligation Framework
Vendor/System

Designer

State/Gov personnel

Customers/Data Owner

Auditors/Enforcers

Subject’s Employees

Figure 1.3.: System Stakeholders

Data Owner: These are entities, usually outside the subject’s trust domain and are the
customers of the organization, who have interest in the correct usage of their sensitive
data. They are also concerned about the fulfillment of commitments made by the data
consumer.

7

1. Introduction

Subject3/Data Consumer: Entity which deploys the obligation framework within its
trust domain and is liable to fulfill obligations committed against the collection of sen-
sitive data from its customers. In our scenario, subject is also the data consumer. If
subject/data consumers do not handle data as promised then subject may lose its rep-
utation, credibility and as a result may lose customers. The major incentive for the
subject to invest in such a system could be mandatory legislation, value of service for
its customers and social responsibility. It is hard to relate the implementation of such a
system which addresses user privacy concerns with the revenue generation of the subject
but it could be considered as an intangible asset which may indirectly increase in income,
safety against potential lawsuits and repute among customers.

Solution Vendor: Entity which designs the solution (system and accessories) and sells
it to its customers. The customer of solution vendor is the Subject/Data consumer
as mentioned above. If the designed system does not behave as per standards and
existing legislation then the vendor and its respective product both lose its reputation
and potential business.

Auditors: Organization or individuals who are incharge of auditing the subject to find
out the potential fraudulent behavior. These are responsible to detect the violation of
promises made by the subject. The auditing entity can be internal or external. However,
they are usually not responsible for the enforcement of obligations but behave as a source
of information to the enforcers. They can also audit the system to detect non-compliant
implementation of the system and prosecute system vendor for compensations.

Government or State Actors: Concerned about the compliance behavior of the subject
as per the legislation. These are one of the potential enforcers and utilize the information
provided by auditors and other monitoring agents to enforce the intended behavior. They
could also penalize the subject or solution vendor in the event of fraudulent behavior.

Subject’s Employees: They are the group of personnel who operate the system for the
subject. They create social issues as they perceive an implementation of a new system
as against their vested interests like losing a job, hiring or new men trained on the new
system, system outsourcing etc. They deem that their lack of ability to operate new
system would cost them their job or they will be replaced by a new trained man power.
In such cases, they deliberately try to prove the incapability of the new system and
efficiency of older methods on which they are trained.

The rest of the report is organized as follows. Chapter 2 compares our work with
state of the art, Chapter 3 defines the obligations formally, Chapter 4 presents the
enforcement architecture and its working, Chapter 5 presents evaluation results and
Chapter 6 concludes with a summary, future work and open problems.

3The subject in this definition is the data processor and not the owner of the data who is sometimes
referred to as data subject.

8

2. State of the Art

Most of the available policy languages, like XACML (eXtensible Access Control Markup
Language) [24, 29, 23], EPAL (The Enterprise Privacy Authorization Language) [5],
Ponder [20], Rei [19] and PRIME-DHP (PRIME1 Data Handling Policy) [4], provide
either only a placeholder or very limited obligation capability. Moreover these languages
do not provide any concrete model for obligation specification. XACML and EPAL
support system obligations only, as no other subject can be expressed in their proposed
language. Ponder and Rei on the other hand do allow user obligations, however they
do not provide a placeholder explicitly for the specification of temporal constraints and
they do not support pre-obligations, conditional obligations, and repeating obligations.

XACML specifically targets access control requirements and this only provided lim-
ited obligation capability. PRIME-DHP proposed a new type of policy language which
expresses policies as a collection of data handling rules which are defined through a tuple
of recipient, action, purpose and conditions. Each rule specifies who can use data, for
what purposes and which action can be performed on the data. The idea is inspiring
and contributed a new direction to view the problem. The language structure is flat
which limits its expressiveness. PRIME-DHP itself also does not provide any concrete
obligation model.

Besides the policy languages, we observed publications on expression, enforcement
and formalization of obligations. In the next paragraphs, we collected prior art which is
directly related to our approach and point out the key differences to our work.

Mont Casassa et al. [7, 8, 27] proposed the idea of having parametric obligation policies
with actions and events having variable parameters. This work was done in conjunction
with the PRIME-DHP to support obligations. It is by far the closest work to ours
thus we compared our work with this work in detail in Chapter 5 of Evaluation. The
detailed version of HP’s work is described in [8]. In [27], authors presented the results
of usability tests of the obligation management system. The key question they answer is
Whether an ordinary user can interact with an obligation management system or not?.
They identified four key problem areas for the future obligation management system
developers namely trust, enterprise perspective, ambiguous phrases in the policies and
obligation setting relative to data or data collection purpose. We currently have not
conducted any usability tests with human end users. However, the results from [27]
should be taken into account and can be considered as a starting point.

Irwin et al. [17] proposed a formal model for obligations and defines secure states
of a system in the presence of obligations. Furthermore, they focused on evaluating
the complexity of checking whether a state is secure. However, the proposed obligation

1PRIME (Privacy and Identity Management for Europe) was the name of EU FP6 Project. Details
can be found http://www.prime-project.eu

9

2. State of the Art

model is very restricted and does not support pre-obligations or provisions, repeating
and conditional obligations which are required in different domains and scenarios. They
addressed the problem of verification of obligation enforcement while we focus on the
expression of a wide range of scenarios, supporting all of the above types of obligations.
They also briefly mentioned the notion of negative obligations but have not provided
handling of negative ones as they perceive that negative obligations can be translated
into access control requirements. We perceive negative obligations to be an important
aspect and address this too in our model and architecture. So the two research efforts
are targeting different problems.

Lupu et. al. [21] also discussed the concept of negative obligations and perceived
them different from negative authorizations. The paper focused on the conflicts in the
distributed policy management systems where conflicts arise because of incompatible
requirements. Lupu el. al. also proposed ponder policy specification language [20] but
it lack explicit placeholder supporting the specification of temporal constraints and they
do not support pre-obligations, conditional obligations and repeating obligations either.

Pretschner et al. [22, 15, 28] worked in the area of distributed usage control. In [22],
they used distributed temporal logics to define a formal model for data protection poli-
cies. They differentiated provisional and obligation formulas using temporal operators.
Provisions are expressed as formulas which do not contain any future time temporal op-
erators and obligation are formulas having no past time temporal operators. They also
addressed the problem of observability of obligations which implies the existence of evi-
dence/proof that the reference monitor is informed about the fulfillment of obligations.
Possible ways of transforming non-observable obligations into observable counterparts
have also been discussed. We also consider temporal constraints as an important part
of obligation statement. However, we deem observability depends on the visibility and
scope of the reference monitor and not completely on the obligation rule. The scope
could be within the system, within the same trust domain but outside the system, or
even sitting outside the trust domain, to observe fulfillment and violations. We cur-
rently have not addressed this problem of observability. In [15] they have proposed an
obligation specification language (OSL) for usage control and presented the translation
schemes between OSL and rights expressions languages (RELs). Thus, the OSL expres-
sion could be enforced using existing rights management enforcement mechanisms. We
fill this gap by implementing the enforcement platform for enforcing obligation policies
without translation. In [28], the authors have addressed the scenario of policy evolution
when the user data crosses multiple trust domains and the sticky policy evolves. Cur-
rently, we are not focusing on evolution of obligation policy, but it could likely be one of
the future extensions of our work where we plan to address the interaction of obligation
frameworks at multiple services which is complementary to what is discussed in [28].

Katt et al. [18] proposed an extended usage control (UCON) model with obligations
and gave prototype architecture. They have classified obligations in two dimension a)
system or subject performed and b) controllable or non-controllable where the objects
in the obligation would be either controllable or not. Controllable objects are those
that are within a target system’s domain, while non-controllable objects are outside the
system’s domain. The enforcement check would not be applied for system-controllable

10

obligations where they assume that since system is a trusted entity so there is no need
to check for the fulfillment. The model again misses the conditional obligations.

Cholvy et al. [11] studied the relationship between collective and individual obli-
gations. As opposed to individual obligations which are rather simple as the whole
responsibility lies on the subject, collective obligations are targeted toward a group of
entities and each member may or may not be responsible to fulfill those obligations.
They investigated the problem of translating collective obligations into individual obli-
gations. We also consider that the subject of any obligation rule is a complex entity in
itself like individual or group, self directed or third party. Our current implementation
does not support this but could be extended to include such scenarios.

Ni et al. [25] proposed a concrete obligation model which is an extension of P-RBAC
(Privacy aware role based access control) [26]. They investigated a different problem
of the undesirable interactions between permissions and obligations. The subject is re-
quired to perform an obligation but does not have the permissions to do so, or permission
conditions are inconsistent with the obligation conditions. They have also proposed two
algorithms, one for minimizing invalid permissions and another for comparing the domi-
nance of two obligations. Dominance relation is the relationship between two obligations
which implies that fulfillment of one obligation would cover the fulfillment of other which
is analogous to set containment. We believe that the results from this work could also
be applied on our proposed framework for optimization purposes, but we see that this
has strong implications on the consistency check of policies.

Gama et al. [14] presented an obligation policy platform named Heimdall which sup-
ports the definition and enforcement as a middleware platform residing below the runtime
system layer (JVM, .NET CLR) and enforcing obligations independent of application.
Opposed to that, we present an obligation framework as an application layer platform
in a distributed service-oriented environment which could be used as a standalone busi-
ness application to cater for user privacy needs. We believe that it is not necessary to
have the obligation engine, which is an important infrastructure component to ensure
compliant business processes, as part of the middleware. Moreover our service-oriented
approach supports interoperability in a heterogeneous system environment.

Dougherty et al. [12] also presented an abstract model perceiving obligations as a
means for expressing constraints on the future behavior of a system. They consider
obligations to have state and can fail to be fulfilled. Rather expressing obligations, they
focused on the problem of analyzing the obligations interaction with system in execution.
The model cannot express pre-obligations or conditional obligations. We have focused
on the expression and enforcement of obligation. However, we also deem that obligations
could be stateful entities which fulfillment is achieved in steps.

Mazzoleini et. al. [23] provides a much elaborated overview of XACML policy inte-
gration algorithms and techniques for policy matching and equivalence in a distributed
scenario. They also presented results with respect to scaling such techniques.

Anne et. al. [3] provides a very detailed comparison of IBM’s EPAL and OASIS
XACML. The work concludes that XACML is a superset of EPAL and covers a wider
range of possibilities as compared to EPAL. It lists down precisely the missing features
of XACML which are missing in EPAL.

11

2. State of the Art

[30] provides the comparison of IBM’s EPAL and W3C P3P2 policies and concluded
the paper with the key differences of the two.

Janice et. al [32] discussed the issue of privacy protection of government data specif-
ically which is made available for use in mashups on the internet. They also proposed
the idea of having personal privacy policies specified by data owners whose data is being
collected by the government which is complementary to what we propose.

The work present in this paper incorporates some of the enlightening prior art and
extends it towards more expressiveness, extendibility, and interoperability. However, we
think that some authors addressed different problems, and it would be worthwhile to
further combine their results with our approach.

2P3P stands for Platform for Privacy Preferences details can be found at http://www.w3.org/P3P/

12

3. Obligations

This chapter focuses on the aspects of obligation rules, semantics and our formalization of
the problem of expressing obligations. We start with the formal definition of obligations
followed by the classification, formal model and last in the chapter we present consistency
and safety issues.

3.1. Definition

We define an obligation as:

Promise made by an entity, the subject1, to another entity, the user. The
subject is expected to fulfill the promise by executing and/or preventing a
specific action at a particular time or due to a certain event and optionally
under certain conditions.

From the definition, it could be inferred that the obligation statements bind the de-
clarer to fulfill its commitments. The words in italics in the above definition are compo-
nents of an obligation and form the building block of an obligation rule. A collection of
obligation rules formulate an obligation policy2.

3.2. Aspects of Obligations

It is close to impossible to develop an exhaustive list of obligation statements existing
in real world. We could encounter many complex forms of commitments made between
individuals, organizations and logical entities. Additionally, the semantics of these com-
mitment and promises may be different in different domains like healthcare, financial
services etc.

Our first goal is to identify and classify such promise and obligation statements along
with their different attributes and aspects. Many of these aspects have also been dis-
cussed in existing literature. We have considered all of them from existing work as well
as from our own research by investigating different obligation statements from different
domains.

1 The subject in this definition is the data processor and not the owner of the data who is sometimes
referred to as data subject.

2A policy language is a set of rules and vocabulary which specify how to write a well formed policy using
this language. This is analogous to grammar of any natural language and the sentences expressed in
that language.

13

3. Obligations

This research effort helped us to identify and derive common building blocks of such
obligation statements. The same building blocks are then taken as the policy language
constructs to formalize obligations.

3.2.1. Enforcement Mechanism

The first and the prime important aspect of obligations is the tone of statement. We
could have positive obligations where the commitment is stated in a positive tone. Ex-
ample 1 below depicts two such cases where the subject, Hospital X, commits to its
patients in a positive tone.

Example 1 Positive obligation statement
1: Hospital X commits to delete patient’s history in 1 month.
2: Hospital X commits to notify patient whenever his information is shared.

We could also encounter obligations which are expressed in a negative tone. Example
2 shows examples of such statements. [17, 21, 28] also discussed briefly about negative
obligations.

Example 2 Negative obligation statement
1: Hospital X commits not to share patient’s history to anyone.
2: Hospital X commits not to use patient’s history for any statistical purposes.

We propose to have different enforcement mechanisms for enforcing positive and neg-
ative obligation statements. For positive statements it is evident that the subject is
required to take actions, within defined timelines and conditions, for successful enforce-
ment.

For negative obligations, the subject is supposed to stop and inhibit certain actions till
the deadline for enforcement. We classify these two forms of enforcement respectively
as proactive and preventive enforcement. Now let’s identify proactive and preventive
actions from the above examples.

Example 3 Obligation statement with enforcement mechanism
1: Hospital X commits to delete patient’s history in 1 month.
. Delete action to be performed proactively.

2: Hospital X commits to notify patient whenever his information is shared.
. Notify action to be performed proactively.

3: Hospital X commits not to share patient’s history to anyone.
. Share action must be inhibited.

4: Hospital X commits not to use patient’s history for any statistical purposes.
. Some usage must be inhibited.

During the course of investigation, we found that there are obligation statements
which may not be negative in tone but semantically they are opposite of some proactive

14

3.2. Aspects of Obligations

action and their enforcement can only be done through preventive enforcement mecha-
nisms. Example 4 depicts an example of a statement which is not negative in tone but
enforcement is still being done by prevention. Action store is semantically opposite to

Example 4 Semantically negative obligation statement
Hospital X says X will always keep patient’s data stored

action delete. The statement is equivalent to NOT deleting patient’s data. We provided
both enforcement mechanisms in our proposed architecture which is discussed in detail
in Section 4.

3.2.2. Conditionality

It is very usual to have some form of constraints defined with the obligation statements.
This was one of the very important aspects of obligations that the subject relates the
fulfillment of committed promises on some conditions. If the conditions are not fulfilled
then the subject is not held liable for not fulfilling its promises. Let’s take the following
example which we have extended from the previous section and added conditions to both
positive and negative form of obligations.

Example 5 Obligation statements with conditions appended
1: Hospital X commits to notify patient whenever his information is shared If patient

is registered at the hospital.
. Positive obligation with a condition specified.

2: Hospital X commits not to share patient’s history to anyone for 10 years.
. Negative obligation with a condition specified. for is used to express a timeframe
of the rule validity.

We covered this aspect by providing application condition construct in our obligation
rule. Thus, a set of conditions could be attached to an obligation rule to make it
applicable. Because of the inclusion of conditional expressions with each obligation rule,
the expressiveness of the policy increases. The conditions on the obligation rule can be
composed of temporal or non-temporal constraints.

Though we cannot vary the level of strictness of an atomic rule with these conditions
except that either the rule would be active or inactive but we can vary the level of
strictness of the whole policy by activating more rules or deactivating them with respect
to time, environment and/or server state. Any obligation rule without an accompanying
condition is considered active all the time.

To avoid the problem of time synchronization in temporal constraints, as the obligation
policies will be shared across different systems, we restrict the literal values to be absolute
and not relative like in the following Example 6

In the above example, 1 month is ambiguous in a distributed scenario and must be
replaced with absolute values when translated from static templates to actual policy in
execution within the system.

15

3. Obligations

Example 6 Obligation statement having temporal constraint with relative values
1: Hospital X commits to delete patient’s history in 1 month.

3.2.3. Iteration

The third aspect is the iterative nature of obligation statements. The simplest forms of
obligations, including most of the examples given until now, are fulfilled once (except
negative obligations). However, we could encounter statements which are required to
be fulfilled multiple times iteratively. When the fulfillment of an obligation is required
multiple times during its life then we consider them as iterative or repeating obligations.

Example 7 Iterative or repeating obligation
1: Bank X commits to send account statement to customer C every 3 months.

The above example shows that the obligation will be triggered every 3 months. This
aspect is being covered in our model by allowing multiple triggers, including periodic
triggers, to be attached with a single obligation rule.

3.2.4. Stateful Obligations

Another important aspect of obligation statement is their stateful nature. In existing
literature, we mostly found that obligations are either fulfilled or violated which are two
atomic states. However, we consider that the state of the obligation could be somewhat
fuzzy with many sub-states in between and the fulfillment or violation is achieved in
steps. Such obligation statements are termed as stateful as their state need to be stored.
Let’s consider the following examples.

Example 8 Stateful Obligations
1: Hospital Y commits to share patient data only 3 times.
2: Bank X commits to reimburse account holder A $100 in 10 installments in first

year after account opening.

Rule 1 in Example 8 puts a constraint which limits the execution of obligation only
first three times. Rule 2 above can only be considered fulfilled once the whole amount
is reimbursed and will be fulfilled in steps.

3.2.5. Time Boundedness

We could have obligations which are supposed to be fulfilled in a finite time or alter-
natively in an infinite time. We define infinite obligation which fulfill the following two
conditions.

• Does not have any temporal constraints/conditions defined. This makes the rule
active infinitely.

16

3.2. Aspects of Obligations

• Contain only non-deterministic triggers (see Section 3.3.1). Alternatively, if there
is any deterministic trigger then the rule itself is repetitive and needs to be fulfilled
infinitely.

Example 9 Time boundedness aspect of obligation
1: Bank X commits to give customer C a gift for referring a new account within 1

month of account opening.
. Time bounded obligation to be fulfilled within 1 month after account opening.

2: Bank X commits to give interest of 4% per annum.
. Unbounded obligation with no end time defined and will continue to be fulfilled
infinitely.

It is recommended/required to have a condition attached to such obligations to stop
their execution at some point in the future. In Rule 2, the condition could be ”account
closure” condition. We can also have un-bounded negative obligations where the subject
is supposed to prevent some action to fulfill the obligation.

Example 10 Negative unbounded obligation
1: Bank X Says X Will Never Disclose Your Data To Anyone
. It’s an unbounded negative obligation with no end period defined.

The above mentioned aspects were the most important which we addressed in our
solution. There are certain aspects of the obligation statements which are beyond the
scope of the work accomplished until now and will be addressed as part of future work.
However, their overview would be worth mentioning as they provide the room of further
research in these dimensions.

3.2.6. Observability

Pretschner et al [22] discussed the problem of observability of obligations and suggested
methods to translate observable obligations into non-observable ones. However, we per-
ceive that observability is not completely dependent on the rule itself but highly related
to the authority and scope of the evaluator and monitor. Figure 3.1 shows different
scopes of the evaluators. The external evaluator can only monitor the communication
channels external to the subject trust domain. Internal evaluator can also monitor the
internal communication between obligation enforcement platform and other infrastruc-
ture of the subject. Lastly the monitor inside the framework is the one which could log
audit trail and monitor the actual processing of the enforcement framework.

Some obligation rules can be observed externally like Rule 1 in Example 11 while
Rule 2 is inherently unobservable externally. Thus observability of obligation rule is
dependent on the spectrum of visibility of monitor/evaluator and type of rule. Further
work in this direction is beyond the scope of this thesis.

17

3. Obligations

Subject Trust Domain

Other servers and

infrastructure

Evaluator outside trust domain

and can only monitor external channel

Evaluator within trust domain

and can monitor internal channels too.

Obligation framework

Inside framework

audit trail & monitoring

Users interacting with the

organization

Other external entities

Figure 3.1.: Observability of obligations with respect to the scope of evaluators

Example 11 Observability of obligations
1: Service X commits to notify user @email when user’s data is shared.
2: Service X commits to delete user’s data in 1 week

In Example 11, the notification email is something which can be monitored externally.
In Rule 2 however, the obligation is non-observable as it can’t be monitored externally
whether the subject has fulfilled it or not.

3.2.7. Delegation

Delegation of obligations could be another interesting area for extension. The basic
idea is to allow constructs in the language which enable the policy issues to commit
promises/obligations on behalf of other subject. Let’s consider the following examples
from the previous section.

Example 12 Examples of delegation of obligation
1: Hospital X declares that X’s partners commits to pay compensation for using your

data.
2: Team leader Y commits that his team members A,B will participate in the confer-

ence.
3: Service X declares that partners of Y commits to delete your data.
. Delegation of obligation by X to group of entities partners of Y. This is two level
delegation and in theory these obligations can also exist.

In Rule 1, X is declaring on behalf of his partners which requires underlying reason
like mutual agreement etc. Rule 2 depicts a scenario where Y commits on behalf of her
subordinates and the underlying reason to commit something like that is authority and

18

3.3. Formal Obligation Model

position.

Obligation delegation scenarios like in Example 12 create ambiguity whether the com-
mitment can be made or not on behalf of others. The simplest case is that policy declarer
should only commit promises about itself. However, we can find cases very common in
the real world where commitments are being made on behalf of others and behind those
declared commitments there are some underline reasons like authority, influence, mutual
agreement etc.

Responsibility Structure

Complementary to the problem of delegation of obligations is the proportion of respon-
sibility in the cases of collective subjects. Cholvy el. al [11] mentioned this aspect of
obligations. Whether we consider an obligation to be fulfilled collectively like by every-
one, by only one among the directed subject group etc. Obligations where the subject
of the rule is an individual entity has the full responsibility of fulfilling it.

Example 13 Responsibility structure of obligation
1: Hospital X commits to pay compensation for using your data.
2: Hospital X declares that X’s partners will pay compensation for using your data.
3: Team Leader X commits that his team will participate in the conference.

In collective obligations, the subject of the rule can be a named group, set of attributes
which define a group of individuals or collection. In Example 13 Rule[2] the subject is
X’s partners which is a collection. The responsibility is not defined whether one of
the partners will pay, all of them contribute equally or each will pay some pre-defined
amount etc. In Rule 3, the ambiguity is there whether the whole team will participate,
some members of the team will participate etc. Such statement where an obligation is on
the whole collection of atomic entities is somewhat complex and need further in depth
reasoning. For our scenario, subject is a service provider.

This is one of the possible future directions of work to investigate such scenarios where
obligations are delegated, promises committed on behalf of a group of entities and their
corresponding responsibility structures and finally to extend the current language based
on the results. We now present a formal obligation model in the next section.

3.3. Formal Obligation Model

This section defines the semantics of the obligation rule, ruleset and policy structures
in detail. We also present how we covered the different aspects discussed in last section
through the proposed model.

19

3. Obligations

3.3.1. Obligation Rule

Formally, we represent an obligation rule3 o as a tuple 〈s, a, ξ, c, e〉 where s is a subject
which is obliged to fulfill the obligation, a is an action which is executed/prevented to
fulfill the obligation, ξ is a set of triggers, c is a boolean equation specifying conditions
under which the obligation rule would be active and e is the set of events which are sent
outward in case of a change in state of obligation e.g. violation or fulfillment. We use
O as the set of all possible obligations. s, a and ξ are mandatory components of an
obligation rule while c and e are optional.

Subject

Subject s is an identifier to identify the data processing entity that commits to fulfill an
obligation; s ∈ S where S denotes the set of all existing subject identifiers. The subject
can be a unique entity which can be the policy issuer itself or there is also a possibility
that the policy issuer may declare an obligation on behalf of a third party as a subject.
It can even be a group of entities falling under the same category defined through name
or a set of attributes.

We could have a number of ways to express a subject within an obligation rule. Let’s
discuss a very simple obligation and then its variations with respect to the subject entity
and keeping everything else as constant.

Example 14 Different examples of subject
1: Service X commits to Delete U’s Data.
. Simplest form of obligation where the subject and policy issuer are same entities.

2: Service X declares that Service Y commits to delete U’s Data.
3: Service X declares that Partners of X commits to delete U’s Data.
4: Service X declares that Partners of Y commits to delete your Data.
. Delegation examples as presented in Example 12.

In Example 14, the last rule depicts a possibility of having two levels of delegation.
In real world, such examples do exist however this is part of possible future extension to
the language. It is important to note that in all the rules depicted in Example 14, the
policy provider entity is the same and only the subject is changing.

Action

Action is by far the most important part of the obligation clause. Action a is the activity
executed to fulfill an obligation and is represented as a tuple 〈i, p, at〉 with i ∈ I, where
I represents the set of all possible action identifiers. Each element of I can be uniquely
mapped to available actions within the system using a bijection map : I → A. The
action parameters p is a set of name/value pairs. We classify actions by their action
type at ∈ {proactive, preventive}

3We use the term obligation, rule and obligation rule interchangeably in the report. However, they
represent the same thing

20

3.3. Formal Obligation Model

• Proactive actions require the execution of actions proactively. For example Delete,
SendEmail etc.

• Preventive actions can only be prevented from executing to fulfill the corresponding
obligation promise. This class of actions add lot of expressiveness into our language
and does allow negative obligation statements like Subject X commits never Sharing
U’s data with anyone where the action never share itself is never executed but
the fulfillment is done by preventing the action share. For accomplishing this
behavior, we need to integrate our framework with external infrastructure of the
organization.

This classification is taken to incorporate both enforcement mechanisms of obligations as
discussed in Section 3.2.1. We do not allow actions which can be used as both proactive
and preventive to avoid consistency problems. The enforcement framework knows which
actions are conflicting with other actions within the system. Thus, this meta information
aid the consistancy check tools for detecting inconsistant policies.

An obligation rule contains a single action, however we envision that this action itself
can be composed of many basic actions arranged in a complex manner. This restriction
has been put to avoid ambiguity. Indeed, if we would have two actions, e.g. Delete
and SendNotification, in the same rule and the first one is executed successfully while
the second fails the overall status of the rule is undecidable (fulfilled or violated). We
consider deciding the status of rules having multiple actions as a separate problem which
we may address in future.

Composition of atomic actions into composite actions would increase the flexibility
of the language and help users to structure domain specific dialects of the obligation
language in a more efficient and error-preventing way. However, the downside is that
composite actions introduce a level of complexity that makes it harder to detect contra-
dictions inside an obligation rule. We would need to consider the sub actions to establish
the semantic contradiction relation (see Consistency issues in Section 3.5.1).

Perhaps a set of design rules defining how action may be composed could help to
deal with this complexity. For instance, there must be a plugin within the system to
handle each sub-action of a composite action. Additionally, the set of parameters for
a composite action must satisfy the set of parameters of each sub action. Here, the
composition may itself be important. The output from one sub-action could be an input
of the next sub-action within a composite action. Let a :< i, p, at > is composed of n
sub actions represented as an :< in, pn, atn > then...

• 6 ∃ax|1 < x ≤ n ∧map(ix) /∈ {A}

• p satisfy

⋃
1 to n px

From very simple to extremely complex possibilities to express actions does exist. We
consider actions to be parametric and need a set of parameters for their execution.

Action parameter can be anything. It could be any resource (PII, DB, File, and URI
etc). The resource itself may be residing within the system (of the policy provider),

21

3. Obligations

Example 15 Examples of actions
1: Service X commits to Notify(Email=XYZ) if U’s data is used.
. Notify is the action, Email is parameter.

2: Service X commits to Delete(U’s data).
. Delete is the action. U’s data is the parameter.

remote resource (provided the policy provider has rights on it) or even something which
is non-existent at the time of interplay but generated in the future.

For our data handling scenario, we assume that the obligation policy would be sticking
with the user PII. This user PII would be an implicit parameter which all the rules within
a policy can utilize. We start with the simple examples by changing objects and keeping
the rest of the components of the clause as constant.

Example 16 Examples of action objects/parameters
1: Service X commits to Delete U’s data.
. U’s data is the object and action is applied directly on it.

2: Service X commits to Notify(Email=XYZ)
. Action is not applied on the policy object (U’s PII).

Triggers

Triggers define the types of inward events which result in the execution of the obliga-
tion’s action. Multiple triggers can be defined for a single obligation. Triggers can be
deterministic where we know the precise time instant when the trigger will be fired and
we classify them as AbsoluteTimeTriggers. Such triggers can be defined by a tuple 〈τ, d〉
where τ is any absolute point in future time and d is the timeout duration. The rule must
be fulfilled before τ+d. Deterministic triggers, in conjunction with temporal conditions,
provides the capability to express time bounded obligations as the rule activation time
frame and time to trigger execution are known in advance.

Trigger can also be non-deterministic and fired in reaction to locally or externally
generated events. For performance reasons, we suggest that these events should have
the user data unique ID that is used to select the corresponding policy and in turn related
obligation. Beside this mandatory information these external triggers may accompany
additional parameters depending on their type. Non-deterministic trigger is defined by
a tuple 〈ty, p, d〉 where ty ∈ T , where T denotes the set of all existing trigger types in
the system, p is a set of trigger parameters expressed as name/value pairs and d is the
deadline duration as defined before. Parameters for trigger are not specified within the
policy but the triggers when fired will accompany them. For detailed trigger classification
see Appendix B.

22

3.3. Formal Obligation Model

Application Condition

Application condition expressions are boolean equations defining whether a rule is appli-
cable. When a trigger is received (e.g. delete resource r), the system takes into account
any obligation 〈s, a, ξ, c, e〉 having such trigger ξ. If the condition c of an obligation is
evaluated to true, the obligation’s action is executed.

Depending on the result of the action, the obligation will be considered as fulfilled
or violated. If the obligation is non-repeating, it will disappear from the system after
fulfillment or violation.

The condition expression is expressed as Sum of Products. We have shown the gram-
mar of condition expression (cexpr) in EBNF form below.

cexpr = {pterm};
pterm = {cond|cexpr};
cond = name, {parameter};

parameter = function|variable|literal;
function = returntype, name, {parameter};
variable = name, type

literal = {a...z|A...Z|0...9}

For example, in order to have temporal constraints on the obligation rule we can define a
time frame function which can then be used in policies. An example condition expression
has been shown below

cexpr = (Timeframe(ts, te) ∧ UsageLimit(i)) ∨
(System.State == green)

Timeframe and UsageLimit are the function/condition names. Conditions are subset
of functions which always have the boolean return type and thus can be used in the
product terms (pterm). The second product term specifies that if the environment
variable System.State is green then condition is applicable. The two product terms
are OR-ed together. The environment variables are specified in the variable repository,
which is being discussed in Section 4, and values are set/defined by the administrator.

Events

Optionally obligation rule can have outward events which are used to inform other rules
within the same policy and external entities about change of status like fulfillment or
violation etc. Event of one obligation rule can be a trigger for another rule and through
this design we implement the notion of cascaded obligations. Formally, e ∈ E where
E denotes the set of existing events. For internal processing of the events we may
attach additional parameters with the outward event which are directed toward the
event receiver or handler.

Any two obligation policies, each attached to a specific piece of data, are not assumed
to interact with each other. Thus we restrict that the events from one policy could

23

3. Obligations

only be consumed as a trigger within the same policy. However, they can serve as a
notification to integrated external systems within the same trust domain but outside the
obligation framework.

3.3.2. Rule Set

For actual implementation and clarity purposes, we segregate the term subject from the
obligation rule. Instead of defining subject repetitively with each obligation in a policy,
we define all the subjects first and then rest of the parts of obligation is defined in
sequence as partial rules. This composition with list of subjects and list of partial rules
is defined as RuleSet. Ruleset can be defined as a function as follows.

Ruleset : =× < map→ Φ
Where

= ⊆ S

< = finite set of partial rules

Φ ⊆ O

Ruleset must have at least one well defined partial rule and subject ⇒ |<| > 0 ∧
|=| > 0. The simple Cartesian product of these two disjoint sets will give us the set of
obligations.

3.3.3. Policy

Obligation policy is a set of one or more well defined obligation rules which are consistent
as a whole. Formally

ρ = {o : o ∈ O} ∧ |ρ| > 0 (3.1)

The overall structure of the proposed obligation language has been designed to allow
multiple subjects in the same policy. If the subjects are mutually exclusive then the
policies can be merged. If they are not then we would need to ensure consistency. The
overall structure of the policy is represented below in EBNF form. Mutual exclusion of
subject implies that there is no containment relationship between two subjects within
the same policy.

ObPolicy = protocol, rules

rules = {ruleset}
ruleset = {subject}, {rule}
rule = action, {trigger}, [cexpr], [{event}]

protocol = protocol specific data not yet defined

The obligation policy (Obpolicy) also contains protocol related fields which are used
during the interplay between the user and the service provider. These fields are not

24

3.4. Integration with Existing Policy Languages

used in the internal processing of the policy but are used for mutual authentication,
shielding from tampering, confidentiality of the policy on the wire and optimization
purposes. Figure 3.2 shows the policy structure graphically while detailed XML schema
and example policies are presented in Appendix A .

Policy Rule set

Subject

Rule

Action

Name

Parameters

Condition
Expression Product

Terms
Conditions

Trigger

Name

Parameters

Event

1…n

1…n

1…n

1:1

1:1

1…n

1…n 1…n

1:1

1…n
1…n

1:1

1…n

Multiple triggers allow
Iterative obligations

For conditional
obligations. Could be
stateful conditions too.

Outward events from the rule
after fulfillment/violation

Action to execute or
prevent for enforcement

Figure 3.2.: Policy Schema Illustration

3.4. Integration with Existing Policy Languages

The obligation language presented above aim at enforcing obligations that may be de-
fined with existing policy languages. It was also one of our requirements as was men-
tioned in Section 1.2. This work can be used to enforce obligations specified in access
control policies (e.g. XACML [24, 29]) or privacy policies (e.g. PRIME-DHP [4]).

For example XACML provides constructs to express access control requirements but
with minimal support for obligation. In this case, obligations are defined and enforced
at service-side. When a request is evaluated, the Policy Enforcement Point (PEP) gets
a decision and a list of obligations to enforce. The enforcement of those obligations can
be handed to our proposed obligation framework. It is important to note that XACML
only supports proactive obligations triggered by an access control decision while our
framework supports a wide range of obligations.

In other scenarios, the obligations may be pushed by the user to the service hosting
the obligation framework. For instance, Enterprise Right Management [1] may link

25

3. Obligations

a document to a license which could in principle specify some obligations. Or, using
PRIME-DHP the obligation may be customized by the user before being attached to
personal data as a sticky policy. In these cases, obligations associated with data are
dynamically added to the obligation framework.

We now present the possible consistency and safety problems that could result is
ambiguous or unenforceable policies.

3.5. Properties of Policy Language

Barth et al. [6] discussed properties of policy languages namely consistency, safety, local
reasoning and closure under combination. It is impossible to have a language having
all of the four properties without compromising the expressiveness [6] however one can
target one or two of these which may be of importance for us. We perform reasoning
on our proposed language to understand the relation between obligation rules within a
single policy against each other.

We focus mainly on consistency issues and up to certain extent cover the safety prob-
lems too but major work should be done in this area to identify new problems.

3.5.1. Consistency

The problem of inconsistency arises when a policy contradicts itself. It could be in the
simplest form because of the presence of opposite rules and negation operators. Even in
the absence of negation operators, two obligation rules can be inconsistent semantically.
In order to avoid such problems, the obligation engine must know the relation between
different obligation rules. More complex forms of inconsistencies can also arise which
may be difficult to detect. To make it clearer, let’s consider the following two example
rules which are part of the same obligation policy.

Example 17 Inconsistent rules
Service X says X will Delete your data in 1 week
Service X says X will Store your data for 3 months

In Example 17, we are not using any negation operators but the rules are still conflict-
ing each other and thus make the policy inconsistent. The policy consistency checker
must know the relation between delete and store actions to ensure that such problems
does not exist.

Let o1 = 〈s1, a1, ξ1, c1, e1〉 and o2 = 〈s2, a2, ξ2, c2, e2〉 with o1, o2 ∈ ρ be two obligations,
where ρ is an obligation policy as defined before. To illustrate inconsistency issues, we
first define the semantic contradiction relation. We use the operator ./ to represent
semantic contradiction between two entities. This is not an equality relation and holds
the following properties.

• Symmetric: if o1 ./ o2 then o2 ./ o1

26

3.5. Properties of Policy Language

• Non Reflexive: o1 6./ o1

• Non transitive: if o1 ./ o2 ∧ o1 ./ o3 6⇒ o2 ./ o3

An obligation policy ρ is inconsistent if one of the following conditions is true:

• ρ has an obligation rule which is inconsistent, i.e. ∃o ∈ ρ : o is inconsistent .

• ρ contains two semantically contradicting obligation rules, i.e. ∃oi, oj ∈ ρ : oi ./ oj .

The first case arises when any rule within ρ is not well written, contains actions or
conditions whose processing plug-ins are not present within the system.

The second case occurs when two rules, having the same subject and overlapping con-
ditions, are contradicting each other because of contradicting actions. If the condition
is not overlapping then it is not necessarily a consistency error. We define function
IsConditionOverlap(c1, c2) ∈ {true, false, undefined} which returns whether two con-
ditions do overlap. Condition overlap establish whether the two rules could become
active within the same time frame in future. If they do then they may be triggered both
at the same time and because of the contradiction it would be impossible to execute
both. During plug-in design, we define explicitly which actions are contradicting each
other within the system. This meta information aid policy writers to write consistent
policies.

If a1 ./ a2 ∧ s1 = s2∧
IsConditionOverlap(c1, c2) = true

⇒ o1 ./ o2

There could also be cases when it would be undecidable to establish the condition
overlap relation and in such cases we can only raise a warning to the policy writer. We
can take undefined as a consistency error but that will reduce the expressiveness of the
language.

If a1 ./ a2 ∧ s1 = s2∧
IsConditionOverlap(c1, c2) = undefined

⇒ o1 ./ o2 is undefined

Otherwise, IsConditionOverlap returns false which ensures that the two rules, having
contradicting actions, would be active in a separate time frames and it is safe to have
them within the policy. A further more complex form or action contradiction exists
when actions are a composition of many granular actions. In such cases, we would also
need to consider the sub actions to establish the semantic contradictiong relationship.
SubActions(a) = Set of all the sub actions within action ’a’

If ∃ a3 ∈ SubActions(a2)
| a1 ./ a3 ⇒ a1 ./ a2

If ∃ a3 ∈ SubActions(a1) ∧ ∃ a4 ∈ SubActions(a2)
| a3 ./ a4 ⇒ a1 ./ a2

27

3. Obligations

It is also required that composite actions must be executable themselves. There could
be cases when two children of a composite action are incompatible but we still combined
them to form a new action which could be used in policies. To form composite actions,
it is strictly required to follow action composition rules to avoid inconsistencies. To
establish such set of rules is out of the scope of this thesis and we only designed plug-ins
for atomic actions in the architecture.

3.5.2. Safety

The problem of safety mainly arises when we have obligation policies defined at multiple
levels of organization and these policies are merged. To define safety issues within a
policy, we define the notion of subset relationship among the obligations. Formally, if s1

∩ s2 6= ∅ ∧ a1 ./ a2 ∧ IsConditionOverlap(c1, c2) = true ⇒ p is unsafe.
The concept of subject overlapping arises from the vertical subject hierarchies. A

policy subject may have many sub-subjects each having its own policy. For example, if
we have an organization wide policy and one policy per business unit etc.

The problem of safety arises when there is a difference between the intended purpose
of an obligation policy as a whole and actions taken by engine based on the policy. It
can arise because of many possible reasons like containment, cyclic dependency, cascaded
obligations etc.

Containment

Some of the obligation rules can be a subset or contained within another. If we put less
strict conditions on the super set than the subset then the policy becomes unsafe.

Example 18 Inconsistent rules
Bank X says X’s credit-card-sales-people will Check your opt-out option before con-
tacting
Bank X says X’s Sales people will contact you

In Example 18, the credit card sales personnel can contact without even checking the
opt-out options of the customer as the second rule give them the right to do so. The
above example is unsafe because of superset/subset relation on the intended subject in
the rule that is credit− card− sales− people ⊂ sales− people

Cascaded Obligations

Whenever an obligation is fulfilled, it can optionally generate some events which are
routed back into the obligation engine which can invoke further obligations. Such a
situation is termed as cascaded obligations where some of the rules within a policy are
dependent on other obligations to be fulfilled.

Now, in this case the second rule has got a condition which is being fulfilled when
the first rule will be fulfilled. Such cases are cascaded obligations. We need to en-
sure non-existence of cyclic dependencies (the cycle can even be a large having 2, 3 or

28

3.6. Formalization of Obligation Statements

Example 19 Cascaded rules
Hospital X commits to Delete U’s data before <d>
Hospital X commits to Notify(Email=XYZ) when U’s data is deleted.
. Second rule is dependent on first.

more obligation rules involved) and infinite cascading. It must be ensured that infinite
cascading of rules must not happen and cycles are identified at policy writing time.

Redundant Obligations

Following is an example of redundant obligations.

Example 20 Redundant rules
Service X commits to Delete your data on <01/10/2009>.
Service X commits to Delete your data on <01/12/2009>.

The existence of first rule makes the second unreachable or redundant as once the data
is deleted on < 01/10/2009 >, it may no more be deleted again on < 01/12/2009 >.

There are possibilities of having action precedence with some actions which cannot
be repeated e.g. Delete User Data which is non-repeatable action as once the data is
deleted then it cannot be deleted again.

Similarly, after the deletion of data the attached policy is invalid. Thus, many obliga-
tion rules which are executed after delete action may become redundant or non-reachable.

Some of these problems can be detected by constructing a dependency relationship
tree between rule statements within a same policy. If there would be any cycles then
the resultant would be a graph which must be converted into a tree. The tree is then
traversed to detect application condition timeframes and action precedence. Each child
within such a tree must be applicable in the timeframe after the fulfillment of its parent.
Secondly, action precedence is checked to detect whether action of child can be executed
after the execution of parent rule action. In many cases it would be undecidable to detect
condition overlaps and it would be policy writers who ensure safety and consistency of
policies.

The description of the obligation model ends here however it is still left to be presented
that how we formalize the example obligation statements presented throughout this
chapter which is the topic of the Section 3.6 below.

3.6. Formalization of Obligation Statements

This section describes the formalization of obligation statements from natural language
to the rules expressed in our language. We will take some of the examples already given
before and then break the statement into components which forms the obligation. We
will start with the simple obligation rule.

29

3. Obligations

Example 21
1: Hospital X commits to delete patient’s history in 1 month.
2: Policy Object = Patient’s History
3: Policy Issuer = Hospital X
4: Subject = Hospital X
5: Action = Delete(Target=Object)
6: Trigger = Time based trigger at the end of 1 month.
. This is a proactively enforced obligation.

In Example 21, the rule will be triggered by a time based trigger at the end of one
month (in real policies we only use absolute date time value). The action here is delete
which will be executed on receiving the trigger and the target object is deleted.

Example 22
1: Hospital X commits not to share patient’s history to anyone for 10 years.
2: Policy Object = Patient’s History
3: Policy Issuer = Hospital X
4: Subject = Hospital X
5: Action = Prevent(ActionName=Share)
6: Trigger = Pre-Action(ActionName=Share)
7: Condition = Timeframe(10 Years)
. Preventive or negative obligation. Name of action prevent is not taken because of
the enforcement type.

In Example 22, the Action is Prevent with a parameter name of the actual action
which is to be prevented. If the Share action itself is complex then we can promote it to
make it a full action itself (See Appendix B for details). The corresponding action plug-in
with the name Prevent must be present in the system along with matching parameters.
Trigger is of Pre-Action type with the same ActionName parameter. If the trigger is very
complex then we can promote it to form a new trigger type CanShare (See Appendix B
for details). After 10 years rule will be inactive and will no more enforce prevention. In
preventive obligations framework always send a reply to drive the external system. Here
rule inactivation means that the data can be shared.

Example 23
1: Hospital X commits not to use patient’s history for any statistical purposes.
2: Policy Object = Patient’s History
3: Policy Issuer = Hospital X
4: Subject = Hospital X
5: Action = Prevent(ActionName=Use, Purpose=Statistics)
6: Trigger = Pre-Action(ActionName=Use, Purpose=Statistics)
. Preventive or negative obligation.

30

3.6. Formalization of Obligation Statements

Example 23 is same as previous example but now action and trigger are more complex
with two parameters. There is no condition defined so enforcement will be done till
policy is present.

Example 24
1: Hospital X commits to notify patient whenever his information is shared If patient

is registered at the hospital.
2: Policy Object = Patient’s History
3: Policy Issuer = Hospital X
4: Subject = Hospital X
5: Action = Notify(Email=<XYZ>)
6: Trigger = Post-Action(ActionName=Share)
7: Condition = User must be registered.
. Proactively enforced obligation.

In Example 24, a notification is sent to Patient whenever his data is shared. Here the
trigger is Post-Action with the action name as parameter. When the same trigger with
the same parameter is received then the rule is executed and notification is sent.

Example 25
1: Hospital Y commits to share patient data only 3 times.
2: Policy Object = Patient’s History
3: Policy Issuer = Hospital Y
4: Subject = Hospital Y
5: Action = Prevent(ActionName=Share)
6: Trigger = Pre-Action(ActionName=Share)
7: Condition = Usage > 3
. Preventive or negative obligation with condition.

Example 25 is same as Example 23 with the exception that the condition is stateful
and updates its state. The condition state will be updated by the framework every time
the rule is triggered. When the rule is inactive, it means here that sharing is allowed.
So the enforcement will start when Usage is greater than 3. We can also implement
the same obligation statement with a reverse logic if we provide an action plug-in which
evaluates to negative logic as compared to Prevent action. Let that action plug-in be
Allow and the parameter remains the same. Example 26 shows the new formalization.

In Example 26, the action is reversed and thus the condition logic. Now the rule will be
active till usage is below 3 and after this the rule will be inactive which means that data
cannot be shared now. Thus, it is up to the designer of the actual deployment how they
design plug-ins and implement the obligation statements. The possible combinations
could result in a wide range of scenarios. It is important to mention that currently we
assume that if the trigger comes and there is no obligation rule found for it or the rule
is inactive then it implies that there is no obligation to fulfill or prevent and thus the
source of the trigger can take actions as per its own discretion.

31

3. Obligations

Example 26
1: Hospital Y commits to share patient data only 3 times.
2: Policy Object = Patient’s History
3: Policy Issuer = Hospital Y
4: Subject = Hospital Y
5: Action = Allow(ActionName=Share)
6: Trigger = Pre-Action(ActionName=Share)
7: Condition = Usage < 3
. This is again preventive obligation like in Example 25 but with a reverse logic.

Example 27
1: Bank X commits to send account statement to customer C every 3 months.
2: Policy Object = Customer Data
3: Policy Issuer = Bank X
4: Subject = Bank X
5: Action = Send(Object=Account Statement)
6: Trigger = Absolute Time Trigger Cycle(Period=3 Months)

Example 27 presents a repeating trigger which is fired every 3 months. Action is to
send the account statement.

Example 28
1: Bank X commits to reimburse account holder A $100 in 10 installments in first year

after account opening.
2: Policy Object = Customer Data
3: Policy Issuer = Bank X
4: Subject = Bank X
5: Action = CreditAccount(Amount=$10)
6: Trigger = Absolute Time Trigger Cycle(Period=1 Month, Count = 10 Times)

In Example 28, triggering will be done 10 times and after that there will be no more
triggers.

The examples given above only give a brief overview of some of the possibilities and
there is no exhaustive list. A lot of new examples, scenarios and corresponding formal-
ization need to be investigated and new possibilities could be discovered. Next chapter
presents the architecture and implementation details of the presented obligation frame-
work.

32

4. Implementation

We have designed and implemented enforcement architecture for the obligations ex-
pressed through our proposed language. The detailed obligation framework architecture
is illustrated in Figure 4.1.

External System/Infrastructure

Web Servers

Application Servers

Other Servers

Repositories

Policy/Rules

Repository

Scheduler

Future Event Set
OS Timer/

Clock
Send Triggers

Receive Events

Send and Receive

events from external

systems

Event Engine
Event Plugins and Factory to

receiver and send events

Processor

Schedule

deterministic

 Triggers

Policy Store

Plugins

Current selected

Repository is used

Store

Send new Uncustomized

Policy
Customized Obligation

Policy (could be Sticky

Policy)

Prime-

DHP

Custom

SOAP
XACML Other..

Policy Extractor

SOAP Message with Embedded

Obligation Policy

Send Extracted

 Policy

Obligation Engine

Condition

Evaluator

Runtime
Evaluate

Condition

Action Invoker with

multiple plugins

Execute Action

Environment

variables

Global

Functions

Global generic

functions like

Time, Date etc.

Generic

Components

Static Policy

Templates

Policy

Generator
Generates

Obligation policy for

requestor

Policy Generation

Fetch Rule

Events

SQL

Server Oracle SAP

XYZ

SQL

Server Oracle
Action 2

Action n

SQL

Server Oracle SAP

XYZ Execute

action
Execute

action

Gray Lines show read only

interface to the DB.

Store PII

(In the infrastructure)

Obligation Runtime

Figure 4.1.: Obligation Framework Architecture

33

4. Implementation

The core requirements of the architecture were to ensure the enforcement of obliga-
tions, to simplify the auditing procedures for evaluation and monitoring, to support
different deployments, to enable customized actions, to facilitate integration with exist-
ing systems, and to support external systems and processes. As shown in Figure 4.1,
the architecture is separated into three main parts, namely Policy generation, Generic
components, and Obligation Runtime.

We initially had two possible approaches for the enforcement of obligations. First, to
allow everything to be managed by the obligation framework including user data and
policies but this design would have restricted the integration of framework with existing
systems and huge data migration would have been required to move data from existing
legacy repositories to new obligation framework controlled repositories. Furthermore,
the architecture would not have been independent and decoupled.

Second approach is to design an independent policy management framework which
only manages the policies. This design is more flexible as it allows easy integration
with existing and new systems. We now discuss each of the three main parts of the
architecture in turn.

4.1. Policy Generation Components

Policy Generation section consists of the software components used mainly for policy
creation. The underlying idea is to store Obligation policies in the form of policy tem-
plates with annotated fields. Once the request is received for a new policy one of those
templates is extracted from the repository based on the context of the request.

Template RepositoryExternal Actor

1. Request Service

Service Provider

Policy Generator

3. Get Template

2. Check Request Validity

4. Template returned

5. Compile/Fill

6. Return Obligation Policy

Figure 4.2.: Policy Generation Activity

The templates are processed to fill missing fields based on the environmental variables

34

4.1. Policy Generation Components

etc. At this point, we call it as a customizable policy which is then sent back to the
requester. The final customization is done at the requester’s end which will then return
the customized policy. This policy generation methodology is illustrated in Figure 4.2.

Listing 29 shows the proposed form of templates which are received from the repository
(Figure 4.2 Step 4). Static Obligation policy templates are same as the actual obligation
policies with the exception that they could contain placeholders and IF/ELSE statements
which can be filled at runtime from different sources which could be

• Variable repositories (Database, File, URI, Web Service etc).

• Result of any environment functions (Current Time, Date, Temperature, Aggre-
gating functions etc).

• State of the server.

• Requestor credentials.

At runtime, the conditional statements are evaluated and the corresponding blocks are
taken into the final generated customizable policy for the requestor as shown in Figure
4.2 Step[5].

Listing 29 Static Policy Template
1: Service X commits to delete data whenever requested by the owner/user.
2: if Requestor.Type == ’Gold User’ then
3: Service X commits to delete data in %Gold.DeletionTime% months.
4: Service X commits to notify user when data is deleted.
5: end if
6: if Requestor.Type== ’Silver User’ then
7: Service X commits to delete data in %Silver.DeletionTime% month.
8: end if

In Listing 29, %Gold.DeletionTime% and %Silver.DeletionTime% is a place holder
and the value of it will be filled at runtime from a variable repository.

The compiled obligation policy for a requestor who is also a gold user is shown in
Listing 30. Deletion time value 6 came from the environment variables. Thus we could
control the policies for different users and could generate flexible policies. Listing 30
shows the final output sent to the user in Step (6). It is important to note that still
the policy is customizable as the user may remove some rules from the policy (optional
obligations). It may also modify the overridable parameters like value of data retention
time which is 6 in the Listing 30 Line 2.

Definition of complete conditional statement constructs are beyond the scope of this
thesis report and we have only implemented a schema for policy language. However,
the current implementation does allow us to select among different templates, placed in
final policy form, and are sent directly to the user without any compilation.

35

4. Implementation

Listing 30 Static Policy Template
1: Service X commits to delete data whenever requested by the owner/user.
2: Service X commits to delete data in 6 months.
3: Service X commits to notify user when data is deleted.

4.2. Generic Components

Generic components are an optional set of components used to store environmental
variables, global functions etc. During policy generation, variables in the template are
replaced by their values from these repositories as discussed in Section 4.1. The provision
of a variable repository is mainly for the administration of the system. The configuration
is being done by the system administrators for effective operation.

4.3. Obligation Runtime

Obligation Runtime is the central part of the architecture and is responsible for the
overall obligation enforcement and processing. One of the key features of this framework
is its flexibility. The flexibility is achieved through the plug-in based design, which allows
integrating new types of obligations and with different types of external systems. The
framework uses the available plug-ins to execute different tasks. We assume that the
framework is authorized to perform all the obligation actions on the external entities.
This is generally achieved by deploying obligation framework and external systems (e.g.
databases, email servers) within one single trust domain. This problem has already been
discussed in chapter 1. Irwin et.al. [17] also discussed this problem of accountability of
obligations when the system does not have sufficient rights to execute an action which
should not be considered as a violation of obligation. In the subsequent sections we
describe each component within the runtime environment in detail.

4.3.1. Policy extractor and translator plug-ins

The policy extractor plug-ins, as shown in Figure 4.1, could be used either for extraction
or translation.

Extraction of the obligation policy from the incoming message, which could be in any
format, can be done as long as the required extraction plug-in is present for that specific
format. The corresponding plug-in parses the message and forwards only the obligation
policy part to the system as shown in Figure 4.3. Alongside extraction the plug-ins
create cross references between the message and the extracted policy. The remaining
part of the message is returned to the caller for further processing.

The second type is translator plug-ins which, along side extraction, can also trans-
late rules expressed through other obligation specification languages into rules in our
language for enforcement as shown in Figure 4.4. However, to design such translation
mechanisms we need to conduct additional research for different forms of existing policy
languages which could be translated into our language. We would also need to consider

36

4.3. Obligation Runtime

Extractor
plugin for

X

Complex Message

Datahandling
Reference to
Obligations

User data

Obligations

Reference to
messageComplex Message in format X

Datahandling Obligations

User data

Message after extraction which is

returned back to the caller for

further processing.

Figure 4.3.: Policy extraction mechanism

Obligations

expressed in
Language Y

Obligations
expressed in
our formatTranslator

plugin for
Y

Figure 4.4.: Policy extraction mechanism

the expressiveness of those languages as some of them may be more expressive than our
proposed language. For instance, Pretschner et.al. [28] proposed obligation specification
language (OSL) and provided translation to rights expression language (REL) to use
existing REL enforcement framework. We believe that the same can also be translated
into our language and enforced through our framework.

4.3.2. Scheduler

Scheduler is used to initiate time triggers which are scheduled by other components of
the runtime engine. The triggers are being sent in the form of messages to the event
engine. The scheduler itself contains a repository to store and retrieve future events to
ensure integrity in the event that the system shuts down. We call scheduled triggers as
future deterministic event set.

37

4. Implementation

4.3.3. Event Engine

Event engine is the central collection and distribution component. The major goal to
have a single point of event receiving and distribution is to ensure integrity. All the
external systems, scheduler and obligation engine communicate to other components
through the event engine. This component also, like scheduler, keeps track of the received
and processed messages. Storing and retrieving these active messages in case of system
shut down or malfunction is also the responsibility of this central component. It behaves
mainly like a queuing component.

4.3.4. Event Engine Plugins

For integrating the framework with other external systems we have provided an addi-
tional set of plugins in the event engine. The event engine exposes an interface to receive
notifications from the external systems. It is important to note that external systems
are external to the framework but within the trust domain of the service provider and
must communicate to the obligation framework. Since the obligation framework does
not contain any components for access control etc, it is never exposed directly to the
entities outside the trust domain where it is deployed.

External systems can send and receive messages either through a generic interface
in the format acceptable to the event engine. Alternatively, if the external entity can-
not communicate directly with this interface then it can use customized plugins which
translate incoming messages in the format acceptable to the framework internally.

4.3.5. Policy Processor

Figure 4.2 showed the activity sequence till the policy is generated and sent back to the
client. Figure 4.5 shows the interplay after the client receives the policy.

The policy is received by the policy processor either through an external interface or
via any of the policy extractor plugins, which retrieve obligation policy from a container
message. The policy processor processes the policy, checks inconsistencies, and schedules
deterministic triggers. The initial transaction interplay ends here and the system returns
the system wide unique Policy ID to the caller. The caller in turn stores PII somewhere
within the IT infrastructure of subject along with the policy reference. Both data and
policy are stored separately but remain connected through cross-references as was shown
in Figure 4.3 above.

4.3.6. Obligations Engine

Obligations engine receives the messages from the event engine and processes them ac-
cordingly. It fetches the obligations rules from the policy repository, checks for obligation
applicability by evaluating conditional statements, finds the respective action plug-in and
executes the action. After the execution of actions, the obligation engine changes the
state of obligation rule and fires the outward events. If the action is executed successfully
before the deadline the rule is fulfilled otherwise violated. Being the central processing

38

4.3. Obligation Runtime

Policy/Rule RepositoryExternal Actor

1.Customize received policy

Policy Parser

2. Policy and PII

5. Check Policy

7. Add to Repository

6. Parse

Service Provider

Frontend Plugin

4. Policy

3. Extract policy

9.Send the remaining

message for

processing

8.Confirmation of correct policy

10.Send system

unique ID of the

transaction to user

Core Obligation Framework

Figure 4.5.: Policy Processing Interplay. This sequence starts after the client receives a
valid policy as shown in Figure 4.2

component, it has the most of the processing load. Because of the slow interaction with
the external systems during action execution, the framework performance may be de-
graded. Thus, we can have multiple instances of the engine running in parallel for load
balancing purposes. Condition evaluator component inside obligation engine is used to
evaluate conditions attached to obligation rule. Based on the result of the condition, the
engine decides whether to execute obligation action or not.

4.3.7. Action Plugins

Execution of obligation actions is provided through an additional set of plugins extending
the obligation engine. We propose two layered plug-in mechanism in the obligation
engine component. The upper layer contains the plugins for specific actions e.g. delete,
notify and the lower plug-in layer contains the implementations for different external
systems supporting a set of actions. For instance, delete operation can operate on files
or on data in a relational database. Notification to user could be sent via e-mail, fax,
or postal mail. Each obligation policy rule in our language specifies a single action with
a system-wide unique scope and name, which is used to select appropriate plug-in. To
ensure integrity, the action parameters must satisfy the required parameters for only one
lower layer plug-in.

Each rule in a policy contains an Action with parameters. Each of these actions must
match to an available Action plug-in within the system. The parameters listed within
the policy must also match to the parameters required by the actions plug-in.

During the processing, action invoker decides which action to invoke based on the
(scope, name) tuple received from the rule. Once the action is decided, the parameter
values received with the rule decide which lower layer implementation plug-in to call.
Finally, the action is invoked and the further processing is being done based on the

39

4. Implementation

Implementation
Plugin Layer

Action Plugin
Layer

Action Invoker

Scope,
Name

Action 1

Type 1

Type 2

Action 2 Type 1

Action n Type 1

Figure 4.6.: Action Invoke Mechanism

result.
We kept our language independent of schema extensions so the new vocabulary re-

quired for domain specific obligations is mainly added by implementing the correspond-
ing plugins each having unique scope and name which are then used within the policy.
See Appendix A for the detailed language schema and some sample policies.

4.3.8. Policy Repository

This is the central repository which stores the obligation policies attached to some piece
of data/resource. The storage and retrieval is provided through set of policy repository
plugins e.g. SQL Server, Volatile Memory etc. The active repository is set through
configuration settings and system at runtime dynamically chooses the active repository.

This section covered briefly the role of each component in the architecture. Next we
present the internal working of the system.

4.4. Internal Working of the System

In Chapter 3, we presented two forms of enforcement namely proactive and preventive.
It is important to note that both forms of enforcement could involve either synchronous
or asynchronous operations. This is the design choice and is up to the action plug-in
designer how to implement the action plug-in. Some actions are inherently asynchronous
like Service X commits to ask user U before using his data where asking would be an
asynchronous operation and reply is not expected immediately. Figure 4.7 shows the
sequence diagram for synchronous operation.

40

4.4. Internal Working of the System

Trigger Source Event Engine Obligation Engine Target System for Action

2. Trigger event

3. Check conditions

10. Reply of trigger if required

6. Update rule state

8. Fullfillment event

1. New trigger

9. Update and other

processing

7. Add new events

if required

Action Plugin

5. Action Performed Synchronously

4. Perform Action

Figure 4.7.: Synchronous operation for obligation enforcement (Proactive or Preventive)

The process of enforcement is listed below.

1. The event engine receives a new message from a trigger source. Types of trigger
sources and possible forms of messages are discussed in subsection 4.4.1 and 4.4.2
respectively.

2. The event engine then forwards the message to the obligation engine when it is
free to process new load.

3. The obligation engine fetches the targeted policy and rule based on the information
received with the trigger.

4. The obligation Engine check conditions within the rule to evaluate whether the
rule is applicable or not.

5. If the rule is applicable then the obligation action within the rule is invoked.

6. In case of a synchronous operation, the engine waits till the call is returned other-
wise it receives new load for processing.

Based on the result of the operation, the rule state is updated and the result is sent
back to the event engine. The event engine forward the result to the trigger source if
required otherwise the operation ends here.

Figure 4.8 shows an enforcement with asynchronous operation. The only difference
with the synchronous operation is in Step [6]. The operation is completed asynchronously
and the result is sent to the event engine by the target system. The integrity of the
operation is ensured through unique ids assigned to each trigger by the event engine.

41

4. Implementation

Trigger Source Event Engine Obligation Engine Target System for Action

2. Trigger event

3. Check conditions

8. Fullfillment event

7. Asynchronous completion of action

10. Reply of trigger if required

1. New trigger

6. Async operation
5. Call returned5. Call returned

9. Update and other

processing

Action Plugin

5. Call returned

4. Perform Action

11. Update rule

state

Figure 4.8.: Asynchronous operation for obligation enforcement
(Proactive or Preventive)

4.4.1. Trigger Sources

Figure 4.7 and 4.8 show trigger source actors. Broadly, we consider two types of trigger
sources including

• Internal Trigger sources

– A timer/scheduler generate time based triggers.

– The obligation engine itself may generate an event because of fulfillment
and/or violation of an obligation which is routed back into the engine.

• External trigger sources which are a set of entities covering all the external systems
interacting with the framework. These only include entities within the subject’s
trust domain and use framework services to support subject’s operations. User-
s/End Users are not included nor the event engine is exposed to them.

– DB Engines: SQL Server, Oracle etc sending an event on deletion, modifica-
tion or addition of data.

– Sensors: Sending measured data.

– Web Services/Workflows

– Humans: May generate an event on completion of some manual work.

4.4.2. Message Types

The event engine could expect the following forms of messages from the trigger sources
mentioned in the previous section. These are also implemented through plug-in mech-
anism so more forms of messages can be added easily. Each type of message has a
corresponding processing plugin which processes it accordingly.

42

4.4. Internal Working of the System

• Scheduler Trigger Message: This is the most basic form of message which is a trig-
ger and is sent from scheduler towards obligation engine. These are deterministic
triggers.

• External Trigger Message: Any message which is of trigger type message and is
received from external source falls in this category. These are non-deterministic
triggers and are also directed towards the obligation engine.

• External Trigger Message with Reply: These are the same as external trigger
messages but additionally they also have fields for the reply. The corresponding
processor sends the reply for these messages too. Preventive obligations always
expect a reply and are implemented with these types of messages.

• Schedule Message: These are sent from external sources and are directed towards
the scheduler to schedule a new trigger.

• Reply Message: Received from external sources as a reply of an asynchronous
operation. It must accompany unique event id which was sent to the external
system with the original message.

Beside these, there are other messages which are used between the components of
the framework for internal processing of the system. In our design, Message is the
base entity which is exchanged between internal components and with external entities.
Figure 4.9 shows the format of the generic message. A generic message could embed a
trigger within it or any other form of information. If the message is of trigger type then
it is also important to know the type of the trigger embedded within the message. The
next section presents the types of triggers we are covering in our design.

Figure 4.9.: Base message format received by event engine

43

4. Implementation

4.4.3. Forms of Trigger

We have two broad classes of triggers based on the type of trigger source namely In-
ternal Triggers and External Triggers. Internal triggers are generated from within the
framework and are rather simple.

The more complex class of triggers are external triggers which are generated from
varying external sources, for various reasons, bring variety of information in the form
of parameters and last but not the least is that they could expect a reply from the
framework which could itself be different for different trigger types. We handled the
problem of external sources by providing plugins in the event engine. What is left is
to further classify the triggers and their processing mechanism once they are inside the
system. From the existing literature and our research on different scenarios, we identified
three reasons to receive an external trigger.

• For-Action: These are the basic form of triggers which are received by the event
engine to execute some obligation.

• Pre-Action: The trigger source wants to execute an arbitrary action and before
execution it wants to get permission from the obligation framework to do the
action. It may also want the framework to fulfill required obligations before that
particular action.

• Notification/Post-Action: Alternatively, the source has already executed some ar-
bitrary action and wants to inform framework about it.

These are the reasons because of which a trigger is fired by any external source. We
now present some examples and identify the triggering mechanism in them.

Listing 31 For-Action Trigger
1: Subject X commits to delete U’s data at < d >.
. Scheduler will raise the event at date < d > and the data will be deleted.

2: Subject X commits to delete U’s data when U requests for deletion.
. U’s request is a trigger which will trigger deletion.

Pre-action trigger on the other hand is used to fulfill an obligation before performing
some action in which cases the result of pre-obligation condition must be sent back to the
source of trigger synchronously or asynchronously. We witnessed that all the preventive
obligations are triggered through pre-action triggers as the result of prevention aid the
decision making of the external trigger sources.

Notification trigger or post-action trigger is sent by the external system to the deployed
obligation framework after performing some arbitrary action. External system does not
expect a reply of the trigger. These are mainly generated for the framework to execute
obligations which may be connected to those actions committed by the external entity.

Further classification of different types of triggers is presented in Appendix B which
answers the question how we handle complex parameter combinations within triggers.

44

4.5. Demo Scenarios

Listing 32 Pre-Action Trigger
1: Subject X commits never sharing U’s data with anyone.
. X’s access control infrastructure will ask Obligation framework before sharing U’s
data with anyone. This is Preventive obligation and is enforced synchronously.

2: Subject X commits to get permission from the user before deleting his data.
. X’s access control infrastructure will ask Obligation framework before deleting
U’s data. This is preventive obligation and is enforced asynchronously because the
framework will send email and deletion is done when the reply is received.

Listing 33 Post-Action Trigger
1: Subject X commits to notify U when U’s data is shared.
. X’s access control infrastructure will tell Obligation framework after sharing U’s
data. This is proactive obligation which is triggered by post-action trigger and is
enforced synchronously.

This concludes the discussion on the architecture of the framework. We now present a
couple of end-to-end scenarios which are prototyped with our system in the next section.

4.5. Demo Scenarios

Two simple scenarios of enforcement are presented in this section. The first example is
of proactive obligation and the second presents a preventive enforcement.The detailed
XML representation of the examples presented here are given in Appendix A.

4.5.1. Demo Scenario 1

Let the obligation policy have two rules as presented in Listing 34.

Listing 34 Demo Scenario Policy 1
Service X commits to Delete U’s data at < d >
Service X commits to Notify(Email=XYZ) when U’s data is deleted.

1. The initial interplay occurs and the user data and policy is stored on the service
provider side.

2. The scheduler triggers the first obligation of the policy at scheduled time d.

3. The framework performs the deletion through action plugins on the PII repository.

4. An event is generated internally on the fulfillment of the first rule which is routed
back to framework as trigger.

5. The second rule is triggered and notification is sent to the client.

45

4. Implementation

2. Trigger (PolicyID,
RuleID)

Scheduler

Front
End

Obligation
Framework

(Event Engine +
Obligation Engine)

4. Rule fulfilled internal

trigger after deletion

1. Initial Interplay. User PII and

Policy is setup in the system

PII

Repository

3.Deletion
Internet/Web

Service

Service Provider Infrastructure

User

Figure 4.10.: Demo Scenario: Deletion and Notification Obligations cascaded together.

4.5.2. Demo Scenario 2

The corresponding policy is presented in Listing 35.

Listing 35 Demo Scenario Policy 2
Service X commits to Not to Delete U’s data.

1. The initial interplay occurs and the user data and policy is stored on the service
provider side.

2. The internal operator attempts to delete PII from the repository directly or through
some other operator interface.

3. The repository sends Pre-Action Delete trigger to the framework along with addi-
tional information like PII ID etc.

4. The framework fetches the policy and finds the rule registered for the trigger. If
the rule is found then conditions for prevention are checked.

5. A reply is sent back to the repository which behaves as per the reply of the frame-
work.

In preventive cases like above it is beyond the control of the framework to force external
entities to behave as per its decisions. Thus, we assume that all the systems are in the
same trust domain for the above scenario to succeed. Let the repository deletes without
the framework’s consent then such cases can be identified during system audits.

Until now we discussed the architecture and internal working of the system. What if
we have multiple frameworks deployed?, whether they complement each other or not?.

46

4.6. Deployments

Front
End

Obligation
Framework

1. Initial Interplay. User PII and

Policy is setup in the system

PII

Repository

User

2. Try to Delete PII

Internet/Web

Service

Admin, Internal Operator

3. CanDelete Pre-Action

Trigger with PII ID

4. Fetch Policy, find rule and

check if prevention required.

5. Reply (Y/N)

etc)

Service Provider Infrastructure

Figure 4.11.: Demo Scenario: Prevention of Deletion.

Thus to understand the environment surrounding the system is as important as under-
standing the system itself. Before concluding this chapter, we would like to present a
brief discussion on different deployment scenarios of the framework.

4.6. Deployments

The framework could be deployed in multiple ways. In the subsequent sections we
discuss different deployment scenarios for the obligation framework. The minimal set
of components required for the deployment of obligation framework in any environment
are

• Obligation engine which is the central component responsible for the coordination
with other components and execution of actions.

• Scheduler which is required to generate timed triggers and future event set.

• Event engine is the components which is exposed to the external environment and
is used to receive events from all the components and to distribute them.

• Policy processor to parse and process the newly received policy.

• Appropriated plugins to support actions, triggers, and external systems.

We consider three major environments where the obligation framework could be deployed
which are the topics of the next three subsections.

47

4. Implementation

4.6.1. Desktop framework deployment

This is the simplest deployment with minimal set of components. A very common
scenario is when a user U download a resource from a server on its desktop machine
and in such a case the desktop obligation framework would be responsible to fulfill
obligations attached with the downloaded resource. Additionally, user side obligations
could be enforced by deploying frameworks on the individual user machines.

For example, a medical doctor may download patient’s history (along with obligation
policy) from the hospital repository on his machine for review. In this case, the local
obligation framework ensures that the data is being used as per the policy received with
the data.

4.6.2. Server Deployments

In server side deployment we could have many possible, from simple to complex, sce-
narios where the obligation framework could be deployed. We start with the simplest
deployment scenario. The dimensions we have identified in the deployment are as follows

• Obligation framework deployments indicating how many frameworks are deployed
within an infrastructure.

• The number of services exposed by the organization.

• Vertical policy structure which specifies the structure of policies within an organi-
zation.

For modeling purposes, we define subject boundary within which the User’s/Customer’s
data will be stored at a single place without duplication.

The obligation framework has a policy repository (containing received sticky policies).
If there are multiple instances of framework running based on a single policy repository
then we consider it as a single obligation framework. The multiple instances may be
used for load balancing purposes but we don’t consider them as multiple deployments.

Single framework

In this scenario we have a single organization wide obligation framework deployment.
However, the organization can have multiple exposed services each having its own policy
or can have a single policy shared across the organization.

When we have a complex policy structure, like in Figure 4.12 (B), then the obligation
framework will also be responsible to:

• Check the policy hierarchy

• Merge the policies at different levels in the hierarchy.

• Resolve conflicts.

• Generate final unified policy against the request

48

4.6. Deployments

A B

Organization

Service 1 Service 2 Service 3

User's Data
Obligation
Framework

Organization
policy

Organization

Service 1

Service 1
Policy

Service 2

Service 2
Policy

Service 3

Service 3
Policy

User's Data
Obligation
Framework

Organization
policy

Figure 4.12.: A:Deployment with Single framework and having single organization wide
policy B:Deployment with Single framework but each service has its own
policy alongside an organization wide policy.

Sub
Organization

Service 1 Service 2 Sevice 3

User's Data

Organization
policy

Sub
Organization

Service 1 Service 2 Sevice 3

User's Data

Organization
policy

Horizontal policy plane

Obligation
Framework

Figure 4.13.: Single framework deployed within an organization having multiple data
repositories (each modeled as a single organization)

In Figure 4.13 , we show a scenario where the organization has multiple reposito-
ries of User data, with some duplicated data too. Each repository is modeled as a
sub-organization but the obligation framework is single and is shared across. The two
organizations are under the same trust domain so additional security checks are not
considered. It is inherent in our design that a single obligation policy will always point
to a single piece of data (data could be very large too in size).

Multi framework

In case of multiple obligation frameworks deployed the problem of integrity may arise.
If the two framework references the same user data then it would be difficult to ensure
integrity and to avoid incorrect obligation violations. In such cases it is essential to
ensure that the frameworks must always reference separate data sets. We propose the

49

4. Implementation

idea of having Policy ID mapping to the obligation frameworks in such cases. While
deploying the second framework with its own policy repository. The central framework
orchestrator must assign the chunk of Policy IDs to the specific obligation framework.
We always assume that only one obligation framework is in charge of a specific piece of
data.

Framework 1

Framework 2

...

Framework i

Policy IDs (0 to n -1)

Policy IDs

(n to 2n - 1)

...

Policy IDs

(i*n+1 to 264-1)

Figure 4.14.: Policy mapping with multiple frameworks deployed

In case, when a new framework is added with data already present for its assigned
chunk in the primary repository then we would need to do migration. The policy IDs
space will be distributed among the framework as shown in Figure 4.14. To utilize the full
policy IDs space for each deployed framework, we can take Policy IDs as a combination
of Framework ID + Unique ID. However from the processing point of view, we then have
two integer comparisons to deduce unique system wide Policy ID.

4.6.3. Cloud Deployments

Cloud computing is relatively a new style of computing which incorporates the concepts
of infrastructure as a service (IaaS), platform as a service(PaaS) and software as a ser-
vice(SaaS). In cloud computing dynamically scalable resources are provided as a service
over the Internet. Users need not have knowledge and expertise over the technology
infrastructure in the cloud that supports them. In cloud computing both software and
data are stored on the third party cloud computing service provider. The subject orga-
nization rent the infrastructure on the cloud to support its business. An introduction
about the cloud computing can be found in [31].

We perceive that our obligation management system can be deployed on any cloud
and is presented as an obligation management service. Customer organizations utilize
the obligation management and enforcement services without acquiring the cost of main-
tenance of software, hardware and human resources. What remains is to correlate our
design with the requirements presented in Section 1.2 which is what we present in the
next section.

50

4.7. Correlation with Design Requirements

4.7. Correlation with Design Requirements

We presented a set of design requirements earlier. After the discussion on the architecture
we would like to relate the requirements with the presented framework. This correlation
is being presented in the following list.

• Independence from policy language, data repositories and communication protocols
is covered by extraction, translation and repository integration plugins. We have
currently implemented repository plugins for volatile memory and SQL Server
2008. The SQL Server plugin highly depends on the DB schema at the back.

• Support for common,domain specific and preventive obligations is provided by hav-
ing action plug-in layer. We implemented action plugins for delete, notify and
prevent actions.

• Support for abstraction of actions is achieved by secondary plug-in layer under
the first action plug-in layer. We have provided plugin for SQL Server, RAM and
Email notification at this layer.

• Support for abstraction of triggers is achieved by having event engine plugins for
integration. Currently we have used only the standard event engine interface for
receiving external events. For classification of triggers see Appendix B.

• Support for distributed deployment is provided by allowing multiple policies to be
merged in a single policy. We do allow multiple subjects in a single policy but at
the implementation level this feature is missing. Providing placeholder for multiple
subject only does not completely address the problem. Downstream integration
with the secondary data consumers is one of the open research problems which is
out of scope of this thesis.

51

5. Evaluation

This chapter covers the results of testing and evaluation of our design and prototype
implementation. Alongside the results, we compared our system with the sole known
obligation management system by HP presented in [7]. We first present this compari-
son in Section 5.1 which is followed by the evaluation, results of testing and proposed
optimizations in Section 5.2.

5.1. Comparison with HP’s Obligation Management System

The HP’s obligation work was done under the EU FP6 PRIME project while our work
is based on the EU FP7 Primelife project which is the continuation of PRIME so the
two research efforts are indirectly related.

The overall idea of representing obligation in the form of separate policies is similar in
both and some other works related to obligations where the proposition is that existing
access control policy languages cannot express all the features of an obligation. Thus,
usage control/obligation requirements must be represented by a separate policy lan-
guage. In the next section we will focus on the key differences in the approach, scenario,
representation and enforcement architecture of the two research efforts.

5.1.1. Approach

We took the approach to design the system to achieve more flexibility in terms of obli-
gation representation and user requirements however this approach also brings more re-
source and processing requirements. HP’s approach is based on more of a tradeoff where
flexibility/expressiveness is compromised for the sake of lesser resource constraints.

We propose to store policy templates in raw state. When the request for a new policy
is received then based on the context a new policy is generated. The generated policy
is still customizable by the data owner and returned to the system with data attached
to it as depicted in the Figure 5.1. This approach gives the system provider to have
multiple varying policies for different users, user groups etc. Through this scheme, we
can express more complex scenarios for example

• If we want to have different policies for different types of users. For instance more
trusted users may be given leverage as compared to general customers.

• If we need to represent a policy hierarchy where a single organization is having
more than one service and each service has its own policy and we also have an
organization wide policy. And each obligation policy is the combination of the
organization wide policy and the respective service policy rules.

53

5. Evaluation

Customizable
policy

Sent to
User

Customizable
Policy

Return
policy with

data

User
Custmization

Process policy
and data

Obligation
framework

Static
Template

Request
Context

Environment

Figure 5.1.: Our Approach

The above scenarios, to the best of our understanding, were not considered in the
previous research work. HP does not send the policy on the wire but contrary to that
they consume user preferences on the server side. They store policy templates which are
when combined with stored user preferences acquired from a specific user constitutes an
obligation policy for the user. Their approach would be less resource thirsty as in our
approach we need to store and process large amount of obligation policies. This is one
of the future directions of work to merge many policies having same semantics attached
to different data for optimization purposes.

5.1.2. Scenario

We take the scenario where multiple subjects do exist, both in horizontal plane and
vertical hierarchies, each having its own policy. So we introduced subject in obligation
rule tuple which is not present in HPs work. Their policy can be applied to a single
subject, which may be the system, but cannot be a combination of multiple service
providers. The concept that Who will fulfill the obligation is missing from the HPs
representation of obligations and only system obligations are possible.

In Figure 5.2 each service provider may have its own obligation policy and framework.
The user should get the unified view and only interacts with S1. The unified customizable
policy received by the data owner may be a combination of obligation policies from these
multiple service providers. Our work/approach is being taken with future extensions in
mind where we can introduce constructs in the language for third party obligations and
collective obligations. Currently the detailed constructs are not provided. The Ruleset
construct is being provided to enable definition of multiple subjects within a single policy.

We use the sticky policy paradigm where the policy travels to the customer before
getting customized. HP’s work focuses on the idea of having obligation policy referencing
user preferences and these preferences are travelling on the wire and not the policy. We

54

5.1. Comparison with HP’s Obligation Management System

 S2

S3

User

S1

PS2

PS3

Ps1+ Ps2+ Ps3

Unified policy from

composite service

providers/subjects

Primary data

consumer

Secondary data

consumers

Figure 5.2.: Distributed Composite Service Scenario

provide more flexible user customization including different preferences for different data
from the same data owner.

In HP’s case, they store the preferences from the user and the same are used for all
the data received from the user so their approach is more user oriented and our’s is more
data oriented and goes down to more granular level.

5.1.3. Representation

The key differences in the representation of obligations are listed below.

• HP represents the obligation policy as a single rule having multiple actions and
events. We take policy as a set of rules with each having a single action, which
may be a composition of many sub-actions. We take this because we do support
negative actions which may be contradicting to each other and it would be complex
to reason on consistency of policies having multiple rules each having multiple
actions.

• Provision of negative (preventive) obligations in our language which was lacking
in the previous work.

• HP provides the idea of having violation actions which is a single level feedback
mechanism and only used when the rule is violated. On the other hand we have
chosen to have cascaded obligation rules which can be done at any level. An
outward event from one obligation rule can be an inward trigger for the other.
Outward event can be for fulfillment, violation etc. We have done reasoning on
the interrelation of rules for contradiction and safety which was missing in the
previous work.

55

5. Evaluation

• We have introduced condition statement at the rule level to control its activation
using generic conditions. HP allowed conditions at the action level but allows
multiple actions within a rule.

• We used the idea of untyped parameters for events and actions which makes the
XML representation independent of parameter names. HP XML representation
includes the action/event specific language constructs. To introduce a new action
they need to extend the XML schema.

5.1.4. Enforcement Architecture

Our architecture is based on dual plug-in layer as mentioned in Chapter 4. For HPs
design is not clear how they handle the same action performed on different external
systems. Currently, they only allow either RDBMS specified as the target systems. So
apparently, if we want to do the same action on a file then it is not possible without
modifying the language or extending the language to include such constructs.

It is concluded from the comparison that our system incorporates features which were
not supported in the previous system. However the higher flexibility may bring some
scalability issues for very large consumer base. System optimization directed towards
the more intelligent policy management would be required without compromising the
flexibility. The current design allows policies to be attached to resources at the most
granular level.

For example if an end user ask for service from the provider multiple times and provide
PII to the provider with each transaction. In such a case, we do allow the system to
attach separate instances of an obligation policy to each PII (the PII may be same). In
real situations, we may have policies without much variation in all the dimensions. Thus,
we could develop techniques to detect that the policies attached to two copies of data
are same and should be treated as a single policy applied to both the copies. That is
moving from the most granular level towards grouping entities in different dimensions and
applying policies on the groups for scalability. To judge the performance of the current
prototype we conducted validation and scalability tests. The results are presented in the
next section.

5.2. System Evaluation

We divided this section into two parts. First, we present the evaluation technique and
results and in the second section we present optimizations to the system and design from
the testing results.

5.2.1. System Testing

We primarily focused on two aspects of testing that is validation and scalability. The
validation testing covers the testing of different components of the system to check their
validity and to establish the variation in the intended system and the actual system

56

5.2. System Evaluation

prototype. Scalability testing consisted of running system under different kinds of load
to see the performance.

Figure 5.3 shows the modified architecture as was also presented in implementation
chapter 4. We divided the architecture into two parts. The upper section, with light
background, represents the components involved in the initial user interplay when a new
data and policy is received and setup. While the internal runtime components involved
in enforcement are dark background.

The whole system is designed with clear interfaces and components which commu-
nicate through these interfaces. We have marked the testing points too in the Figure
5.3.

External System/Infrastructure

Web Servers

Application Servers

Other Servers

Repositories

Policy/Rules

Repository

Scheduler

Future Event Set
OS Timer/

Clock
Send Triggers

Receive Events

Send and Receive

events from external

systems

Event Engine
Event Plugins and Factory to

receiver and send events

Parser

2. Schedule

deterministic

 Triggers

Policy Store

Plugins

Current selected

Repository is used

3. Store

1. Customized Obligation

Policy (could be Sticky

Policy)

Prime-

DHP

Custom

SOAP
XACML Other..

Policy Extractor

SOAP Message with Embedded

Customized Obligation Policy

1. Send Extracted

 Policy

Obligation Engine

Condition

Evaluator

Runtime
Evaluate

Condition

Action Invoker with

multiple plugins

Execute Action

Fetch Rule

Events

SQL

Server Oracle SAP

XYZ

SQL

Server Oracle
Action 2

Action n

SQL

Server Oracle SAP

XYZ

Execute

action

Execute

action

Store PII

(In the infrastructure)

PII Repository

Unit Test Mark A

Unit Test

Mark B

Unit Test

Mark D

Processor

Unit Test

Mark C

Unit Test

Mark E

Unit Test

Mark F

Unit Test

Mark G

Unit Test

Mark H

Figure 5.3.: Modified Architecture

57

5. Evaluation

For overall testing the system is assumed to have two modes of operations. It is evident
from the Figure 5.3 that there are repositories supporting the core components. The
first is the policy repository which holds the obligation policies and the second is PII
repository which holds the data on which the policies are applied. Both repositories are
accessed through plug-in based mechanism and currently we have plugins for Volatile
Memory (RAM) and SQL Server DBMS. Based on the type of repository used at the
back, we could have the following modes of operation.

• Base Mode: This is the mode when system stores both policies and PIIs in Volatile
Memory or RAM. This is called base mode because the access to memory for
reading and writing information is fastest. All the performance metrics are first
evaluated in this mode and then we compare the base performance with the other
modes.

• Operation Mode 1: This is the mode when PII repository is replaced with RDBMS
(SQL Server). Though PII repository is outside the system but we wanted to
compare the difference in performance when repository is moved to DBMS.

Additional operation modes are established when policy store, event engine and sched-
uler are also supported by RDBMS.

Validation

The validation of the system is being done by testing each component in isolation with
both valid and invalid inputs. Invalid inputs are tested to check the robustness of the
system and to provide graceful exit.

The second step was to check the system by cascading different components to see
the overall results and to ensure that the systems are performing as was intended and
output of one component is acceptable to the next.

We provide a set of unit tests for different components which validate the system.
These are normally run after each code revision, addition and bug fixes for validation.
The unit tests start the system in Base Mode. Base Mode is chosen as modes of operation
only impact performance and not validation. Validation unit tests are also independent
of the system power and capacity. The test points as mentioned in Figure 5.3 are
described below.

A This is the point which is exposed to the client/end user. Thus, unit tests that
test the system from this point actually simulate client experience. We currently
have one plug-in which receives client message in a custom format and separates
the policy and PII part. The overall processing cost in terms of time if measured
at Mark A is given in Equation 5.1.

tA = tPII processing + tpolicy processing (5.1)

Where

tPII processing = Processing PII. This is dependent on the repository used.

58

5.2. System Evaluation

For RAM ≈ 0

tpolicy processing = This is the complete delay taken by policy parser.

Elaborated in next item.

If we want to measure the processing cost at the client side then the equation
will have one additional component tnetwork overhead which represent the overhead
induced because of network delays both directions and web service call overhead
like additional serialization/deserialization.

tclient = tnetwork overhead + tA (5.2)

B At this point, we test the parser through the IParsePolicy interface. The unit test
generates a dummy policy and test the XML parsing. We can also test the complete
tpolicy processing cycle from this point including parsing, saving and scheduling of
trigger within the policy.

tpolicy processing = tpolicy deserialize + tpolicy saving + tpolicy processing (5.3)

Where

tpolicy deserialize = Deserialization of policy ≈ 0

tpolicy saving = Saving PII. This is dependent on the repository used. For RAM ≈ 0

tpolicy processing = This is the complete processing cost of policy processor. Elaborated in next item.

C At this point, we test the policy processing timing using IProcessPolicy interface.
It is being input by a parsed policy object. Currently it only does one task which
is to check the policy object and schedule time based triggers defined in it with
policy ID and rule ID. Processing cost of this component tpolicy processor found ≈
0. This is an evolving component and major delay could occur when inserting new
events in the scheduler.

D Scheduler is tested using IScheduleEvent interface at this point. Currently delays
are negligible. At this point the client interplay ends and the call returns.

E At this point, we check the different types of triggers sent to event engine and see
whether they are acceptable or not and how the engine behaves in case of invalid
triggers.

F The obligation engine is fed with messages to test its behavior and processing.

G At this point, we test condition evaluation components using IConditionEvaluator
interface. We feed the components with different dummy condition objects. The
evaluated reply is compared with the expected one to analyze the behavior.

59

5. Evaluation

H This point though marked on the architecture but in reality each action plug-
in is tested separately before being integrated with the core engine. Different
plugins may have different processing cost based on their design, intended purpose
and external system integration. For example deletion plug-in performance may
be different than notification plug-in. In turn deletion on RDBMS is more time
consuming than a deletion on RAM.

Based on the discussion above the overall time taken to process a single trigger received
at event engine is as follows.

ttrigger processing = tevent engine + tobligation engine + tcondition evaluation + taction plugin (5.4)

Where

tevent engine = Event engine holds a queue of messages received from different sources.

Depending on the load it varies

tobligation engine = Obligation engine need to fetch the policy and rule from repository.

For base mode this is negligible ≈ 10−6

tcondition evaluation = For evaluating conditions within the rule.

taction plug−in = Action plugin processing time. This must be evaluated

for each plug − in separately.

For external triggers there will be an additional delay of deserializing trigger param-
eters and we represent it is texternal trigger overhead. Validation overall resulted in a list
of bugs which we fixed in multiple iterations. Next we present the scalability testing
results along with the problems we identified.

Scalability

This was the major activity where we load test the system to identify potential scalability
problems in real time scenarios. First, we ran test in the base mode to establish a bench
mark result and then compared them with results from operation mode 1. Scalability
testing is not machine independent and thus the results could be different for differ-
ent machines. Thus we have presented results in relative terms rather using absolute
numbers. We conducted these tests on a machine with the following configuration.

CPU: Intel Core2 Duo 3.16 GHz
RAM: 4GB
OS: Windows Vista
DBMS: SQL Server 2008

The testing is further divided into two parts. First, we estimated tclient, tA and
tpolicy processing as presented in Equation 5.2,5.1 and 5.3 respectively. This constitutes
the initial transaction interplay processing cost. The second part, dark background, is
to estimate ttrigger processing of Equation 5.4.

60

5.2. System Evaluation

We estimate processing cost of each component to find bottlenecks and inefficient code
snippets. This is also important to note that the scalability results are highly dependent
on the complexity and size of policies. To have the result free from the impact of policy
sizes we conducted all the tests with a simple policy having one rule which commits
deletion of the user data at a pre-defined time instant.

1.0213

1.2229
1.0895

0.7223 0.7269 0.7393

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3

A
vg

 P
ro

ce
ss

in
g

ti
m

e
 p

e
r

tr
an

sa
ct

io
n

(m
se

c)

Test Run Serial Number -->

A

Delay measured at
client side (Pre-
optimizations)

Delay measured at
client side (Post-
optimizations) 23.93%

76.07%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1

D
is

tr
ib

u
ti

o
n

 o
f

P
ro

ce
ss

in
g

Lo
ad

B

Network delay

At Unit Test Point A

Figure 5.4.: A) Presents the average transaction processing time measured at Client side
B) Distribution of processing time between framework and additional WS-
Call overhead represented in percentage

Initial Interplay-Base Mode Figure 5.4 Part A present average per transaction process-
ing time measured from the client side. The average is calculated from 1000 transactions
fired in each set. The first test was conducted with the initial implementation which
helped us to identify different bottlenecks and unoptimized code. Second set of tests
were conducted after making certain optimizations in the framework which improved
the performance by ≈ 33%.

Part B presents the distribution of the processing time between measurements at client
side and Mark A on the framework side. These are post optimization distribution from
test 2. tpolicy processing is approximately 25% of the total tA time which is of the order
of 200 µsec per transaction. Figure 5.5 presents the complete distribution of processing
time for base mode operation.

Initial Interplay-Mode 1 with RDBMS PII Repository Figure 5.6 Part A presents
average per transaction processing time measured from the client side for the system in
operation mode 1. The difference is that the PII repository is moved to SQL Server. In
this case, optimizations improved the performance by ≈ 93%.

The huge increase was because of the saving of PII in a temporary data structure.
Previously, we were saving PII directly into the database in real time. The optimization
was to induce a temporary data structure which holds the new PII for a short time

61

5. Evaluation

Client Side

͌ 0.75msec

Mark A

24% ͌ 0.18 msec

Mark B

36% ͌ 0.065 msec

Policy Parsing

98% ͌ 0.060 msec

Policy Saving

1%

Policy Processing

1%

PII Processing

64% ͌ 0.115msec
Network delays

76% ͌ 0.57 msec

Figure 5.5.: Complete distribution of processing time in base mode.

1.0879 0.8922 0.8082

13.982 13.994 13.8

0

5

10

15

1 2 3

A
vg

 P
ro

ce
ss

in
g

ti
m

e
 p

e
r

tr
an

sa
ct

io
n

(m
se

c)

Test Run Serial Number -->

A

Delay measured at
client side (Pre-
optimizations)

Delay measured at
client side (Post-
optimizations)

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

C
u

m
m

u
la

ti
ve

 t
im

e
 f

o
r

1
0

0
0

tr

an
sa

ct
io

n
s(

m
se

c)

B

Increase in
insertion time with
DB size (Pre-
optimization)

Increase in
insertion time with
DB size (Post
Optimization)

Figure 5.6.: A) Presents the average transaction processing time measured at Client side
B) Presents increase in PII insertion processing time because of increase in
DB.

and then the queries are run for a bulk insertion in secondary thread. Though the PII
processing/extractor plugins are outside the scope of the system but we considered them
to show the impact realized on the client side. Generally, the complexity of DB insertion
is of the order of O(Log N) where N is the number of records in the respective table.

Part B presents the impact of DB size. The increasing line shows that the insertion
time is proportional to size of DB. With the optimization we also solved this problem.
The flat straight line at the bottom (Figure 5.6 Part [B] Post optimization) is realized
when taking measurements on the main execution thread which is now free from the
impact of DB insertions.
Figure 5.7 presents the complete distribution of processing time for operation mode 1.

Once the policies are into the system. The next phase is the actual enforcement. In
this phase the load is proportional to the number of triggers expected per unit time.
This trigger count per unit time in turn is proportional to the number of policies within
the system. To evaluate this part, we scheduled triggers to be fired at the same time

62

5.2. System Evaluation

Client Side

͌ 0.93msec

Mark A

37% ͌ 0.34 msec

Mark B

18% ͌ 0.065 msec

Policy Parsing

98% ͌ 0.060 msec

Policy Saving

1%

Policy Processing

1%

PII Processing

82% ͌ 0.27msec
Network delays

63% ͌ 0.59 msec

Same as before

Figure 5.7.: Complete distribution of processing time in mode 1.

and calculated the processing time for them. This is important to note that the actual
system would be having triggers processed along side with the new service requests.
However, we divided the system into two parts and conducted tests separately to avoid
results which are polluted by the impact of each other.

Internal Processing-Base mode We first scheduled triggers in different numbers from
103 to 105 and fired them at the same time. It is found that the processing time per
trigger was of the order of 10 µsec. The waiting in the queue on event engine was
dependent on the performance of the action plug-in at the end. In case of exception the
performance degrades because of IO operations required for logging.

Internal Processing-Mode 1 with RDBMS PII Repository We performed the same
tests with PII repository on the SQL server (Mode 1). The performance was severely
reduced because of the deletion operation executed by the delete action plug-in as a
synchronous operation on SQL Server. Most of the time is consumed in waiting for the
reply from DBMS ≈ 10−3 sec. Because of the delay on the plug-in side, the waiting time
in the queue increased and the overall per trigger processing too which found to be of
the order of 10−3 sec. The exact processing time in turn depends on the size of DB.

The conclusion we draw is that the system itself does not induce unnecessary delays
or overheads. The important requirement is to measure the performance of the action
plug-in at the end of the operation which in turn depends on the performance of the
external systems it is connected to.

The design can be considered as a classical queuing system. The trigger sources push
new work units into the queue (event engine) and servicing engine (obligation engine
with plugins) retrieve those jobs from the queue and process. If the rate of service
provider is slower than the rate of incoming jobs then the queue will increase in size and
ultimately crash. The rate of service provider in our case depends on the performance
of action plugins which could block the thread in which they are executed.

Impact of policy size on performance As mentioned before, to keep the measured
parameters free of impact of different policy sizes we perform testing with a policy having

63

5. Evaluation

one rule which is in turn triggered only once. The action used in the testing was deletion
with two different repository types. The size of a policy impacts the performance in two
ways (leaving the network overhead induced because of higher data transfer).

• The larger the policy size (means number of rules per policy) accompanying the
data the more would be the processing cost for parsing, processing and saving the
whole policy but processing cost per rule will not be impacted.

• Second would be the cost of processing more rules and in turn the number of times
each rule is triggered.

We estimated processing costs per trigger and processing costs per policy each having
one rule (implying that the estimator for processing cost per policy is equivalent to
processing cost per rule as there was only one rule per policy). This was deliberately
taken as these estimators themselves are independent of policy sizes.

The size of the policy impact the overall load on the system. For instance, let the
system is capable of storing and processing 1000 rules. This capacity can be consumed if
we have 1000 policies with 1 rule each or 250 policies with 4 rules each etc. To calculate
the required capacity of the system hardware, storage and other infrastructure we would
need to know the number of end users/policies to process and average policy size per
rule.

Next we discuss some optimizations of the system which we identified during evalua-
tion.

5.2.2. Optimizations

For optimal performance of the system during production operation we would need to
have optimizations from three perspectives which include design, policy and administra-
tive optimizations. Brief discussion on each is as follows.

Design Optimizations Design optimizations comprises of the optimizations made in the
overall system design and the written code to make the system as efficient as possible. We
already detailed some of the improvements made in the plugins to improve performance.

For the internal processing part, we plan to introduce multiple threads within the
obligation engine. The current engine uses a secondary worker thread to post messages
to corresponding action plug-in and wait for the reply. However as discussed in previous
section, if the plug-in is blocked because of the synchronous operation then the whole
engine is blocked too. We propose to introduce multiple threads (or a thread pool) to
execute each action executed inside obligation engine.

Another important aspect which is out of scope of this thesis work is to introduce
intelligence in the system. For example same trigger is to be fired for n obligation rules
of the same type and at the same time. In such cases we can fire a single trigger that
apply to n rules. The operation could be accomplished in bulk and using secondary
threads which would be faster than deleting n time in the primary thread.

64

5.2. System Evaluation

Optimized Policies Design though improve the performance but still cannot cover all
aspects. The second important aspect is to write consistent and unambiguous policies.
Unenforceable policies would generate exceptions and degrade performance.

Additionally policies could also help to improve the performance too. For example
we have n policies in execution each having 1 trigger. Assume that all n triggers are
scheduled to fire at the same time. To avoid this, we could write a set of static poli-
cies targeted towards different end user segments (like critical users, normal users etc).
When these policies are in the system for execution, the corresponding triggers would
be distributed in time.

Another proposition is to introduce additional constructs in the policies and intelli-
gence in the engine which allows flexibility and load distribution during execution. For
example, we write the policy rule to be triggered at 1200 PM with an additional tol-
erance level of ±8 hours. Additionally, assume that all the triggers are scheduled to
fire at 1200 PM. Thus, the engine should be able to distribute scheduled triggers using
tolerance level information and the processing load it has.

Administration Last is the efficient administration of the system. For instance, if we
turn on the tracing at highest level then the performance is degraded. Thus it is an
administrative task to control such performance parameters like tracing level, timeouts,
activating and deactivating plugins, backup and recovery etc.

We left out Mode 2, with policy repository on RDBMS, because of the problem of
saving policies efficiently in the DB. If we store whole policy XML chunk then addi-
tional overhead of serialization and deserialization would be there along with the cost of
accessing DB. The other extreme is to store the policy in a DB having multiple tables
and policy is distributed across tables. However, we identified that this would also be
costly to run multiple insertion queries in separate tables. The second option though
allow multidimensional analysis of policies in the repository.

Thus we will go with the second option but refrain from storing policies directly
into the RDBMS. Instead, we would propose to use the current volatile memory policy
storage plug-in as a cache memory between framework and RDBMS. The synchronization
between RDBMS and RAM data structures should be done in idle time and in secondary
worker threads.

To analyze the cost of accessing DB vs. cost of serialization and to identify the most
optimal DB schema to map onto our policy language XML schema is part of the future
design enhancements to the current implementation.

We end this chapter with the note that the prototype allowed us to verify our language
and architecture design and we have been able to enforce different obligations through
the system. However, there are lot of enhancements still required and problems need to
be addressed which surround the system. We now move to the conclusion of our work
and present the future direction of work.

65

6. Conslusion and Future Work

We presented a general language for expressing obligations which can be integrated with
or used in conjunction of today’s access control and data handling policy languages.
The thesis presented various aspects of the language so that our work can serve as a
contribution to other research activities in this field. We started with the background
of problem scenario then presented the reasoning on the requirements of an abstract
yet expressive obligation language and presented requirements for design. We showed
how our work relates to state of the art and positioned our work. Next we presented
an abstract notion of an obligation language fulfilling those requirements. We described
important design aspects and formal structure of the obligation language. The language
offers basic actions, triggers and terms which are rich enough to cover a broad range of
scenarios. In addition the language can be extended with domain specific actions, terms
and events to adapt it to specific application domains.

The next major contribution of the work is to present a design of the framework to
enforce obligations. This was something missing and we addressed this problem to fill
the gap. We correlated our design aspects with the requirement of the design and gave
reasoning on different components and features of the architecture. We verified our work
with an implementation of an obligation framework which features both the requirements
and the proposed language design. This allowed us to make practical comments on the
implementation aspects and drawbacks. The current implementation provides a subset
of the features discussed in the language and design.

We compared our system with one of the known closely related system and high-
lighted the new features and differences. We also conducted initial evaluation testing
of the system to verify the feasibility of such a design and implementation in real time
environments. Optimizations to the systems along with results from the testing has been
presented.

The current structure of the language is able to express wide range of obligations and
is extendible. The idea to have multiple subjects in a single policy makes it extendible
in distributed scenarios with multiple subjects. The plugin based design aid to this
extendibility of the design and expression of obligations.

Based on the results from the evaluation of current prototype of the system, we con-
clude that the design of the core enforcement platform itself is efficient but the per-
formance is highly dependent on the design and efficiency of plugins inserted into the
system. It would also be dependent on the integrated external systems with which the
framework is integrated. For synchronous operations, unoptimized action/event plugins
may degrade the performance of the overall engine. Furthermore, ill written policies
could take the system to ambiguous states.

Retreival from and storage into RDBMS repositories took the most time because of

67

6. Conslusion and Future Work

IO operation. It would be better to have advanced methods like having cache memories
instead of directly retriving/storing information on demand. The object form of the
policy to save in the repository impacts the performance as well.

The work accomplished in the thesis is part of a EU FP7 Primelife project and we ad-
dressed one problem of the user privacy which is to express and enforce obligations. This
work is in its initial stage and certainly there is much room for further improvements.
However, we beleive that the proposed architecture and language if taken forward could
serve as an enforcement platform to cater business scenarios. From the overall perspec-
tive there are open research problems which were beyond the scope of the thesis work
but could be addressed as part of an ongoing effort. Next we present some of these
known open problems identified during the work and areas of further research.

One of the most important part is the establishment of trust and support for different
trust models. It is generally hard to prove to a third party that an obligation is fulfilled.
Hence, users have to trust the data processor, i.e. assume that the data processor
will fulfill obligations. The anchor of trust could be based on various technologies, e.g.
a trusted stack (certified TPM [2], trusted OS), on reputation, or on certification by
external auditors. The structure of obligations should be independent from the trust
model.

Complementary to the problem of trust is the observability of obligations and trans-
parency of data handling. The obligation enforcement as well as mechanisms to load
policies should be comprehensive so that data processors and auditors can easily check
whether a specific deployment is compliant with a given specification. This is a prereq-
uisite to enable data-handling transparency toward end users.

The problem of Rights to fulfill obligations as discussed by Ni et. al. [25] and others in
the literature. It is important to distinguish between violation of an obligation because
of the enforcement platform’s capability to fulfill it or because of the inappropriate rights
assigned to it. Such cases could arise when the platform does not have rights to perform
certain actions to fulfill the obligation. Our assumption was that the framework would
always have appropriate rights to perform actions on the external systems within the
same trust domain.

Usability for the end users is another important aspect. Surveys has been done to
evaluate the user privacy concerns and behavior on the internet. Earp et. al [13] classified
users into three categories with the bulk of them willing to show their private data under
certain conditions. Mont Cassasa et. al. [27] presented the results of usability testing of
their obligation management system and identified key problem areas.

Another important problem to be addressed is the distributed scenario with the data
travelling through multiple hops and the policy attached to it is evolved. We could have
multipe possible schemes like

• Before sending an obligation policy to the data owner, we collect the policies from
possible secondary data consumers and send a unified policy to the data owner.
This also covers the delegation of obligation scenario. The policy received at the
data owner side will contain obligations committed by mutiple subjects (see Figure
5.2).

68

• Alternative scheme could be that the primary data consumer only send its policy
to the data owner. Later, on request from secondary consumers for sharing user
data, the primary consumer behaves as the data owner. It compares the sticky
policy attached to the requested data with the policy of the requestor. The sharing
of requested data on the downstream depends on such a negotiation mechanism.

• Hybrid scheme combining multiple techniques.

Investigating composite actions would increase the flexibility of the language and help
users to structure domain specific dialects of the obligation language in a more efficient
and error-preventing way. However, the downside is that composite actions introduce
a level of complexity that makes it harder to detect contradictions inside an obligation
rule. Perhaps a set of design rules defining how action may be composed could help to
deal with this complexity.

We would also like to implement a policy validity and consistancy tool which input
a policy and detect inconsistancies within it. Validity checking is to ensure that policy
will be enforceable and consistancy checking is to ensure that the policy is free from
contradictions.

At the design and implementation level, we would like to investigate and implement
schemes to save and retreive policies from RDBMS efficiently. Research has already been
done in the area of databases which will aid in our problem resolution. Additionally,
policies should be saved in a way that multidimensional analysis of the policy could be
performed. For example administrator would like to have a report showing

• All the policies in the system having Action X within one of its rules.

• All the rules which were violated last month.

• All the triggers fired between <start time> and <end time>.

Such analysis are only possible if we have policies saved in a normalized database
with a well designed schema. Additionally, the DB schema should also support efficient
insertions and updates as it would be an online transaction processing system. The
incorrect or sub-optimal database design will impact the performance. We left the results
with policy repository on RDBMS as they were highly dependent on the dynamics of
the backend RDBMS repository and would not have given any valuable information to
further optimize the obligation framework core components. Factors like size of DB, DB
schema, performance tuning of DB (e.g Logs, query buffers, backups, indexes etc) and
DB administration were more important than anything inside the framework.

We conclude the thesis here. Complete schema of the XML language and trigger
classification is being presented in the appendices.

69

Bibliography

[1] Microsoft windows rights management services at http://www.microsoft.com/rms/.

[2] Trusted Computing Platform Alliance (TCPA). Main Specification Version 1.1b,
Trusted Computing Group, Inc., February 22 2002.

[3] Anne H. Anderson. A comparison of two privacy policy languages: Epal and xacml.
In SWS ’06: Proceedings of the 3rd ACM workshop on Secure web services, pages
53–60, New York, NY, USA, 2006. ACM.

[4] C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati. A
privacy-aware access control system. J. Comput. Secur., 16(4):369–397, 2008.

[5] Paul Ashley, Satoshi Hada, Gnter Karjoth, Calvin Powers, and Matthias
Schunter. Enterprise privacy authorization language (epal 1.2) at
http://www.w3.org/submission/2003/subm-epal-20031110/.

[6] Adam Barth, John C. Mitchell, and Justin Rosenstein. Conflict and combination
in privacy policy languages. In WPES ’04: Proceedings of the 2004 ACM workshop
on Privacy in the electronic society, pages 45–46, New York, NY, USA, 2004. ACM.

[7] M. Casassa and F. Beato. On parametric obligation policies: Enabling privacy-
aware information lifecycle management in enterprises. Policies for Distributed
Systems and Networks, 2007. POLICY ’07. Eighth IEEE International Workshop
on, pages 51–55, June 2007.

[8] Marco Casassa Mont. Hpl-2005-180: A system to handle privacy obligations in
enterprises at http://www.hpl.hp.com/techreports/2005/hpl-2005-180.html, 2005.

[9] Marco Casassa Mont, Siani Pearson, and Pete Bramhall. Towards accountable man-
agement of identity and privacy: Sticky policies and enforceable tracing services.
In Proceedings of 14th International Workshop on Database and Expert Systems
Applications (DEXA’03), pages 377 – 382, 2003.

[10] David W. Chadwick and Stijn F. Lievens. Enforcing ”sticky” security policies
throughout a distributed application. In Proceedings of the 2008 workshop on Mid-
dleware security table of contents, pages 1–6, New York, NY, USA, 2008. ACM.

[11] Laurence Cholvy and Christophe Garion. Deriving individual obligations from col-
lective obligations. In AAMAS ’03: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 962–963, New
York, NY, USA, 2003. ACM.

71

Bibliography

[12] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Obligations and
their interaction with programs. In ESORICS, pages 375–389, 2007.

[13] J.B. Earp, A.I. Anton, L. Aiman-Smith, and W.H. Stufflebeam. Examining internet
privacy policies within the context of user privacy values. Engineering Management,
IEEE Transactions on, 52(2):227–237, May 2005.

[14] Pedro Gama and Paulo Ferreira. Obligation policies: An enforcement platform. In
POLICY ’05: Proceedings of the Sixth IEEE International Workshop on Policies
for Distributed Systems and Networks, pages 203–212, Washington, DC, USA, 2005.
IEEE Computer Society.

[15] Manuel Hilty, Alexander Pretschner, David Basin, Christian Schaefer, and Thomas
Walter. A policy language for distributed usage control. In Joachim Biskup and
Javier Lopez, editors, 12th European Symposium on Research in Computer Security
(ESORICS 2007), volume 4734 of LNCS, pages 531–546. Springer-Verlag, 2007.

[16] R. (ed.) Iannella. Open digital rights language - version 1.1 (august 2002).
odrl.net/1.1/ODRL-11.pdf.

[17] Keith Irwin, Ting Yu, and William H. Winsborough. On the modeling and analysis
of obligations. In CCS ’06: Proceedings of the 13th ACM conference on Computer
and communications security, pages 134–143, New York, NY, USA, 2006. ACM.

[18] Basel Katt, Xinwen Zhang, Ruth Breu, Michael Hafner, and Jean-Pierre Seifert. A
general obligation model and continuity: enhanced policy enforcement engine for
usage control. In SACMAT ’08: Proceedings of the 13th ACM symposium on Access
control models and technologies, pages 123–132, New York, NY, USA, 2008. ACM.

[19] Pranam Kolari, Li Ding, Shashidhara Ganjugunte, Lalana Kagal, Anupam Joshi,
and Tim Finin. Enhancing web privacy protection through declarative policies.
In Proceedings of the IEEE Workshop on Policy for Distributed Systems and Net-
works(POLICY 2005), June 2005.

[20] Emil Lupu, Nicodemos Damianou, Naranker Dulay, and Morris Sloman. The ponder
policy specification language. In POLICY ’01: Proceedings of the International
Workshop on Policies for Distributed Systems and Networks, pages 18–38, London,
UK, 2001. Springer-Verlag.

[21] Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed systems
management. IEEE Trans. Softw. Eng., 25(6):852–869, 1999.

[22] David Basin Manuel Hilty and Alexander Pretschner. On obligations. Computer
Security ESORICS 2005, pages 98–117, 2005.

[23] Pietro Mazzoleni, Bruno Crispo, Swaminathan Sivasubramanian, and Elisa Bertino.
Xacml policy integration algorithms. ACM Trans. Inf. Syst. Secur., 11(1):1–29,
2008.

72

Bibliography

[24] Tim Moses. OASIS eXtensible Access Control Markup Language (XACML) Version
2.0. OASIS Standard oasis-access control-xacml-2.0-core-spec-os, OASIS, February
2005.

[25] Qun Ni, Elisa Bertino, and Jorge Lobo. An obligation model bridging access con-
trol policies and privacy policies. In SACMAT ’08: Proceedings of the 13th ACM
symposium on Access control models and technologies, pages 133–142, New York,
NY, USA, 2008. ACM.

[26] Qun Ni, Alberto Trombetta, Elisa Bertino, and Jorge Lobo. Privacy-aware role
based access control. In SACMAT ’07: Proceedings of the 12th ACM symposium
on Access control models and technologies, pages 41–50, New York, NY, USA, 2007.
ACM.

[27] John Sören Pettersson, Simone Fischer-Hubner, Marco Casassa Mont, and Siani
Pearson. How ordinary internet users can have a chance to influence privacy policies.
In NordiCHI ’06: Proceedings of the 4th Nordic conference on Human-computer
interaction, pages 473–476, New York, NY, USA, 2006. ACM.

[28] A. Pretschner, F. Schütz, C. Schaefer, and T. Walter. Policy evolution in distributed
usage control. In 4th Intl. Workshop on Security and Trust Management. 06 2008.

[29] Erik Rissanen. OASIS eXtensible Access Control Markup Language (XACML)
Version 3.0. OASIS working draft 10, OASIS, March 2009.

[30] William H. Stufflebeam, Annie I. Antón, Qingfeng He, and Neha Jain. Specifying
privacy policies with p3p and epal: lessons learned. In WPES ’04: Proceedings of
the 2004 ACM workshop on Privacy in the electronic society, pages 35–35, New
York, NY, USA, 2004. ACM.

[31] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break
in the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, 2009.

[32] Janice Warner and Soon Ae Chun. A citizen privacy protection model for e-
government mashup services. In dg.o ’08: Proceedings of the 2008 international
conference on Digital government research, pages 188–196. Digital Government So-
ciety of North America, 2008.

73

A. Policy Schema and Example Policies

This appendix gives the detailed XML schema of our proposed language which is then
followed by two example policies.

A.1. XML Schema of the Language

1 <xs:schema elementFormDefault="qualified"

2 targetNamespace="http ://www.microsoft.com/emic/primelife/obligations"

3 xmlns:pl_ob="http ://www.microsoft.com/emic/primelife/obligations"

4 xmlns:xs="http ://www.w3.org /2001/ XMLSchema">

5 <xs:ele ment name="obligationPolicy" type="pl_ob:obligationPolicy" />

6 <xs:comp lex Type name="obligationPolicy">

7 <xs:seq uence minOccurs="1" maxOccurs="1">

8 <!--Name: optional part and not required in sticky policy , only for DO if it stores it -->

9 <xs:ele ment minOccurs="0" maxOccurs="1" name="name" type="xs:anyURI" />

10 <!--Description: optional part and not required in sticky policy , only for DO if it stores it -->

11 <xs:ele ment minOccurs="0" maxOccurs="1" name="description" type="xs:string" />

12 <xs:ele ment name="rules" type="pl_ob:ob_rules" />

13 </xs:seq uence>

14 <!--ID: this is the id of the policy issued by the issuer for its record.

15 will come back from user with the data , the issuer will ensure the state of the policy using this id -->

16 <xs:att ribute name="id" type="xs:ID" use="required" />

17 </xs:comp lex Type>

18 <xs:comp lex Type name="ob_rules">

19 <xs:seq uence minOccurs="1" maxOccurs="1">

20 <!--Ruleset is introduced to avoid redundancy by defining subject with each and every rule -->

21 <xs:ele ment minOccurs="1" maxOccurs="unbounded" name="ruleset" type="pl_ob:ob_ruleset" />

22 </xs:seq uence>

23 </xs:comp lex Type>

24 <xs:comp lex Type name="ob_ruleset">

25 <xs:seq uence >

26 <!--Simple cartesian product of subject and rule will give us the set of complete obligation rules -->

27 <xs:ele ment minOccurs="1" maxOccurs="unbounded" name="subject" type="pl_ob:ob_subject" />

28 <xs:ele ment minOccurs="1" maxOccurs="unbounded" name="rule" type="pl_ob:ob_rule" />

29 </xs:seq uence>

30 <!--must be unique with in a policy -->

31 <xs:att ribute name="id" type="xs:integer" use="required" />

32 </xs:comp lex Type>

33 <!--subject -->

34 <xs:comp lex Type name="ob_subject">

35 <xs:seq uence >

36 <xs:ele ment minOccurs="1" maxOccurs="1" name="name" type="xs:anyURI" />

37 <xs:ele ment minOccurs="0" maxOccurs="1" name="description" type="xs:string" />

38 <!--Will be extended in future to introduce other features -->

39 </xs:seq uence>

40 <!--must be unique with in a ruleset -->

41 <xs:att ribute name="id" type="xs:integer" use="required" />

42 </xs:comp lex Type>

43 <!--Obligation rule -->

44 <xs:comp lex Type name="ob_rule">

45 <xs:seq uence >

46 <xs:ele ment minOccurs="1" maxOccurs="1" name="action_expression" type="pl_ob:ob_aexpr" />

47 <!--triggers are inward to the rule , rule must be active w.r.t application condition -->

48 <xs:ele ment minOccurs="1" maxOccurs="1" name="triggers" type="pl_ob:ob_triggers" />

49 <!--defines additional application condition of this rule -->

50 <xs:ele ment minOccurs="1" maxOccurs="1" name="application" type="pl_ob:ob_cexpr" />

51 <!--events are outward and are sent to event engine when rule is violated/fulfilled -->

52 <xs:ele ment minOccurs="0" maxOccurs="1" name="events" type="pl_ob:ob_events" />

53 </xs:seq uence>

54 <!--must be unique with in a ruleset -->

55 <xs:att ribute name="id" type="xs:integer" use="required" />

56 <xs:att ribute default="true" name="IsMandatory" type="xs:boolean" />

57 </xs:comp lex Type>

Obligation Policy Schema

75

A. Policy Schema and Example Policies

58 <!--Action -->

59 <xs:comp lex Type name="ob_aexpr">

60 <xs:seq uence >

61 <!--To identify action plugin -->

62 <xs:ele ment minOccurs="1" maxOccurs="1" name="action" type="pl_ob:ob_parameterizedIdentifier" />

63 <!--This is optional , default value can be set in the system -->

64 <xs:ele ment minOccurs="1" maxOccurs="1" name="retry_interval" type="xs:duration" />

65 <!--This is optional , default value can be set in the system -->

66 <xs:ele ment minOccurs="0" maxOccurs="1" name="retry_count" type="xs:integer" />

67 </xs:seq uence>

68 </xs:comp lex Type>

69 <!--Condition Expression -->

70 <xs:comp lex Type name="ob_cexpr">

71 <xs:seq uence >

72 <xs:ele ment minOccurs="1" maxOccurs="unbounded" name="pterm" type="pl_ob:ob_prodterm" />

73 </xs:seq uence>

74 </xs:comp lex Type>

75 <!--Product term -->

76 <xs:comp lex Type name="ob_prodterm">

77 <xs:seq uence >

78 <xs:choice minOccurs="1" maxOccurs="unbounded">

79 <xs:ele ment minOccurs="0" maxOccurs="1" name="condition" type="pl_ob:ob_condition" />

80 <xs:ele ment minOccurs="0" maxOccurs="1" name="condition_expression" type="pl_ob:ob_cexpr" />

81 </xs:choice>

82 </xs:seq uence>

83 </xs:comp lex Type>

84 <!--Condition - Result will always be boolean -->

85 <xs:comp lex Type name="ob_condition">

86 <xs:seq uence >

87 <xs:ele ment minOccurs="1" maxOccurs="1" name="scope" type="xs:anyURI" />

88 <xs:ele ment minOccurs="1" maxOccurs="1" name="name" type="xs:string" />

89 <xs:ele ment minOccurs="1" maxOccurs="unbounded" name="parameters" type="pl_ob:ob_condition_parameters"/>

90 </xs:seq uence>

91 </xs:comp lex Type>

92 <xs:comp lex Type name="ob_condition_parameters">

93 <xs:seq uence >

94 <xs:choice minOccurs="1" maxOccurs="unbounded">

95 <xs:ele ment name="literal" type="pl_ob:ob_condition_literal" />

96 <xs:ele ment name="variable" type="pl_ob:ob_condition_var" />

97 <!--function output can be other than boolean -->

98 <xs:ele ment name="function" type="pl_ob:ob_condition_function" />

99 </xs:choice>

100 </xs:seq uence>

101 </xs:comp lex Type>

102 <xs:comp lex Type name="ob_condition_var">

103 <xs:seq uence >

104 <xs:ele ment minOccurs="1" maxOccurs="1" name="type" type="xs:string" />

105 <xs:ele ment minOccurs="1" maxOccurs="1" name="scope" type="xs:anyURI" />

106 <xs:ele ment minOccurs="1" maxOccurs="1" name="name" type="xs:string" />

107 </xs:seq uence>

108 </xs:comp lex Type>

109 <xs:comp lex Type name="ob_condition_literal">

110 <xs:seq uence >

111 <xs:ele ment minOccurs="1" maxOccurs="1" name="type" type="xs:string" />

112 <xs:ele ment name="value" type="xs:string" />

113 </xs:seq uence>

114 </xs:comp lex Type>

115 <xs:comp lex Type name="ob_condition_function">

116 <xs:seq uence >

117 <xs:ele ment minOccurs="1" maxOccurs="1" name="type" type="xs:string" />

118 <xs:ele ment minOccurs="1" maxOccurs="1" name="scope" type="xs:anyURI" />

119 <xs:ele ment minOccurs="1" maxOccurs="1" name="name" type="xs:string" />

120 <xs:ele ment minOccurs="1" maxOccurs="unbounded" name="parameters" type="pl_ob:ob_condition_parameters"/>

121 </xs:seq uence>

122 </xs:comp lex Type>

123 <!--Triggers -->

124 <xs:comp lex Type name="ob_triggers">

125 <xs:seq uence >

126 <xs:ele ment minOccurs="0" maxOccurs="unbounded" name="absolute" type="pl_ob:ob_trigger_absolute" />

127 <!--Trigger function will be used for iterative obligations e.g periodic triggers -->

128 <xs:ele ment minOccurs="0" maxOccurs="1" name="function" type="pl_ob:ob_parameterizedIdentifier" />

129 <!--External triggers define only the type , the type hierarchy is application dependent -->

130 <xs:ele ment minOccurs="0" maxOccurs="unbounded" name="external" type="pl_ob:ob_parameterizedIdentifier"/>

131 </xs:seq uence>

132 </xs:comp lex Type>

133 <xs:comp lex Type name="ob_trigger_absolute">

134 <xs:seq uence >

135 <xs:ele ment minOccurs="1" maxOccurs="1" name="fireAt" type="xs:dateTime" />

136 <xs:ele ment minOccurs="0" maxOccurs="1" name="timeout" type="xs:duration" />

Obligation Policy Schema

76

A.2. Example: Deleted and Notify Proactive Obligations

137 </xs:seq uence>

138 <xs:att ribute name="id" type="xs:integer" use="required" />

139 </xs:comp lex Type>

140 <!--Events -->

141 <xs:comp lex Type name="ob_events">

142 <xs:seq uence >

143 <xs:ele ment minOccurs="0" maxOccurs="unbounded" name="event" type="pl_ob:ob_parameterizedIdentifier" />

144 </xs:seq uence>

145 </xs:comp lex Type>

146 <!--parameterized object -->

147 <xs:comp lex Type name="ob_parameterizedIdentifier">

148
149 <xs:seq uence >

150 <xs:ele ment minOccurs="1" maxOccurs="1" name="scope" type="xs:anyURI" />

151 <xs:ele ment minOccurs="1" maxOccurs="1" name="name" type="xs:string" />

152 <xs:ele ment minOccurs="0" maxOccurs="1" name="parameters" type="pl_ob:ob_parameters" />

153 </xs:seq uence>

154 <xs:att ribute name="id" type="xs:integer" use="required" />

155 </xs:comp lex Type>

156 <xs:comp lex Type name="ob_parameters">

157 <xs:seq uence >

158 <xs:ele ment minOccurs="1" maxOccurs="unbounded" name="parameter" type="pl_ob:ob_parameter" />

159 </xs:seq uence>

160 </xs:comp lex Type>

161 <!--Parameter -->

162 <xs:comp lex Type name="ob_parameter">

163 <xs:seq uence >

164 <xs:ele ment minOccurs="1" maxOccurs="1" name="type" type="xs:string" />

165 <xs:ele ment name="name" type="xs:anyURI" />

166 <xs:ele ment name="value" type="xs:string" />

167 </xs:seq uence>

168 <xs:att ribute name="IsRequiredByUser" type="xs:boolean" use="required" />

169 </xs:comp lex Type>

170 </xs:schema>

Obligation Policy Schema

A.2. Example: Deleted and Notify Proactive Obligations

Below we give an example obligation expressed in our obligation language. It defines
two rules. The first rule (7) states that the data shall be delete at a given point in time
(16). When the rule is fulfilled, the obligation engine shall fire an event (20). The second
rule (26) shall notify the data owner at a given e-mail address (35). The engine tries
this twice (41) with a delay of one day (40). The rule is invoked via the event (45) that
was defined in the first rule. In other words, when the deletion is successful the data
owner will be notified. If we remove rule (26) from the policy then only deletion will be
performed and no notification will be sent.

1 <obligationPolicy id="1">

2 <rules >

3 <ruleset >

4 <subject id="1">

5 <name >http :// www.microsoft.com/emic </name >

6 </subject >

7 <rule id="1">

8 <action_expression >

9 <action id="1">

10 <scope >http :// www.microsoft.com/emic/obligations/base/actions </scope >

11 <name >Delete </name >

12 </action >

13 </action_expression >

14 <triggers >

15 <absolute id="1">

16 <fireAt >2009 -03 -18 T18 :05:00 </ fireAt >

17 </absolute >

18 </triggers >

19 <events >

20 <event >

21 <scope >http :// www.microsoft.com/emic/obligations/base/triggers </scope >

22 <name >/ ruleFulfilled #</name >

23 </event >

77

A. Policy Schema and Example Policies

24 </events >

25 </rule >

26 <rule id="2">

27 <action_expression >

28 <action id="1">

29 <scope >http ://www.microsoft.com/emic/obligations/base/actions </scope >

30 <name >Notify </name >

31 <parameters >

32 <parameter >

33 <type >String </type >

34 <name >http :// base/parameter/target/emailAddress </name >

35 <value >alice@contoso.com </value >

36 </parameter >

37 </parameters >

38 </action >

39 <parameter_type >EmailNotifyParameters </ parameter_type >

40 <retry_interval >P0Y0M1DT0H0M0S </ retry_interval >

41 <retry_count >2</ retry_count >

42 </action_expression >

43 <triggers >

44 <external id="1">

45 <scope >http ://www.microsoft.com/emic/obligations/base/triggers </scope >

46 <name >/ ruleFulfilled #</name >

47 <parameters >

48 <parameter >

49 <type >System.Int64 </type >

50 <name >http :// base/parameter/ruleID </name >

51 <value >1</value >

52 </parameter >

53 </parameters >

54 </external >

55 </triggers >

56 </rule >

57 </ruleset >

58 </rules >

59 </obligationPolicy >

A.3. Example: Preventive Obligation

Listing below gives an example of obligation rule which is enforced through prevention.
Action of this obligation is preventAction in line (10) which is the action to prevent a
particular action. In our case this action is delete which is expressed as first parameter
of action in line 14. The trigger, as defined in line (26), is of type pre-action external.
It illustrates that a trigger will be sent by some external entity to the framework before
doing some particular action. This action is same as the first parameter of action that
is delete which is expressed in line (30).

The requirement to enforce such obligations is that the framework is integrated with
the data repositories and other infrastructure system. When someone would try to delete
the user data directly from the data repository, the repository will generate a trigger to
the framework to ask and the framework will decline based on this rule. We prototyped
this scenario by writing a DELETE trigger procedure in T-SQL on SQL server 2008 DB.
The SQL Server trigger procedure called the Event Engine web service in our framework
and based on the result it either completed the deleted operation or completely rolled
back the transaction.

1 <?xml version="1.0" encoding="utf -8" ?>

2 <obligationPolicy id = "3" xmlns="http :// www.microsoft.com/emic/primelife/obligations">

3 <rules >

4 <ruleset >

5 <subject id="1">

6 <name >http :// www.microsoft.com/emic </name >

7 </subject >

8 <rule id="1">

9 <action_expression >

78

A.3. Example: Preventive Obligation

10 <action id="1" >

11 <scope >http :// www.microsoft.com/emic/primelife/obligations/base/actions </scope >

12 <name >preventAction </name >

13 <parameters >

14 <parameter IsRequiredByUser="False">

15 <type >String </type >

16 <name >http :// base/parameter/name </name >

17 <value >Delete </value >

18 </parameter >

19 </parameters >

20 </action >

21 <parameter_type >GenericPreventionParameters </ parameter_type >

22 <retry_interval >P0Y0M0DT0H1M0S </ retry_interval >

23 <retry_count >2</ retry_count >

24 </action_expression >

25 <triggers >

26 <external id="1">

27 <scope >http ://www.microsoft.com/emic/primelife/obligations/base/triggers </scope >

28 <name >/pre -actionExternal #</name >

29 <parameters >

30 <parameter IsRequiredByUser="False">

31 <type >String </type >

32 <name >http :// base/parameter/name </name >

33 <value >Delete </value >

34 </parameter >

35 <parameters >

36 </external >

37 </triggers >

38 </rule >

39 </ruleset >

40 </rules >

41 </obligationPolicy >

79

B. Classification of Triggers

We discussed the three forms of triggers in Section 4.4.3. Though the classification given
in Section 4.4.3 is at the top. However, we could encounter many different types of
triggers under each of the three major forms. Figure B.1 below present the inheritance
hierarchy of triggers which are currently in place in the prototype.

Base Trigger

External
Trigger

Pre Action Post Action

Internal
Trigger

Deterministic

Time Trigger

Non
Deterministic

Rule Fulfilled Rule Violated

Figure B.1.: Hierarchy of Triggers

The first layer of classification corresponds to trigger sources. Internal triggers are
further classified as deterministic and non deterministic.

External triggers on the other hand are classified based on the forms as was discussed
in Section 4.4.3. Now the problem remains to further classify the triggers.

For example a pre-action trigger could come before Sharing action or a Deletion action.
If we start creating separate plug-ins for each of these then it would not be feasible as only
the name of the action is changing and not the dynamics or semantics of the pre-action
trigger. Thus, we followed the scheme of having parameterized triggers.

With this scheme the pre-action trigger will accompany a set of named parameters
like pre-action(ActionName=Share, PII ID=1). This is the simplest form of pre-action
trigger having only one parameter and the handling can be done by the default pre-
action plug-in. But let’s assume we receive pre-action(ActionName=Share, PII ID=1,
Purpose=X, With=Bob) which is a complex form of trigger which is asking framework
the question Can I share PII with ID 1 with Bob for purpose X. Though the XML parsing

81

B. Classification of Triggers

would be done easily as our schema is not extended for new trigger and actions but the
default plug-in may not be able to handle the semantic of this complex trigger.

For such cases, we could promote the parameters of a trigger as a new trigger type and
add the plug-in within the system. For the above given complex example we could have a
new trigger type named CanShare and now the received trigger would be CanShare(PII
ID=1, Purpose=X, With=Bob).

If we still receive a complex trigger in a different dimension then we can further
promote one parameter and make a new one. For example, if we now receive a trigger
CanShare(PII ID=1, Purpose=Fax, AtNumber = X, With=Bob) which semantically
mean Can I share PII, with ID 1, for faxing at number X. In this case, we can further
promote the parameter Purpose to form a new trigger name CanShareForFax and the
trigger will now become CanShareForFax(PII ID=1, With=Bob, Purpose=Fax). After
these new plug-ins, the hierarchy could become like in Figure B.2 below.

Base Trigger

External
Trigger

Pre Action

CanShare

CanShareForFax CanShareForEmail

Post Action

Internal
Trigger

Deterministic

Time Trigger

Non
Deterministic

Rule Fulfilled Rule Violated

Figure B.2.: Hierarchy with additional plug-ins

The same scheme can be applied to actions as the two are equally complex and anal-
ogous to each other. At the top level, actions are classified based on enforcement mech-
anism. Further plug-ins could be added as shown above for triggers.

82

	Introduction
	Problem Scenario
	Major Requirements of the Language and Framework
	Stakeholders of the System

	State of the Art
	Obligations
	Definition
	Aspects of Obligations
	Enforcement Mechanism
	Conditionality
	Iteration
	Stateful Obligations
	Time Boundedness
	Observability
	Delegation

	Formal Obligation Model
	Obligation Rule
	Rule Set
	Policy

	Integration with Existing Policy Languages
	Properties of Policy Language
	Consistency
	Safety

	Formalization of Obligation Statements

	Implementation
	Policy Generation Components
	Generic Components
	Obligation Runtime
	Policy extractor and translator plug-ins
	Scheduler
	Event Engine
	Event Engine Plugins
	Policy Processor
	Obligations Engine
	Action Plugins
	Policy Repository

	Internal Working of the System
	Trigger Sources
	Message Types
	Forms of Trigger

	Demo Scenarios
	Demo Scenario 1
	Demo Scenario 2

	Deployments
	Desktop framework deployment
	Server Deployments
	Cloud Deployments

	Correlation with Design Requirements

	Evaluation
	Comparison with HP's Obligation Management System
	Approach
	Scenario
	Representation
	Enforcement Architecture

	System Evaluation
	System Testing
	Optimizations

	Conslusion and Future Work
	Policy Schema and Example Policies
	XML Schema of the Language
	Example: Deleted and Notify Proactive Obligations
	Example: Preventive Obligation

	Classification of Triggers

