
Privacy and Identity Management in Europe for Life

Second research report on next
generation policies

Editors: Sabrina De Capitani di Vimercati (UNIMI)
Pierangela Samarati (UNIMI)

Reviewers: Uli Pinsdorf (EMIC)
Sandra Steinbrecher (TUD)

Identifier: D5.2.2
Type: Deliverable
Version: 1.0
Class: Public
Date: February 26, 2010

Abstract

The consideration of privacy issues introduces the need for rethinking authorization policies
and models and the development of novel privacy-aware paradigms for access control. Goal of
Work Package 5.2 is then the definition of a flexible and comprehensive privacy-enhanced policy
language, which will be used as a basis for the work performed in other work packages, especially
in Work Package 5.3.

This document presents the advancements made in the research work during the second year
of PrimeLife in Work Package 5.2. The document includes one chapter for each task of the work
package that briefly describes the main research results along with an indication of what are
the issues that will be addressed in the remaining year of the project. The last chapter lists
the abstracts of the research papers reporting the findings of Work Package 5.2 published in the
second year of the project.

project PrimeLife.

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 216483 for the

Members of the PrimeLife Consortium

1. IBM Research GmbH IBM Switzerland

2. Unabhängiges Landeszentrum für Datenschutz ULD Germany

3. Technische Universität Dresden TUD Germany

4. Karlstads Universitet KAU Sweden

5. Università degli Studi di Milano UNIMI Italy

6. Johann Wolfgang Goethe - Universität Frankfurt am
Main

GUF Germany

7. Stichting Katholieke Universiteit Brabant TILT Netherlands

8. GEIE ERCIM W3C France

9. Katholieke Universiteit Leuven K.U.Leuven Belgium

10. Università degli Studi di Bergamo UNIBG Italy

11. Giesecke & Devrient GmbH GD Germany

12. Center for Usability Research & Engineering CURE Austria

13. Europäisches Microsoft Innovations Center GmbH EMIC Germany

14. SAP AG SAP Germany

15. Brown University UBR USA

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is
given that the information is fit for any particular purpose. The below referenced consortium members
shall have no liability for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials subject to any liability which is
mandatory due to applicable law. Copyright 2009, 2010 by IBM Research GmbH, Unabhängiges Lan-
deszentrum für Datenschutz, Technische Universität Dresden, Karlstads Universitet, Università degli
Studi di Milano, Johann Wolfgang Goethe - Universität Frankfurt am Main, Stichting Katholieke Uni-
versiteit Brabant, GEIE ERCIM, Katholieke Universiteit Leuven, Università degli Studi di Bergamo,
Giesecke & Devrient GmbH, Center for Usability Research & Engineering, Europäisches Microsoft In-
novations Center GmbH, SAP AG, Brown University.

2

List of Contributors

Contributions from several PrimeLife partners are contained in this document. The
following list presents the contributors for the chapters of this deliverable.

Chapter Author(s)

Executive Summary UNIMI

Chapter 1 : Policy languages
(Task 5.2.1)

IBM, UNIBG, UNIMI

Chapter 2 : Policy for service
composition (Task 5.2.2)

EMIC, IBM

Chapter 3 : Legal policy
mechanisms (Task 5.2.3)

ULD

Chapter 4 : Abstracts of re-
search papers

EMIC, UNIMI, IBM, UNIBG

3

Executive Summary

The increased power and interconnectivity of computer systems available today provide
the ability of storing and processing large amounts of data, resulting in networked in-
formation accessible from anywhere at any time. In addition, the widespread diffusion
of on-line services provided by public and private organizations that require users to
provide their personal information to get access to them has considerably increased the
amounts of personal information collected by the service providers. This situation has
led to growing concerns about the privacy of their users. Unfortunately, some of the
emerging technological and organizational requirements for preserving the privacy of the
users are still not completely understood; as a consequence, personal data is often poorly
managed and sometimes abused.

In general, protecting privacy requires the investigation of different aspects, including
the design and implementation of privacy-aware models and languages thus empowering
the users and giving them the tools for effective control on personal information. The def-
inition of privacy-enhanced policies is however complicated by the need to formally rep-
resent complex policies, where access decisions depend on the application (composition)
of different rules (e.g., rules coming from laws practices and organizational regulations).

A general goal of Work Package 5.2 is the definition of a flexible and comprehensive
privacy-enhanced policy language, expressing sophisticated privacy needs. In particular,
Work Package 5.2 aims at providing the basis for an effective and easily deployable
privacy-aware policy solution that should be adopted in current information systems with
a minimal impact on the existing technologies. The findings of this work package will be
directly expoited in Work Package 5.3. To pursue its objectives, Work Package 5.2 has
been organized into three tasks: Task 5.2.1: Policy languages focuses on the definition of
policy languages able to express sophisticated privacy needs; Task 5.2.2: Policies for web
service composition focuses on the security and privacy aspects related to Web services;
Task 5.2.3: Legal policy mechanisms focuses on the investigation of the protection models
that are at the basis of current regulations.

This document presents the reseach work carried out in the context of Work Pack-
age 5.2 in the second year of the project. The work performed by the three tasks
composing the work package can be summarized as follows.

• Task 5.2.1 defined a privacy-aware language integrating cryptographic primitives
and provided an extension of the XACML language and architecture for supporting
actual requirements of open Web-based systems.

• Task 5.2.2 focused on mash-ups Web services and investigated a policy language
for downstream usage control.

5

6

• Task 5.2.3 analyzed current privacy policies and legal clauses and compared them
with the legal requirements.

The remainder of this document is organized in four chapters. The first three chapters
(Chapters 1, 2, and 3) present the main research results obtained during the second year
of the project within Tasks 5.2.1, 5.2.2, and 5.2.3, respectively, and describe the issues
that will be addressed in the remaining year of the project. The last chapter (Chapter 4)
lists the abstracts of the research papers reporting the findings of Work Package 5.2
published in the second year of the project.

Contents

1 Policy languages (Task 5.2.1) 11
1.1 Exploiting cryptography for privacy-aware access control 11
1.2 Extending XACML for open web-based scenarios 14

1.2.1 Deployment in XAMCL . 14
1.3 Extended XACML architecture . 17

1.3.1 Scenario and motivations . 18
1.3.2 PRIME access control system . 19
1.3.3 The PrimeLife access control system 21

1.4 Future research . 25

2 Policies for service composition (Task 5.2.2) 27
2.1 Related work and contributions . 28

2.1.1 Rights expression languages . 29
2.1.2 Privacy policy languages . 29
2.1.3 Usage control . 30

2.2 The language . 31
2.3 Matching . 34

2.3.1 Matching privacy preferences and policies 34
2.3.2 Proactive matching of downstream rights 36
2.3.3 Lazy matching . 37

2.4 Future research . 38

3 Legal policy mechanisms (Task 5.2.3) 41
3.1 Legal requirements . 41
3.2 Transferring legal into technical requirements 43
3.3 Applicability to the state of the art in policy languages 44
3.4 Conclusion and interim results . 45
3.5 Future research . 45

4 Abstracts of research papers 47

Bibliography 54

7

List of Figures

1 XML representation of conditions on credential metadata (a) and of an
abstraction (b) . 15

2 The PRIME access control architecture . 20
3 The PrimeLife access control architecture 23
4 The PrimeLife XACML Engine data flow 24

5 Example of preferences . 32
6 Examples of ACUC chaining . 37

9

List of Tables

2 From formal concepts to XACML . 17

10

Chapter 1
Policy languages (Task 5.2.1)

The work in this task has addressed the problem of analyzing existing languages and
extending them by developing new models, languages, and policies supporting complex
privacy requirements emerging in open world scenarios. This problem has been studied
from different perspectives, including the possibility of exploiting recent advances in cryp-
tography and trust negotiation that permit the use of anonymous credentials for devel-
oping privacy-aware languages and the development of a dialog management framework
to enable access control interactions between clients and servers. The novel contribu-
tions described in the following leverage on the research results of PRIME (www.prime-
project.eu), especially on the PRIME privacy languages [ACDS08]. The goal has been
the extension of the eXtensible Access Control Markup Language (XACML) [eXt05],
which is the most significant and emerging solution for controlling access in an interop-
erable and flexible way. In particular, we developed an access control policy language
and architecture that, on one side, provide access control functionality and, on the other
side, protect the privacy of the involved parties and of their personal information. The
contribution of the work performed in this task is then twofold: i) the definition of a
privacy-aware policy language and system that support cryptography for access control;
ii) a study and definition of the extensions that need to be made to the current XACML
language and architecture to include the new concepts proposed to make them easily
deployable and suitable for open Web-based systems. In the remainder of this chapter,
we describe these contributions in more details and outline future research.

1.1 Exploiting cryptography for privacy-aware access con-
trol

Almost everyone uses electronic means for their daily interactions with businesses, gov-
ernments, colleagues, friends, and family. In these interactions, users play different roles
such as customer, citizen, patient, or family member and they disclose personal informa-
tion ranging from attributes such as date of birth, age, and home address to credentials
pertaining to authorizations and privileges. Indeed, the number of transactions con-

11

12 Policy languages (Task 5.2.1)

ducted electronically is ever growing and in fact not limited to those over the Internet
as electronic authentication and authorization with some kind of token (e.g., electronic
identity cards, driver’s licenses, tickets and toll-tokens) become widespread.

Organizations endeavor to control access to the resources they provide based, among
other things, on the attributes of the requestor. Access control thus is one of the key
functions of identity management (IdM) from the perspective of enterprizes, although it is
interwoven with other functions. Identity management systems in this context maintain
digital identities, or accounts, containing attributes (e.g., a name) and properties (e.g.,
entitlements within the system’s domain such as access rights) of the entities (usually
individuals) within their domain. The accounts have an identifier (e.g., username) and
one or more authenticators (e.g., a password). The individual’s need for control over
her information is often neglected in traditional IdM systems, even though the personal
information she reveals is highly sensitive.

More recently a shift in focus of identity management can be witnessed from a strict
perspective of enterprize-centric access control to resources towards a perspective that
takes the interests of the individual into account. A number of identity management
systems are available today, being standardized, or developed that are illustrative for
this change in focus. These include, for example, the open source project Higgins (http:
//www.eclipse.org/higgins/), Microsoft’s CardSpace (http://msdn.microsoft.com/
en-us/library/aa480189.aspx), and the Liberty Alliance set of protocols (http://
www.projectliberty.org/).

Recent advances in cryptography have sparked a new generation of IdM systems based
on anonymous credentials [Cha85,Bra99,CL01]. The basic concept has been known for
quite some time: instead of revealing all attribute values encoded in the user’s credentials,
anonymous credentials allow the user to prove that she possesses valid credentials with
attributes that satisfy some claim, without revealing any more information about the
attributes than what is directly implied by the claim, however. More recently, more cryp-
tographic tools have been developed that further extend the functionality of anonymous
credentials, such as verifiable encryption [CS03] (i.e., a public-key encryption scheme
that is compatible with an anonymous credential scheme such that it allows claims to
be proved about how the encrypted content was derived from attributes in a credential
- without revealing the content) and limited spending of credentials [BCC04,CHK+06].
To be incorporated into IdM systems, privacy-enhancing functions need to be governed
by specific privacy policies that must not only be stated, but also be enforceable by tech-
nical means. This holds for the access control policies (ACP), which state the conditions
that a requestor must satisfy to gain access to a resource; for the data handling policies
(DHP), which state how the requestor’s information should be treated once it is revealed;
as well as for the trust policies (TP), which state which authorities can be trusted to
certify what type of information. On the other hand, the policy languages should be ex-
pressive enough to leverage the advanced features offered by the underlying technology.
A policy language that combines elements from access control, data handling, and trust
policies, and that is the first to model anonymous credentials and a number of related
cryptographic extensions has been designed and described in [ACK+10]. The proposed
language has been integrated with the following cryptographic primitives.

• Anonymous credentials. Anonymous credentials can be thought of as digitally

Section 1.1: Exploiting cryptography for privacy-aware access control 13

signed lists of attribute-value pairs that allow the owner of such credentials to
prove statements about attribute values without revealing any more information
about them than what is directly implied by the statement. By issuing a credential
(i.e., by signing the list of attribute-value pairs), the authority certifies that the
user satisfies the described attributes. Anonymous credentials allow the user and
the verifier to engage in an interactive selective-show protocol during which the
user proves that she owns a valid credential of which the attribute values satisfy
some claim. The only information leaked about the attribute values however is
that the claim holds true.

• Pseudonymous identification. When a user regularly accesses the same service, she
may not want to reprove at each visit that she qualifies for using the service, but
may prefer to establish a permanent user account instead. To protect her privacy,
she wants to do so under a pseudonym: it is bad enough that all her actions at
this service now become linkable, she does not want them to become linkable to
her actions across other services too. The server, on the other hand, may want to
prevent users sharing their account information with others, thereby giving non-
qualified users access to the service as well.

A pseudonymous identification scheme allows a user to derive from a single mas-
ter secret msk multiple unlinkable cryptographic pseudonyms nym1,nym2, . . ., and
later authenticate herself by proving that she knows the master secret underlying
one of the cryptographic pseudonyms. Of particular interest are those pseudony-
mous identification schemes that are compatible with an anonymous credential
scheme, allowing the same master secret key msk to be encoded as an attribute in
all the credentials belonging to one user, thereby preventing sharing of credentials.

• Verifiable encryption. A verifiable encryption scheme [CS03] is a public-key en-
cryption scheme that is “compatible” with an anonymous credential scheme, in the
sense that it permits to prove claims about how the encrypted content was derived
from attributes in a credential—without revealing the content, however.

• Limited spending. Certain applications require that the number of times that a
credential can be shown anonymously be limited [BCC04,CHK+06]. For instance,
a credential representing a wallet of n coins can be shown n times. A user can
nevertheless attempt to use a credential more often. Cryptographic serial numbers1

allow to detect overspending and, optionally, to obtain some information in escrow.
The escrow is certified identifying information about the user that is hidden until
an overspending occurs.

The resulting policy language uses anonymous credentials with various extensions,
thus enabling system designers to take advantage of the cryptographic mechanisms to
protect the users’ privacy. As a matter of fact, users can carry out transactions (e.g.,
over the Internet) revealing only the strictly necessary personal information.

1A cryptographic serial number looks like a random number, but is in fact deterministically derived
from a unique seed embedded in a credential that can generate up to the spending limit different serial
numbers.

14 Policy languages (Task 5.2.1)

1.2 Extending XACML for open web-based scenarios

Open Web service systems, in which servers do not normally have any prior knowledge
of users, call for a different solution from a traditional access control based on prelimi-
nary identification and authentication of requestors. The solutions proposed so far are
in most cases logic-based and, although expressive, they hardly ever result applicable in
practice, where simplicity, efficiency, and consistency with consolidated technology play
a fundamental role [BS02,DFJS07]. Although notably widespread in the research com-
munity and the industry, and likely the most significant proposal to date, the XACML
language [eXt05] still suffers from some limitations when it comes to its capabilities
in supporting the requirements of open Web-based systems. Using XACML standard
extension points is however possible to define new functions, data types, and policy com-
bination methods, thus exploiting the language’s flexibility to adapt it to several different
needs. We proposed a profile with a specific focus on those aspects of open world sce-
narios that are not supported by the standard [ABD+09,ADP+09a]. The novel concepts
that access control in open Web services should include have been introduced together
with guidelines on the modifications that need to be applied to the current XACML
language to include the proposed extensions. In the following, we describe the proposed
profile for XACML that makes it easily deployable and suitable for open Web-based
systems.

1.2.1 Deployment in XAMCL

XACML is not suitable for supporting the definition of access control policies in open
scenarios, since it has some significant limitations. First, traditional XACML policies
allow for the definition of generic boolean conditions referring to the different elements
(e.g., subject, object, action) of a policy, thus enforcing an attribute-based access control.
However, no support for expressing and reasoning about credentials is provided. Second,
XACML neither provides the basis to reason about existing information, thus deriving
new concepts, nor an infrastructure to support recursive conditions like the features
offered by logic-based policy languages. Third, XACML implicitly assumes that the
engine that enforces access control decisions has all the necessary information to complete
the evaluation process. Such an assumption is not realistic in most cases, and we counter
it by calling for an infrastructure to manage the dialog between the involved parties. We
have studied how these limitations can be counteracted with the addition of novel features
to XACML having a limited impact on the original specification, toward an extended
XACML framework suitable for open Web services. The results of this study have
been presented in [ADP+09b]. We now show how a support for certified information,
abstractions, recursive reasoning, and dialog management enabling an interactive access
control between clients and servers based on incremental releases of data and request for
data can be deployed in XACML.

Support for credentials

Although designed to be integrated with the Security Assertion Markup Language
(SAML) [AL04] for exchanging security assertions and providing protocol mechanisms,
XACML lacks a real support for considering and reasoning about digital certificates,

Section 1.2: Extending XACML for open web-based scenarios 15

<certifications>
<certification id="IT_IC">

<group>
<type Disclosure="condition">identity_card</type>
<issuer Disclosure="property">IT_Gov</issuer>
<method Disclosure="condition">X.509</method>

</group>
<group>

<type Disclosure="condition">passport</type>
<issuer Disclosure="property">IT_Gov</issuer>
<method Disclosure="condition">SAML</method>

</group>
</certification>

</certifications>

<abstractions>
<abstraction id="id_document">

<is>
<item>identity_card</item>
<item>driver_license</item>
<item>passport</item>

</is>
</abstraction>

</abstractions>

(a) (b)

Figure 1: XML representation of conditions on credential metadata (a) and
of an abstraction (b)

in particular, for expressing conditions on certified properties, and on properties of
the certificates themselves, to which we referred to as metadata (e.g., the certificate
type, or its issuer). XACML currently supports attribute-based access control; we ex-
tended it to support also credential-based access control. To represent and manage
credentials in XACML, and related properties and conditions on them, we have mod-
eled conditions on metadata and conditions on the attributes separately. Attributes
in the credentials have been treated as any other property and need only to be as-
sociated with the proper certification. To do that with minimal impact on XACML,
we reused the Issuer attribute in the SubjectAttributeDesignator element. In par-
ticular, an occurrence of a credential attribute in the subject expression translates
into an element SubjectAttributeDesignator, where attribute AttributeId is equal
to the attribute name, and attribute Issuer refers to the metadata. A new XML
schema has then been introduced to represent credential metadata. The schema has
a root element certifications containing one or more elements certification. Each
certification is composed by one or more alternative group elements, each containing
restrictions on metadata. Element certification has an identifying attribute id whose
value is the identifier with which the credential condition should be referred. Figure 1(a)
illustrates an example of metadata conditions, showing a certification with attribute id
equals to IT_IC that represents either a credential of type identity card issued by IT
Gov with the X.509 proof method, or a credential of type passport issued by IT Gov
with the SAML proof method.

Support for abstractions

Abstractions, also referred to as abbreviations, macros, or ontological reasoning in several
logic-based proposals, allow for the derivation of new concepts (abstractions) from exist-
ing ones. They intuitively represent a shorthand by which a single concept is introduced
to represent a more complex one (e.g., a set, a disjunction, or a conjunction of concepts).
For instance, id_document (abstraction head) can be defined as an abstraction for any

16 Policy languages (Task 5.2.1)

element in set {identity_card, driver_license, passport} of credentials (abstraction tail).
A policy specifying that an access requester must provide an id_document can then be
satisfied by presenting any of the three credentials above. To support abstraction speci-
fication in XACML, we integrated XACML with XQuery [Boa07], a language developed
by W3C for querying XML data. Abstractions have been defined via XQuery functions
and referenced in XACML conditions as follows. A new XML schema defines abstrac-
tions, where a root element, called abstractions, includes a set of single abstractions
(see an example of abstraction in Figure 1(b) showing the described before). An XQuery
function, called expansion function, takes as input the abstraction head and produces as
output the abstraction tail.

Support for recursive conditions

Recursion plays a fundamental part in the representation of restrictions on how author-
ities and, more in general, trusted parties delegate the ability to issue credentials. The
delegation can be seen as a certification of the capability of another party to create cre-
dentials on behalf of the delegator. In distributed systems characterized by a complex
architecture, delegation is a feature that increases flexibility and allows for a simple way
to issue credentials, particularly in an open environment. In such systems, specifications
of restrictions in delegation are needed, and the support for recursion in the policy lan-
guage can be exploited to specify conditions on data with a recursive structure. As for
abstractions, we proposed to use an XQuery engine to manage recursion in XACML.
Again, recursive conditions have been defined via recursive XQuery functions. These
functions have then been embedded and referenced in the policies, without changes to
the XACML language, to define policy conditions based on recursive concepts (e.g., the
supervisor concept in a business hierarchy). These functions take as input the XACML
context, and produce new information to be used in policy evaluation. As a consequence,
XQuery offers recursive reasoning and it allows for the creation of additional attributes to
be used in the evaluation of the XACML policies during the policies evaluation process.

Support for dialog

The introduction of a dialog between the involved parties introduces several advantages,
such as enabling the server to communicate which information is needed to evaluate a pol-
icy, which in turn allows the access requester to hand over only the necessary credentials,
instead of her whole set, as in the current XACML proposal. The access control process
thus becomes able to operate without an a-priori knowledge of the requester [ACK+10].
Extending XACML with dialog management does not only avoid the simple evaluation
to indeterminate of all those cases for which the server is missing information, but it also
permits to tackle the issue of the privacy trade-off between providing the whole set of
credentials (on the access requester side) and disclosing the whole access control policy
(on the server side). Such result has been achieved by attaching a disclosure attribute
to every condition in an access control policy. Such attribute indicates what type of
disclosure policy is associated with the condition, and it is then enforced by hiding from
the access requester the information that cannot be released according to the specified
disclosure policy. The more (less) of an access control policy is disclosed, the smaller

Section 1.3: Extended XACML architecture 17

Basic Constructs XACML
Credential metadata 〈certification〉

. . .
〈/certification〉

Credential conditions Attribute Issuer in element
〈SubjectAttributeDesignator〉

Abstractions XQuery functions
Recursive conditions XQuery functions
Dialog Attribute Disclosure in any of:

- element 〈Condition〉 in XACML
- element 〈Apply〉 in XACML
- sub-elements of 〈group〉

Table 2: From formal concepts to XACML

(bigger) is the quantity of information in terms of released credential that will have to
be provided by the access requester. Differently from the extensions provided to support
previous concepts, dialog management has required a change in the XACML language
for representing the disclosure policies associated with conditions. Each condition ap-
pearing in a XACML policy is associated with a disclosure policy represented through a
new attribute Disclosure. This attribute is added to those elements used for represent-
ing the conditions: elements Condition and Apply in XACML, and each sub-element
of element group in the credential schema. The admissible values for the Disclosure
attribute are: i) none, nothing can be disclosed about the condition; ii) credential, only
the information that there is a condition imposed on some metadata/attributes can be
disclosed; iii) property, only the information that a property needs to be evaluated can
be released; iv) predicate, both the information that a property needs to be evaluated and
the related predicate can be released; v) condition, all information about the condition
can be disclosed.

Table 2 summarizes the mapping between the basic concepts previously described
and the changes introduced in XACML.

1.3 Extended XACML architecture

Another important contribution developed in the second year of the project is the exten-
sion of the XACML architecture and modules to complement them with functionalities
for an effective credential-based management and privacy support. We investigated the
combination between XACML and the PRIME architecture, thus resulting in an infras-
tructure that provides the flexible access functionality of XACML enriched with the pri-
vacy features of PRIME. This research activity, which has been presented in [ADP+09a],
has also provided architectural and implementation guidelines for the concrete realization
of the model and language exploited in WP5.3.

18 Policy languages (Task 5.2.1)

1.3.1 Scenario and motivations

The huge success of the Web as a platform for the distribution of services and dissemi-
nation of information makes the protection of users’ privacy a fundamental requirement.
Privacy issues affect different aspects of today Internet transactions, and controlling ac-
cess to private information plays a crucial role in providing privacy guarantees [SK07].
Although considerable work has been performed in the field of access control for dis-
tributed services [AHKS02, BS02, eXt05, W3C06], available access control mechanisms
are at an early stage from a privacy protection point of view. This situation reflects
the fact that attention on security requirements has been mostly focused on addressing
server-side security concerns (e.g., communication confidentiality, unauthorized access to
services, data integrity). We then focused on the development of a privacy-aware access
control system that takes into consideration both the client and the server sides.

XACML [eXt05], the result of an OASIS standardization effort, represents today the
most effective and accepted solution for controlling access in distributed environments.
XACML proposes an XML-based language to express and interchange access control poli-
cies, and defines both an architecture for the evaluation of policies and a communication
protocol for message exchange. Although XACML is largely adopted and is considered
a reference solution, it supports neither privacy features nor the effective evaluation and
specification of credential restrictions in the policies.2 Also, it imposes that the data of
the users be available at access request time, thus lacking support for negotiation/dialog
between users and servers.

The consideration of privacy issues introduced the need to rethink authorization
policies and models, and the development of new paradigms for access control and au-
thorization specification and enforcement. Two major issues need to be addressed. First,
access control needs to operate even when interacting parties wish to disclose limited or
no information about themselves. Second, data collected/released during access control,
as well as data stored by the different parties, may contain sensitive information on which
privacy policies need to be applied (data handling) and should therefore be protected.
These issues have been first investigated within PRIME (Privacy and Identity Manage-
ment for Europe - www.prime-project.eu.org), a large-scale EU-funded research project
terminated in 2008, which aimed at developing a privacy-enhancing Identity Management
System that protects the personal information of the users and provides a framework that
could be smoothly integrated with current architectures and online services. The goal
of the PRIME project was to empower users, providing them with solutions to retain
control over their personal information in interactions with other parties, also imposing
constraints on subsequent data handling and secondary use. In the PRIME vision, the
user should have control of personal information and negotiate its disclosure for access to
a service. The result of such a negotiation is an agreement between the user and the ser-
vice provider, whereby the provider collects personal data for a stated, legitimate purpose
and under agreed conditions of use. The PRIME project has developed a privacy-aware
access control system, which supports privacy requirements and extends traditional ac-

2Version 3.0 of XACML, currently (July 2009) in the preliminary “first draft” status, provides a
privacy profile, which is however limited, consisting only of a few requirements and the introduction
of two attributes. Credential support is limited to the evaluation of attributes issuer, time, and date
associated with certificates.

Section 1.3: Extended XACML architecture 19

cess control functionalities with support for data handling [ACDS08]. Notwithstanding
the significant benefits of PRIME and of its access control implementation, PRIME has
shown limited appeal to those complex business scenarios with stable legacy systems and
database-centered architectures, with an already existing, well integrated, access control
solution. Nowadays, the same business scenarios have shown some use of XACML for
controlling access to data/resources in distributed settings, but they are reluctant to
change their infrastructures to integrate the PRIME solution and its privacy functional-
ities.

Our work aimed at providing a solution to the above issues by integrating the XACML
and the PRIME architecture. The motivation was to build a flexible framework that ex-
ploits the advantages of XACML in terms of access control and scalability, and the
advantages of PRIME in terms of privacy. The integration of the XACML access control
within the PRIME architecture permits to put at use the PRIME features in exist-
ing business scenarios. By reducing the amount of required changes to the business
and technological infrastructure, our solution provides effective deployment of privacy-
support features in current information systems. Our solution also showed the flexibility
of the XACML standard and of its implementation, and can serve as a guideline for
others interested in extending XACML (including PrimeLife WP5.3 whose goal is the
development of a policy engine that extends XACML with the support for credentials
and other privacy-related features) for capturing different protection requirements.

1.3.2 PRIME access control system

The PRIME privacy-aware access control system dealt with five main key aspects: i)
resource representation, to specify access control requirements on resources, in terms of
available metadata describing them; ii) subject identity, to specify access control condi-
tions on the subject requesting access and its personal information; iii) secondary use,
to allow users to define restrictions on how their information will be used and processed
by external parties after its release; iv) context representation, to provide contextual
information in a standard format for the evaluation of policy conditions; v) ontology
integration, to exploit the Semantic Web and to allow the definition of access control
rules based on generic assertions defined over concepts in the ontologies.

Figure 2 illustrates the architecture of PRIME and the flow of an access control
evaluation (steps 1-6) and enforcement (steps 7-10). The architecture is composed of the
following main components.

• Decision Wrapper : drives the access control policy evaluation and enforcement.

• Access Control Decision Function (ACDF): takes access decisions for all access
requests directed to resources (personal identifiable information (PII) or services).
It is the core component of the PRIME access control implementation.

• Policy Manager : manages the overall policy life cycle by providing functions for
administering policies. It also provides filtering functionality over the responses to
be returned to the counterpart (user or service), to restrict the release of sensitive
information related to the policy itself.

20 Policy languages (Task 5.2.1)

Figure 2: The PRIME access control architecture

• Request Context : manages all contextual information; it stores all the data and
credentials released by a user in a given session.

• Data Reader : abstracts the communication between the ACDF and the Request
Context.

• Credential System: responsible for credential verification.

• Access Control Enforcement Function (ACEF): enforces access control decisions by
mediating all accesses to resources and allowing them only if they are authorized
by ACDF.

• Obligation Manager (OM): responsible for managing, scheduling, enforcing, and
monitoring privacy obligations. Obligations are actions that have to be performed
either after an access has been granted or in the future, based on the occurrence
of well defined events, e.g., time-based events or context-based events.

• PII : database storing all personal identifiable information.

• DB Mediator : abstracts the communication between the ACEF and the PII repos-
itory.

Section 1.3: Extended XACML architecture 21

The ACDF component is responsible for taking access decisions for all access requests
directed to resources, by retrieving and evaluating all access control and data handling
policies applicable to a request. Access control policies govern access to and release of
resources managed by a party [SD01]. Data handling policies define how data (personal
information) will be (or should be) dealt with at the receiving parties [ACDS08,W3C06].
An access request is modeled as a 4-uple of the form 〈subject, action, object, purpose〉,
where subject is the optional identifier/pseudonym of the requester, action is the action
that is being requested, object is the resource on which the requester wishes to perform
the action, and purpose is the purpose (or a set of purposes) for which the access is re-
quested. The ACDF produces the final response possibly combining the access decisions
coming from the evaluation of different policies. The ACDF can then return three dif-
ferent decisions: i) Yes, the request can be granted; ii) No, the request must be denied;
iii) Undefined, current information is not sufficient to determine whether the request can
be granted or denied. In this case, additional information is needed and the counterpart
will be asked to provide such an information.

As illustrated in Figure 2, the ACDF mainly interacts with the Request Context
component. This component keeps track of all contextual information, combines infor-
mation from various context sources, and describes new contextual information from
this aggregation. Note that the communication between ACDF and Request Context
components is mediated by a façade component, called Data Reader. The Data Reader
component abstracts the process of retrieving the information needed by the ACDF for
the evaluation. This approach adds a level of isolation that guarantees a simple inte-
gration of the ACDF with different context formats or modules. The Request Context
component also interacts with the Credential System, which is a credential verification
component, in charge of verifying (possibly anonymous) credentials.

The evaluation flow of the ACDF is as follows. After receiving the access request, the
ACDF: i) retrieves the access control policies by querying the Policy Manager (PM), ii)
evaluates the access control policies, iii) collects the data handling policies attached to
the object of the request, iv) evaluates the data handling policies, v) generates a single
access decision.

The ACDF supports conditions to be evaluated on both certified data, issued and
signed by authorities trusted for making the statement (credentials), and uncertified
data, possibly signed by the data owner (declarations). Credentials and declarations
relevant to an evaluation process are retrieved from the Request Context component. In
case of credentials, the Request Context component retrieves the information needed by
the ACDF by using the Credential System component.

1.3.3 The PrimeLife access control system

PRIME and XACML represented starting points for PrimeLife, and their careful inte-
gration has provided important functionalities that neither XACML nor PRIME alone
can provide. XACML, in fact, represents the most accepted and flexible access control
language, but it does not provide effective support for privacy. PRIME, instead, provides
privacy functionalities, but its impact on real world is limited by the fact that PRIME
adoption in existing businesses would require important changes to legacy systems. Tak-
ing into account this analysis, we decided to integrate the XACML evaluation and en-

22 Policy languages (Task 5.2.1)

forcement features with the PRIME privacy functionalities. By integrating XACML into
the PRIME architecture, we have all the advantages of the XACML-based solution (e.g.,
extendability, flexibility), enriched with support for credentials, dialog between parties,
incremental release of data (e.g., interactive enforcement), and data handling. Such an
integration however requires a limited change of XACML that needs to be widely ac-
cepted for making the proposed solution usable in practice. To enable coexistence of
PRIME and XACML, the PrimeLife architecture has employed two independent mod-
ules that have separate duties. For the sake of clarity, we use PrimeLife XACML Engine
to denote the enhanced XACML Engine, and Data Handling Decision Function (DHDF)
Engine to denote the modified version of the PRIME ACDF (see Figure 2). Specifically,
the PrimeLife XACML Engine is devoted to the evaluation and enforcement of access
control, while DHDF provides privacy and data handling functionalities. Differently from
ACDF in the PRIME solution, DHDF does not implement a complete privacy-aware ac-
cess control system, but rather it is responsible for the management and evaluation of
data handling policies only.

The integration exploits a mechanism that the PrimeLife XACML architecture can
use to freely access any external repository via a refined Policy Information Point (PIP)
component. The context information stored in the Request Context, and produced
during the interaction with the requester, is an example of such repositories. PrimeLife
XACML can then access the Request Context, to evaluate its policies, by means of a
standard PIP extension, and can use the PRIME architecture to negotiate access and
evaluate credentials.

Figure 3 depicts the resulting PrimeLife architecture. When an access control decision
needs to be taken, the Decision Wrapper component forwards the access request to the
AC Manager, together with the possible relevant data handling policies attached to the
requested resources. The AC Manager forwards the access request to both the PrimeLife
XACML Engine and the DHDF Engine and then takes the final decision by combining
their answers. The DHDF Engine receives the request with the associated data handling
policies, while the PrimeLife XACML Engine accesses the Policy Manager to retrieve the
applicable access control policies. Finally, both the DHDF and the PrimeLife XACML
engines access the Request Context via the Data Reader component and retrieve the
information (possibly certified by the Credential System) needed for the evaluation.

Figure 4 shows a detailed representation of the data flow of the PrimeLife XACML
Engine in the PrimeLife architecture (Figure 3). The structure presents a strong corre-
spondence with the standard XACML architecture, and traditional XACML components
can be easily mapped onto the modules. The data flow is as follows. First, the access re-
quest is forwarded by the AC Manager to the PrimeLife Policy Enforcement Point (PEP)
(step 1), which is an extended version of the standard XACML PEP. The PrimeLife PEP
is responsible for managing the interaction with the AC Manager, providing function-
ality for supporting negotiation (i.e., request for additional data). The PrimeLife PEP
component creates an XACML request and forwards it to the Context Handler (step 2).
The Context Handler, as in the standard XACML architecture, invokes the PrimeLife
Policy Decision Point (PDP) (step 3). The PrimeLife PDP is responsible for evaluat-
ing traditional XACML policies and extends the standard XACML PDP component to
access the Policy Manager. The PrimeLife PDP then accesses the Policy Manager to
retrieve the XACML policies applicable to the request (step 4). To this aim, the Pol-

Section 1.3: Extended XACML architecture 23

Figure 3: The PrimeLife access control architecture

icy Manager provides an external interface compliant with a standard PAP component.
After collecting the applicable policies, the PrimeLife PDP accesses the Context Han-
dler to retrieve the data needed for the evaluation (step 5). If some data necessary for
taking a decision are missing, the Context Handler may access different PIP extensions.
These extensions include an enhanced PIP (PrimeLife PIP) that communicates with the
Data Reader to access the Request Context (steps 6-9). After receiving all data, the
PrimeLife PDP (step 10) finally evaluates the applicable policies and takes a decision.
The final decision is sent to the Context Handler (step 11) and then forwarded to the
PrimeLife PEP component (step 12). Finally, the access decision is returned to the AC
Manager (step 13), which combines it with the answer coming from the evaluation of
data handling policies performed by the DHDF.

The main advantages achieved by the proposed architecture with respect to the
standard XACML implementation are as follows.

• Negotiation (minimal disclosure and interactive enforcement). The current
XACML architecture does not support negotiation between the parties. An
XACML access decision can assume four values (i.e., permit, deny, indeterminate,
not applicable). Indeterminate is returned if no decision can be taken since some
information needed to evaluate the policy is missing. For instance, an access is
restricted to users of a certain country, but the nationality of the requester is un-
known. If the decision returns indeterminate, according to a safe-default approach,
XACML simply denies the access. Our solution enhanced XACML with the abil-

24 Policy languages (Task 5.2.1)

Figure 4: The PrimeLife XACML Engine data flow

ity of dialoguing with the user to communicate the fact that certain information
needed for evaluating the access control policy is missing, allowing then the user
to provide it and, possibly, successfully acquire access. The Decision Wrapper is
responsible for the dialogue between the server and the user that consists in com-
municating all the conditions that have to be satisfied. At each access control
request, if the policy evaluation results indeterminate, the AC Manager returns to
the user the attributes that need to be evaluated for taking the access decision.
The user can then decide to provide the requested attributes. Internally, the pro-
cessing of the response to the user works as follows. When the PrimeLife PDP
component generates an indeterminate response, it returns such a response to the
PrimeLife PEP together with the information on which attributes are needed for a
decision to be taken. This communication is enforced via a side channel provided
by the PrimeLife PIP, and accessible by the PrimeLife PEP component. The use
of a side channel is necessary to be able to communicate attributes, since the re-
sponse format used by the standard XACML PDP engine can assume only the
allowed four values and cannot represent that information. At evaluation time,
the PrimeLife PIP component has the responsibility of identifying the attributes
that are unknown and need to be evaluated for taking the access control decision.
PrimeLife support for negotiation allows the client and the server to incrementally
exchange data and request for data preserving, on one side, the principle of the
minimum disclosure and, on the other side, supporting an incremental evaluation
of the policies.

• Credential-based restrictions. While XACML acknowledges that properties can be
presented by means of certificates, it does not provide a real support for expressing

Section 1.4: Future research 25

and reasoning about digital credentials in the specification and evaluation of the
authorization policies. By contrast, PRIME supports requests for credentials and
certified attributes in the policies. Also, PRIME can reason about credentials. For
instance, PRIME supports the definition of policies requesting information (i.e., a
set of attributes) to be certified by the same credential. Credential information is
stored in the Request Context and is accessible by the PrimeLife XACML Engine.
The XACML architecture has then been enhanced to support credential-based re-
strictions, called evidences in the PRIME architecture, without requiring changes
to the language schema. Rather, the XACML language has been enhanced with
credential specification by changing the semantics of the issuer attribute, originally
defining the issuer of a specific attribute. In our solution, the issuer attribute is
used as a reference to a specific evidence, stored as a separate XML file and con-
taining the restrictions on credentials, to be evaluated on credential metadata (e.g.,
issuer, type). The PrimeLife XACML Engine (see Figure 4) evaluates credential-
based restrictions as follows: i) the PrimeLife PDP component loads a policy,
together with information related to the evidences; ii) through the PrimeLife PIP
component, the PrimeLife PDP accesses information needed to evaluate the evi-
dences of the policies and stored in the Request Context; iii) the PrimeLife PDP
evaluates the policies and the evidence conditions on the credential metadata.

• User-driven constraints. While XACML is designed to manage access control only,
and is focused on service side restrictions, the system illustrated in this section takes
a different approach and aims at providing the users with a solution for protecting
their privacy. Our solution, in fact, in addition to policies and mechanism to
manage and evaluate traditional access control policies, provides a fully compatible
and extensible solution that supports the definition, evaluation, and enforcement
of privacy policies defined by the users themselves. These privacy policies (i.e.,
data handling policies) are defined through an ad-hoc syntax and are evaluated
together with the XACML policies to provide a full-fledged privacy-aware access
control system, that permits users to protect their own data.

1.4 Future research

The future work for Task 5.2.1 will continue the investigation along the lines of work
previously presented. In particular, we plan to investigate the following three different,
but related, research directions.

• Anonymous credentials. The extensions we proposed for XACML and presented
in [ADP+09b] assume that users present their certificates to the server that are then
used to verify whether the user satisfies specific conditions defined on the certified
attributes. It would then be interesting to extend this credential-based access
control to accommodate the presence and management of anonymous credentials,
which allow users to prove that they satisfy given conditions about attribute values
without however revealing the values of such attributes.

• Policy communication. Credential-based access control implicitly requires that the
server should be able to formulate a credential request basically saying what are

26 Policy languages (Task 5.2.1)

the conditions that a user should satisfy to gain an access. A naive way to formu-
late a credential request consists in giving the user a list with all the possible sets
of credentials that would enable the service. This solution is clearly not feasible,
due to the large number of possible alternatives. It is also not possible to release
the conditions that a user should satisfy since they may include sensitive informa-
tion. Although different proposals have presented sophisticated dialog strategies for
policy communication where there is a bidirectional exchange of request-response
messages, these approaches are not suitable for a wide range of use cases that
request low complexity, low overhead, and high performance. It would then be
interesting to define novel dialog solutions that should take into consideration the
fact that often the conditions specified in a policy cannot be communicated to the
counterpart as they are.

• Selective release of certified attributes. Credentials are usually considered as atomic
objects whose certified attributes cannot be selectively extracted. Anonymous
credentials allow instead the possibility of “extracting” single properties. It would
then be interesting to investigate how this possibility may affect a credential-based
access control and how can be exploited for the goal of minimizing the information
released during the evaluation of an access request.

Chapter 2
Policies for service composition
(Task 5.2.2)

Many web services today are so-called service mash-ups. A mash-up is a service that
acts as a front-end for a composition of multiple subservices that run on different hosts
and are offered by different companies. For example, a travel booking mash-up may
offer an integrated interface to book flights, hotels, and rental cars. In the background,
however, it invokes the web service APIs of different specialized airline, hotel, and car
rental subsidiaries to collect offers. The best offers are presented to the user, who selects
an offer, enters her booking and payment information, and confirms to let the mash-up
make all the bookings for her through the subsidiaries’ APIs.

Service mash-ups are important for leveraging online service APIs to create new
functionality, but pose significant privacy risks for their users. The users cannot keep
track of who stores what information about them, and often they do not even know the
subsidiaries their data is shared with.

To overcome this problem, service providers publish their privacy policies to inform
the users about how the gathered data is used. Human-readable privacy policies have the
obvious disadvantages of being written in a complex “legalese” language and mostly being
ignored by users. Even if clear privacy policies are presented, they often remain vague
about the sharing of information with third parties. For example, the privacy policy
of Expedia.com1, a popular online travel service, mentions the following with regard to
sharing personal information with suppliers:

We do not place limitations on our suppliers’ use or disclosure of your other
personal information [i.e., other than the email address]. Therefore, we en-
courage you to review the privacy policies of any travel supplier whose prod-
ucts you purchase through this site.

Machine-interpretable privacy policy languages such as EPAL [AHK+03] and
P3P [W3C06] are a very promising approach, in particular when used in combination

1cf. http://www.expedia.com/daily/service/privacy.asp

27

28 Policies for service composition (Task 5.2.2)

with a privacy preferences language such as APPEL [W3C02]. In the latter language,
users can express how they expect their data to be treated, so that an automated or
semi-automated matching procedure can decide on the acceptability of a proposed P3P
policy.

Unfortunately, EPAL and P3P are both rather constrained in expressivity regarding
sharing personal information with third parties, or downstream usage as we call it here.
EPAL leaves the definition of specific actions and obligations up to enterprise-defined
vocabularies, and is hence silent about downstream usage. Support in P3P is limited to
specifying which of six classes of third-party recipients the information will be shared
with; it is up to the server to classify his recipients into one or more of the classes.
SecPAL for Privacy (S4P) [BMB09] proposes a logic-based language to specify human
readable policies and preferences. S4P does not focus on downstream usage control and
does not specify downstream in terms of access control.

The abstract scenario that we considered in this task is the following. Two parties,
typically a user and a server, engage in an interaction where one of the parties, typically
the server, requests some personally identifiable information (PII) from the other party.
We will from now on call the party that provides the data the data provider and the
party that requests the data the data consumer. Moreover, we consider a scenario where
at a later point in time, the data consumer may want to forward the PII to a third party,
called the downstream data consumer.

In this task, we have investigated how one would structure a policy language for
downstream usage control. The difficulty here is that downstream usage control involves
a mixture of what is typically considered access control (who is allowed to receive the
data, e.g., by roles or owned credentials) and data handling (how is the recipient sup-
posed to treat the data, e.g., usage purposes or retention period). We consider the most
general setting here, where the provider states in her privacy preferences, for each hop in
the chain of downstream consumers, how they have to treat her data and to whom they
can further forward it. At the same time, each consumer specifies in his privacy policy
how he intends to treat the data and to whom he intends to forward it. We propose
XML-based languages to express both the provider’s preferences and the consumers’
policies, and describe an automated matching algorithm to determine whether the pro-
posed policies are allowed by the specified preferences. The provider and the consumers
can specify downstream usage restrictions up to any number of hops (not necessarily the
same number). Optionally, they can either specify that the last restrictions in the chain
are valid for all subsequent hops, or that after that hop no further downstream usage
is allowed. Moreover, for situations where the consumer does not know at the time of
data collection to whom he may forward it, our language allows the server to perform
“lazy” matching, in the sense that he declares to be willing to impose any restrictions on
further downstream usage that the provider may specify.

2.1 Related work and contributions

Our work is closely related to rights expression languages (RELs), privacy policy lan-
guages, and usage control. We give a brief overview of each of these lines of work and
how they relate to the language we propose.

Section 2.1: Related work and contributions 29

2.1.1 Rights expression languages

From a protocol point of view, there is a clear difference between privacy policies on
the one hand, and digital right management (DRM) and enterprize right management
(ERM) on the other hand. Indeed, in privacy, it is usually the consumer (data controller)
who imposes the policy, while in right management, the author (or publisher) imposes the
policy (license) to the consumer. The main purpose of matching is to help the end-user
deciding whether he accepts the service and the policy. Such matching is interesting to
make decisions related to privacy or to rights management and, in both case, is generally
done by the user.

From a trust model point of view, privacy policies and enterprize right manage-
ment are similar because they assume “honest consumers”, data controller and consumer
respectively, which are willing to enforce the policy (accept audit, use required client
application, etc.). In digital right management, the threat model is different since con-
sumers may mount attacks in order to violate the policy. As a result, trusted hardware
and/or software are required in DRM.

There are three key differences between our approach and state of the art right expres-
sion languages used in ERM and DRM, e.g., MPEG-21 REL [Wan04], XrML [Con02],
and ODRL [ODR02]:

• RELs focus on rights (e.g. print, play) and add some conditions and constrains
(temporal, fees, device, etc.) but obligations remain underspecified.

• Matching is generally not specified even if automating the process of accepting an
offer, i.e. a proposed license, would make sense.

• Downstream data sharing (transfer, i.e. sell, give, lease) is also defined as a right.
However, it is not as expressive as our model and does not result in a matching
algorithm.

The most important difference between right management and our work is the fact
that in the former the data provider pushes sticky policies (i.e., licenses) onto the con-
sumer without matching. In a privacy setting, the provider (i.e., user) usually does not
have this power. Rather, it is the consumer who imposes a policy onto the provider.

Another major difference is that the domain-specific vocabulary is quite different for
RELs and for privacy policies, even though overlaps exist, e.g., the obligation to delete
data within a certain time makes sense in both domains. Apart from the vocabulary
though, the same overall language structure should be usable for both.

2.1.2 Privacy policy languages

We already briefly discussed the shortcomings of the privacy policy languages
EPAL [AHK+03], P3P [W3C06], and APPEL [W3C02] in terms of expressing restric-
tions on the downstream usage. EPAL is mainly intended for writing enterprize-internal
privacy policies to govern data handling practices. P3P, on the other hand, is mainly in-
tended for websites to communicate their privacy practices to the outside world. APPEL
is a preference language for P3P, i.e., enabling users to specify their privacy preferences
and automatically match those against proposed P3P policies.

30 Policies for service composition (Task 5.2.2)

SecPAL for Privacy (S4P) [BMB09] is a logic-based language to specify privacy poli-
cies and preferences. S4P specifies preferences as may assertions (i.e. authorizations) and
will queries (i.e. obligation request). S4P specifies policies as will assertions (i.e. com-
mitment on obligations) and may queries (i.e. authorization request). In S4P, matching
is about evaluating queries with a set of assertions while, in the work presented in this
document, matching is done by comparing statements.

Ardagna et al. [ACDS08] describe a data handling policy language that allows for
specifying data recipients, usage purposes and obligations. In the proposed model, service
providers present policy templates to users that the users may customize on the base of
their own data handling policies. The outcome of a successful customization is a policy
traveling with the data. The customization process is described as potentially automated,
it remains unclear though how this automation can be achieved. In particular, because
neither an obligation vocabulary nor matching semantics for purposes and obligations
are defined. The authors do not distinguish between rights and obligations. Their
purpose can be seen as dedicated right, however, there is no explicit right to share data
downstream. The data recipient concept allows for specifying global rules on who may
receive the data, and could therefore be seen as abstract downstream right. However,
transitive downstream data disclosures are not explicitly discussed and specific paths
along which data may be shared can not be expressed.

2.1.3 Usage control

Usage control [ABP09, HBP05, PS04] is a generalization of access control that is also
concerned with how data is treated after it has been given away. In contrast, pure
access control only addresses how data is protected before it is released.

Usage control takes place in a distributed setting where a process acting in the
role of a data provider sends sensitive data to a process acting in the role of a data
consumer based on provisions and obligations. Access and usage control requirements
are stated in usage control policies. For expressing such policies, a number of specification
languages have been developed, however, the policies of Leumann [Leu07] come closest
to our approach. They are expressed by a number of rules whereby a rule specifies
its applicability, provisional actions and obligations. They additionally contain optional
actions and contracts, which reflect the obligations, and are expressed in XACML.

The concept of policy evolution for distributed usage control as proposed by
Pretschner et al. [PSSW08] bears similarities to our concept of downstream usage con-
trol. The Obligation Specification Language (OSL) proposed in [PSSW08] allows the
data provider to specify which consumers (indicated by their roles) have to adhere to
which rights and duties when receiving the data. The language we propose differs from
OSL in two important aspects. First, we envision a double-sided setting where both
the data consumer and the data provider have policies (resp., preferences) describing
how they will treat the data (resp., want the data to be treated). These policies and
preferences are then automatically matched to yield a sticky policy that acts as the
agreed-upon contract. In the OSL in contrast, it is the data provider who unilaterally
describes the sticky policy that has to be adhered to, which we think is especially un-
realistic in privacy, where the data provider is a private user. Second, our language
can describe (and automatically match) the full path that the data is allowed to follow,

Section 2.2: The language 31

including who is allowed to share the data with whom, and how many hops the data
is allowed to take. In contrast, in OSL one can specify which role of consumers have
to adhere to which usage control policy. For example, in our language a patient could
impose one usage control policy when a health insurance company obtains her medical
record through the hospital, and another policy when it obtains the record from the
patient directly. In OSL both cases are treated the same.

2.2 The language

Both the data provider and the data consumer have their own policies expressing the
required, respectively the proposed, treatment of the PII. These policies contain access
control and usage control policies. Access control policies state conditions that have to be
fulfilled before a requested piece of PII is transmitted to the data consumer. Usage control
policies state how the sent resource has to be treated after it has been transmitted. A
piece of PII is only sent to a data consumer after (1) the access control requirements have
been met, and (2) a suitable usage control policy has been agreed upon. We distinguish
between three kinds of policies.

Preferences: In his preferences the data provider describes, for specific pieces of PII,
which access control requirements a data consumer has to satisfy to obtain the
PII, as well as the usage control requirements according to which the PII should
be treated after transmission. These requirements may include downstream usage
requirements, meaning the requirements that a downstream data consumer has to
fulfil to obtain the PII from the (primary) data consumer.

Policy: The policy is the data consumer’s counterpart of the data controller’s prefer-
ences. In his policy the data consumer contains, for specific pieces of PII to be
obtained, his certified properties (roles, certificates, etc.) that can be used to ful-
fil access control requirements, and a usage control policy describing what he is
planning to do to the PII.

Sticky policy: The sticky policy describes the mutual agreement concerning the usage
of a transmitted piece of PII. This agreement is the result of a matching process
between a data providers’ preferences and a data consumer’s policy. (If no match is
found, the data transfer should be canceled, unless the provider chooses to overrule
her own preferences.) Technically a sticky policy is quite similar to preferences as
described above, but it describes a mutual agreement between the data provider
and the data consumer that cannot be changed. After receiving the PII, the data
consumer is responsible for storing and enforcing the sticky policy.

Preferences model

To illustrate our ideas we describe a simple XML-based language to express preferences,
policies, and sticky policies. In Figure 5 we give an example of Alice’s preferences where
she specifies that she’s willing to reveal any of her email addresses to book shops, who
can use it for statistics, contact, and account administration, and who have to delete

32 Policies for service composition (Task 5.2.2)

<Preferences>
<Preference>

<Applicability>
<DataType> Address </DataType>

</Applicability>
<ACUC id="ACUCbookshop@alice">

<AccessControl>
<Rule>CertifiedAsBy{role=bookshop, issuer="CAx"}</Rule>

</AccessControl>
<UsageControl>

<Rights>
<UseDownstream allowLazy="false">

<ACUC xsi:type="ACUCContentType" id="ACUCshipping@alice">
<AccessControl>

<Rule>CertifiedAsBy{role=shipping, issuer="CAy"}</Rule>
</AccessControl>
<UsageControl>

<Rights>
<UseDownstream allowLazy="false">

<ACUC reference="ACUCshipping@alice"/>
</UseDownstream>
<UseForPurpose>statistics</UseForPurpose>
<UseForPurpose>shipping</UseForPurpose>

</Rights>
<Obligations>

<DeleteWithin>P7D</DeleteWithin>
</Obligations>

</UsageControl>
</ACUC>

</UseDownstream>
<UseForPurpose>statistics</UseForPurpose>
<UseForPurpose>contact</UseForPurpose>
<UseForPurpose>accountadmin</UseForPurpose>

</Rights>
<Obligations>

<DeleteWithin>P2Y</DeleteWithin>
</Obligations>

</UsageControl>
</ACUC>

</Preference>
</Preferences>

Figure 5: Example of preferences

it within two years. Book shops can forward it to shipping companies under the same
preferences as specified above. The shop has to delete the email address within 7 days.

The Preferences root element contains multiple Preference elements, each describ-
ing to which PII it applies and what the respective access and usage controls are.

A Preference can refer to the applicable PII by their data type, meaning that the
Preference applies to all PII of this type, or by a unique identifier pointing to a single
instance of PII. A full-blown language would probably offer more powerful mechanisms to
specify applicability, allowing for example attribute expressions or temporal constraints.
If multiple Preference elements apply to a single piece of PII, then satisfying the con-
ditions in either of them results in a match. In other words, Preferences are combined
according to “or” semantics: a match occurs if the first preference matches, or if the sec-
ond matches, etc. This makes it possible to define more permissive exceptions to general

Section 2.2: The language 33

preferences.
Within a Preference, access and usage control requirements occur in a pair enclosed

in an ACUC element. A pair (AC,UC) means that any data consumer satisfying access
requirements AC can obtain the PII when adhering to usage requirements UC. To allow
multiple AC/UC combinations for a single piece of PII, one can use multiple Preference
elements with the same Applicability.

We assume a simple role-based model for access control here; again, we imagine
that a full-blown language would be more expressive, but we focus on the structure of
downstream usage restrictions here.

Usage control requirements are expressed as a pair of Rights and Obligations. A
right states an action that the data consumer is allowed to perform on the data, but
doesn’t have to perform to comply with the policy. An obligation states an action that
a data consumer is obliged to perform. We only model two types of rights and obliga-
tions here, being UseDownstream, UseForPurpose, DeleteWithin, and NotifyOnAccess.
Rights and obligations within a UsageControl element are combined by “and” semantics,
meaning that the data consumer obtains all the specified rights and has to adhere to all
of the specified obligations.

Policy model

A data consumer’s policy states which usage control requirements it is willing to adhere
to when requesting a specific resource from a data provider. In addition it states what
properties it can prove about itself to fulfill the data provider’s access control require-
ments. A data consumer’s policy follows a similar structure as the preferences.

Downstream usage

The crucial aspect of our policy language is that it allows both the data provider and
the data consumer to express to whom and under what conditions the PII can or will be
forwarded. These conditions are expressed in UseDownstream elements.

Each UseDownstream element contains exactly one ACUC child element. Either this
ACUC element contains a fully specified pair of access and usage control requirements, or
it contains a reference to another ACUC element.

In the first case, the access control requirements explicitly specify to which down-
stream data consumers the PII can be forwarded, while the usage control requirements
specify how these downstream consumers are supposed to treat it. Of course, the usage
requirements can on their turn contain UseDownstream elements that specify to whom
and under what conditions the downstream consumer can further forward the PII, which
on their turn can contain UseDownstream elements, etc. This mechanism enables the data
provider to restrict the forwarding of his PII up to an arbitrary number of hops. We
refer to this approach as nested downstream usage control.

Of course, to specify preferences as detailed in Figure 5 for an entire chain of down-
stream consumers, the data provider must have a very good understanding of the con-
sumers’ business process. More typically, the access control restrictions in the preferences
will contain more generic restrictions, such as the consumer being approved by the Better
Business Bureau.

34 Policies for service composition (Task 5.2.2)

While in the second case we could in principle allow the reference attribute to point
to any ACUC element, for the sake of manageability we insist that it can only refer to its
closest ancestor ACUC element, i.e., its ancestor four levels higher in the XML tree. This
essentially means that the data consumer can further forward the PII under the same
restrictions that were imposed on himself. We therefore call this approach recursive
usage control. Note that our policy language allows to combine nested and recursive
usage control by defining a chain of nested usage controls for the first number of “hops”
and a final recursive usage control for any further hops.

Each UseDownstream element can contain at most one ACUC child element, but one
Rights element can contain multiple UseDownstream elements.

In many situations, the downstream consumer or his policy may not be known yet
at the time the PII is transmitted to the primary consumer. Rather than specifying all
intended hops in full detail, the data consumer can indicate that he is willing to enforce
any restrictions imposed by the data provider by setting the allowLazy attribute of the
UseDownstream element to true and omitting the ACUC element. The matching between
the data provider’s preferences and the downstream consumer’s policy is then done by the
primary consumer at the time that the PII is forwarded to the downstream consumer. In
the next section we give more details on lazy matching. When occurring in Preferences,
the allowLazy attribute indicates whether the data provider is fine with lazy matching
being used for the restrictions expressed in the child ACUC element.

Finally, the maxDownstreamDCs attribute can be set to indicate to any integer or
the value unbounded to indicate how many different downstream consumers the PII can
maximally be forwarded. This limit refers only to the number of direct downstream
consumers, and not the total number of downstream consumers after multiple hops, as
this may be hard to enforce.

2.3 Matching

Given a data provider’s preferences and a consumer’s policies, matching aims at au-
tomating the process of deciding whether the provider can safely transmit a piece of
personal data. We do so by defining a more permissive than operator on preferences and
policies; we say that there is a match when the data provider’s preferences are more or
equally permissive than than the data consumers’ policies.

2.3.1 Matching privacy preferences and policies

To explain the matching procedure, we use a set-based representation of the XML struc-
ture described in the previous section. A Preferences element is represented by a
set Prefs containing an element Pref ∈ Prefs for each of its Preference child ele-
ments in the XML structure. For each Pref ∈ Prefs, Pref .App and Pref .ACUC rep-
resent the contained Applicability and ACUC child elements, respectively. The set
ACUC .AC is the set of access control rules contained in the Rule elements of the em-
bedded AccessControl, while ACUC .UC is the set of usage control in terms of rights
(UC.Rights) and obligations (UC .Obls), specified in the Rights and Obligations ele-
ments, respectively. We use an analogous notation for the consumers’ policies.

Section 2.3: Matching 35

Intuitively, preferences Prefs are more (or equally) permissive than policies Pols,
denoted Prefs � Pols, if the access control properties in Pols satisfy the rules in Prefs
and if Pols asks for less rights and promises to adhere to stricter obligations than specified
in Prefs. We “overload” the notation of the operator � by using it to compare not only
preference and policy sets, but also individual rights and obligations, as well as access
and usage control policies.
We describe how the matching of policies and preferences boils down to the matching
of individual rights and authorizations. The first rule says that preferences and policies
match when for each ACUC pair in a policy there exists a matching, more permissive
ACUC pair in a preference:

Prefs � Pols ⇔ ∀Pol ∈ Pols ∃Pref ∈ Prefs :
(Pref .App ⊇ Pol .App) ∧ (Pref .ACUC � Pol .ACUC) (2.1)

Pairs of access control and usage control policies are matched as follows. Note that (2.2)
is evaluated multiple times during the evaluation of (2.1). For instance, ACUCPol is
instantiated subsequently with Pol i.ACUC for all Pol i in Pols.

ACUCPref � ACUCPol ⇔ ACUCPref .AC � ACUCPol .AC ∧
ACUCPref .UC � ACUCPol .UC (2.2)

Determining whether an access control policy is more permissive than another one is done
by checking that for each Rule in the preferences there is a corresponding Property in
the policy. This could be extended to cover more complex claim-based access control
and hierarchical roles.

ACPref � ACPol ⇔ ∀r ∈ ACPref : r ∈ ACPol (2.3)

Usage control is matched as follows:

UCPref � UCPol ⇔
∀R ∈ UCPol .Rights : (∃R′ ∈ UCPref .Rights : R′ � R) ∧
∀O ∈ UCPref .Obls : (∃O′ ∈ UCPol .Obls : O � O′) (2.4)

The effect of the more permissive than operator on individual rights and obligations has
to be specified per right and obligation type. As examples, we specify the matching
of two obligations and two rights (more complex examples are available in [Rag09]). If
obligations R and R′ specify that the user must be notified when her data is used, R′ �R
is evaluated with appropriated � operator, i.e. (2.6).

Letting obligation DelWithin(t) denote a DeleteWithin element with duration t, we
have that:

DelWithin(t) � DelWithin(t′) ⇔ t ≥ t′ . (2.5)

Letting obligation NotifyOnAcc(c) denote a NotifyOnAccess element with contact in-
formation c and letting ε denote the empty string, we have that:

NotifyOnAcc(c) � NotifyOnAcc(c′) ⇔ c′ = ε ∨ c = c′ . (2.6)

36 Policies for service composition (Task 5.2.2)

Letting right UseForPurp(p) denote a UseForPurpose element with purpose p, we have
that:

UseForPurp(p) � UseForPurp(p′) ⇔ p = p′ (2.7)

For the sake of readability, support for hierarchical purposes is not describe here.

2.3.2 Proactive matching of downstream rights

We have left to define the matching procedure for downstream usage right. Support-
ing nested and recursive ACUC (access control and usage control) has an impact on
matching. This section provides the intuition behind proactively matching a down-
stream structure, i.e., matching structures where both the preferences and the full chain
of downstream usage policies are known at the time of matching.

For a given pair ACUC , let |ACUC | be the “local” ACUC, meaning containing only
those restrictions and obligations that do not affect downstream usage, meaning

|ACUC |.AC = ACUC .AC
|ACUC |.UC .Obls = ACUC .UC .Obls

|ACUC |.UC .Rights = {R ∈ ACUC .UC .Rights : R 6= UseDS (·, ·)}

We define the right of sharing downstream as UseDS (·, ·). Using this notation, we
can represent the structure of an ACUC policy with downstream usage as a directed
graph where each node represents a hop in the downstream usage. Each node is labeled
with the local ACUC policy describing how the data are to be treated locally. Each edge
represents the permission (in case of a provider’s preferences) or intention (in case of
a consumer’s policy) to forward the data under the restrictions specified by the ACUC
of the endpoint of the edge. Edges are annotated with the depth d of the recursion,
where d = 1 when nested and d ∈ {1 · · ·∞} when recursive. For instance, the case
where ACUCA permits the right to share downstream under ACUCB, but prohibits any
further forwarding is depicted in Figure 6(a).

By the restrictions that we imposed on the connection among ACUC pairs, the
structure of the graph is roughly that of a tree where the leaf nodes can optionally have
a loop, representing recursion in the downstream usage policy. Figure 6(b) for example
represents a simple recursive ACUC. Figure 6(c) is an example with two downstream
ACUC policies. Figure 6(d) shows a deeper nested structure.

Intuitively, matching two ACUC pairs ACUCPref taken from a provider’s prefer-
ences and ACUCPol specified in a consumer’s policy essentially comes down to going
over both trees simultaneously and verifying that it is possible to cover each branch
of the policy-side tree with a more permissive preference-side branch. For instance,
if |ACUCE | � |ACUCA| and |ACUCE | � |ACUCB| in Figures 6(b) and 6(a), then
ACUCE �ACUCA. However, it is impossible that ACUCA �ACUCE because ACUCE

allows deeper downstream usage than ACUCA.
Letting UseDS (ACUC) denote a UseDownStream with an ACUC child element rep-

resented by ACUC , the matching for downstream usage rights works according to the

Section 2.3: Matching 37

|ACUCA| |ACUCB|1

(a) Nested ACUC

∞|ACUCE|

(b) Recursive ACUC

|ACUCC|
|ACUCB|1

1 |ACUCD|

(c) ACUC with multiple downstream

|ACUCF|
|ACUCA|1

1 |ACUCE| ∞

|ACUCB|1 1

(d) Deeper ACUC

Figure 6: Examples of ACUC chaining

rule:

UseDS (ACUC) � UseDS (ACUC ′) ⇔
(ACUC � ACUC ′) (2.8)

2.3.3 Lazy matching

In the previous section we focused on proactive matching, i.e., when all downstream
policies are known beforehand. It is however not always possible to collect all policies
during matching. For this reason, we also introduce lazy matching, which only takes
into account the properties and policies of the data consumer himself, but not those of
any downstream data consumers. Rather, the data consumer expresses that he’s willing
to impose whatever usage restrictions on downstream consumers that the data provider
may specify.

Both types of matching imply that the sticky policy that the data controller asso-
ciates to the data must at least enforce the preferences of the data provider. On one
hand, proactive matching makes it possible to minimize the authorizations and maximize
the obligations that are transferred, since the matching procedure can already take the
downstream consumers and their policies into account. On the other hand, lazy match-
ing offers more flexibility and is the only option in dynamic settings, where either the
downstream consumers or their policies are not known yet at the moment of matching,
or where the access control policy depends on environment variables that will only be
known when the data is actually forwarded.

To support lazy matching, we redefine formula 2.8 to take into account the allowLazy
attribute, represented by a boolean value lazy here. Matching for downstream usage then
follows the rule:

UseDS (lazy ,ACUC) � UseDS (lazy ′,ACUC ′) ⇔
(lazy ∧ lazy ′) ∨ (ACUC � ACUC ′) (2.9)

38 Policies for service composition (Task 5.2.2)

2.4 Future research

In the second year of the project we focused on the definition of a simple yet expressive
language to specify privacy policies, user preferences, and to help users deciding whether
personal data can be shared according to policies and preferences. A key advantage of
this language is the bounded complexity of the matching algorithm that does not result
in constraint satisfaction.

Since we mainly focus on the downstream aspect of privacy matching, only basic
examples of rights and obligations are provided. More details can be found in [Rag09].
The work will be further extended as described below.

• Specification of logic-based representation of matching. Specifying the rules
in a more formal way, e.g. using First Order Logic (FOL), Description
Logic (DL) [BHS07], Formula [JSS08], or the Obligation Specification Language
(OSL) [PSSW08] would be useful to verify matching, to reason on causes of mis-
match, and to propose solutions (e.g., modified preferences). We started investi-
gating different options and will continue this work in WP5.2.

• Composition of policies. When combining pieces of data we can either keep separate
preferences (or sticky policies) or compose preferences. In this case, each individual
preference must be more (or equally) permissive than the composite preferences.
When specifying the policy of a front end service, it is possible to either specify the
policy of each downstream service or to combine those downstream policies into
one composite policy. In this case, the composite policy must be more permissive
than each individual policy. Specifying policy composition will be done in WP5.2
and WP6.3.

• Obligation and authorization ontology. To be fully functional, one has to use our
language in combination with a more complete ontology of authorization and obli-
gation types. The definition of such an ontology is out of scope for this work, but
we are planning to define more obligation types in a prototype implementation.

• Integration into XACML. We consciously kept our policy language rather simple in
expressing the applicability of a rule. By embedding our language into a practical
language such as XACML, we could leverage the higher expressivity of the latter
for our purposes. One issue that remains to be solved in this case, however, is what
effect XACML’s rule-combining algorithms will have on the embedded policies, in
particular for combining algorithms where the effects of multiple rules have to be
taken into account simultaneously. For some of these, one may have to compose the
policies of multiple rules, similarly to what was suggested above when combining
multiple pieces of data.

• Matching of access control policies. By embedding our language into XACML,
one can also profit from the expressivity of the latter in access control restrictions.
One problem in that case, however, is that it becomes much harder to proactively
match a downstream data consumer’s properties against a specified access control
policy, because not all the relevant attributes of the downstream consumer may
be known upfront. In particular, environment attributes (e.g., time of day, server

Section 2.4: Future research 39

load) may only be known at the time of actual access, further complicating the
proactive matching procedure.

One idea to resolve this could be to design a “hybrid” between lazy and proactive
matching, where both the data consumer’s usage control policy does not contain
the properties of the downstream consumer, but rather contains an access control
policy that will be enforced on downstream consumers. Matching with a data
provider’s preferences involves checking whether the access control policy in the
consumer’s policy implies the one in the provider’s preferences. Efficiently deciding
implication of two access control policies may not be trivial for practical languages,
however.

• Comparing authorization and data sharing. In this work we focus on scenarios
where the data is shared with the data consumer that must enforce usage control.
In on-line scenarios, this could be implemented by keeping the data at user side and
requiring the data consumer to request the data, for a specific purpose, each time
it requires the data and to delete it immediately after usage. This approach would
provide a better user control since the user would enforce usage control and be
able at anytime to update personal data or to revoke access. Downstream sharing
would be instantiated as delegation of rights, i.e. the data consumer authorizes a
third party to access the user’s personal data for a specific purpose. We want to
evaluate whether the proposed language can be reused in such scenarios.

Chapter 3
Legal policy mechanisms (Task
5.2.3)

Goals of the research in Task 5.2.3 are especially the description and analysis of legal
requirements for privacy policies, thus building the basis for technical requirements to
fulfill these legal parameters. The results shall lead to a new generation of technically
supported privacy policies, that implement legal requirements in a suitable way. One
focus of the research is the way of implementing the legal requirements by the usage of
“sticky policies”. Sticky policies define how data can be handled and “stick” with the data,
when it travels or is processed. It allows for describing authorizations, that is, to define
what the data controller can do with the collected data and under which conditions data
can be shared with others. Also, it describes the obligations that the data controller has
to obey on the data.

The current completed research has addressed the problem of analyzing existing
policies languages and of developing models, languages, and policies supporting complex
privacy requirements emerging in different contexts, where there is the need of integrating
different sources of personal information. As a first step, use cases, privacy policies, and
legal clauses have been analyzed and the results have been compared with the legal
requirements in selected cases.

3.1 Legal requirements

General legal requirements for processing personal data are defined in the Data Pro-
tection Directive 95/46/EC (DPD) and the Directive on Privacy and Electronic Com-
munications 2002/58/EC (DPEC). DPD and DPEC mandate member states of the EU
to implement its normative content into their respective jurisdictions. The state of the
implementation is documented by the EDPS (European Data Protection Supervisor).

Legal requirement for privacy policies encompasses data collection as well as data
handling, i.e., the processing. Core element of the DPD is that collecting and processing
of personal data is only allowed, if there is a legal basis or if the person concerned

41

42 Legal policy mechanisms (Task 5.2.3)

unambiguously gave her consent, cf. Article 7 of the DPD. If the collection is based on
the latter, the following information has to be provided to the data subject (amongst
others):

• the data controller has to be declared as well as

• the types of data collected,

• and legitimate purpose of collecting data has to be defined, Article 6 and 7 of the
DPD.

In the further process, the data controller has to ensure that the data is kept accurate
and only used for the purposes declared ex ante. Thus, the amendment of the German
Federal Data Protection act (BDSG) addicted a special part for the rules of order data
processing. While the purposes of data processing are relatively easy to define, a specific
problem of the legal requirements is defining of the purpose of data collecting. There are
different positions regarding how the purpose has to defined.

• The first position acts on the assumption that the purpose has to be defined exactly.
Therefore each privacy policy that does not define the purpose of collecting data
would be insufficient. This can for example be derived from the legal text of
the German Federal Data Protection act (BDSG), article 28, deposit 2, which
implements the DPD in Germany.

How precise this has to be - according to this assumption - can be seen by the
following: If the data controller wants to use the data for a different purpose than she
did before collecting data and if she displayed this in his policy before, a new consent of
data subject is needed. Otherwise use would only be allowed if the data collector has a
qualified interest in using data for a different purpose (and if these interests are of a higher
value than the interests of the person concerned). This would lead to the interpretation
that the purpose of data collecting has to be defined quite precisely (see [GS07], BDSG,
article 28, marginal number 48), how precise exactly then needs further elaboration.
Thus, this position acts on the maxime that each step must be displayed exactly.

• The second position acts on the assumption that the requirement of Article 7 of
the DPD, which demands the necessarily of collecting data for the purpose of a
contract does not touch the freedom of contract. Therefore a privacy policy only
has to define which kind of data is collected for fulfilling a contract between the data
controller and the person concerned. The main argument is that data collection
for the performance of a contract is purpose enough (see [SS08], BDSG, article
28, marginal number 4). The inherent problem with this is that only the purpose
would be declared, but that there would be a lack of defining the applicability of
the data collection.

• A third, coupling, position combines the approaches of position 1 and position 2
and therefore acts on the assumption that the maxim of freedom of contract can
be kept even if the purpose of collecting data is defined in an exact way. That
means that the purpose of collecting data should be defined as precise as necessary

Section 3.2: Transferring legal into technical requirements 43

but that there is no need of defining exactly each step of collecting data. Only
the purpose has to be displayed exactly. Therefore purpose and applicability of
data collection is transmitted and displayed, if it is necessary and applicable for
the performance of a contract (see [GS07], BDSG, article 28, marginal number 13).

The analyzed privacy policies, as well as legal sources for collection and processing,
show differing results. Our research indicates that to improve the state of art of displaying
data collecting purposes and to show which way of displaying the purpose of collecting
data fits best to legal requirements further research is needed. The analyzed policies are
part of a not yet published internal deliverable, thus they are not a part of this document.

3.2 Transferring legal into technical requirements

In a second step, research on the above mentioned issues is applied towards the technical
framework in PrimeLife. Highly relevant is the research on Policy Languages, but also the
work on Human Computer Interaction (HCI). The former work largely relies on Access
Control Mechanisms (or Policies, ACP) and Data Handling Mechanisms (or Policies,
DHP). According to the fact that transparency is one of the core principles of data
protection legislation in Europe (DPD) beyond and all around the world (see [OEC80]),
the person concerned should be aware of “who knows what about her”. Therefore in using
ACP, the first or the third position towards displaying the purpose of data collecting in
privacy policies seem to be preferable.

To improve the state of art, further research on different kinds of policies should
be performed in use-cases like privacy policies or legal text. However the results of
the completed research according this topic vary and do not yet give clear indication
on how to best support the technical mechanisms. Some of the policies implemented
the legal requirements well, others did it different (maybe, because they had different
understanding of the legal requirements and acted on the assumption, that they fulfilled
the legal requirements).

This accumulates to two questions:

1. with relevance for HCI, the displaying of data handling in a privacy policy would
lead to the fact that the privacy policy is getting quite long. If a look is taken
to the fact that the amount of time required to read privacy policies is too great
anyhow (see [GPSC09]). Displaying also the internal data handling in the policy
would make it even longer.

2. according to the positions 1 and 3 towards ACP, the internal data handling has
to be described as well. But the displaying of internal data handling in a privacy
policy may touch questions of business secrets. On the other hand, the internal
data handling has to fulfill legal requirements as well. This could be implemented
by the usage of sticky policies for this part of the privacy policy. The sticky policy
is an agreement between the data subject and the data controller on the handling
of personal data collected from the data subject (see [Rag09]).

44 Legal policy mechanisms (Task 5.2.3)

3.3 Applicability to the state of the art in policy languages

The difficulty of determining how precise the policy language has to be can also be seen
in light of the DPD. According to article 12, lit a, bullet point 3, the data subject has the
right of information about the data handling. This also is the expression of the right of
informational self-determination of the data subject. Therefore it is necessary that the
data collector displays at least applied information about data handling in her policy.
And the data collector also needs a precise policy to comply with its promises when
internally processing the data in its own business. To ensure the implementation of legal
requirements during data handling, the data collector has to advice her associates on
how to process with data collected. To avoid mistakes in handling data, the advice has
to be as precise as possible.

A privacy policy that displays this, implements legal requirements for the associates
of the data collector as well as for the data subject. The maxim of transparency in data
collecting and data handling also argues to the assumption that a privacy policy has to
be as precise as possible. This clarifies the need of precise and well implemented privacy
policies.

In the following, we put related technological approaches in the context of legal
research.

XACML and XACML-PrimeLife. The extensible access control markup language
(XACML) is an XML-based language for expressing and interchanging access control
policies, which is now being extended by PrimeLife for adding new privacy-related fea-
tures such as anonymous credentials and data handling (see Section 1.3). Such extended
XACML can be used by the data controller as well as by the person concerned. The
result of the completed research towards XACML-PrimeLife is the fact that on one hand
it is a suitable way to display the data collecting party, but, on the other hand, there is
still difficulty in displaying the purpose of the data collecting. Currently, the research
forms a wrapper in this regard, that can be used to contain elements of the Platform for
Privacy Preference (P3P), but also could include an ontology.

P3P. P3P enables Websites to express their privacy practices in a standard format
that can be retrieved automatically and interpreted easily by user agents (see http:
//www.w3.org/TR/P3P/). P3P user agents will allow users to be informed of site practices
(in both machine-and human-readable formats) and to automate decision-making based
on these practices when appropriate (see Section 2.1.2). Therefore users do need to read
the privacy policies at every site they visit. Problematic however is the transparency in
using P3P, it seems to be to complicated to be understandable for users. But P3P also has
the problem of describing the aspects most relevant to the user: what is actually going
to happen to the data, what purposes are they used for and under which conditions and
with what obligations? (see [Sam09]). Moreover the expressive power of P3P especially
in regard to describing purposes is limited (albeit extensible). The predefined set of
purposes was limited to so-called secondary purposes in the first specification (http:
//www.w3.org/TR/P3P/), which was then complemented with a flat partonomy of some
twenty "primary purposes" in version 1.1 (http://www.w3.org/TR/P3P11/#ppurpose.
Taking into account the requirements for displaying the purpose to the user, as well as

Section 3.4: Conclusion and interim results 45

requirements of internally achieving legal processing of the data within the limits of the
purpose, this appears to be too limited, and will need further extension, potentially by
way of a more comprehensive ontology.

Liberty Alliance Identity governance framework. Another approach of solv-
ing this problem was Liberty’s Identity Governance Framework (http://www.
projectliberty.org). Privacy constraints describe fundamental constraints on the
propagation, usage, retention, storage and display of identity data. There is concern
regarding the appropriate use of identity data and privacy constraints permit the ex-
pression of constraints over the processing of data. Using policy frameworks, authorities
and consumers can use privacy constraints to describe composite constraints on identity
data. The liberty framework also has to deal with the problem of how precise the pur-
pose of data collecting and data handling has to be displayed and how it is possible to
display the policy for DHP as well as for ACP. There is also no ontology possible while
using liberty framework.

3.4 Conclusion and interim results

Sticky policies promises to improve the state of the art in data protection, both on the
level of better control, but also on the level of increasing transparency. The sticky policy
is usually the result of an automated matching procedure between the data subject’s data
handling preferences and the data controller’s data handling policy (see [ABD+09]). It
is the agreed-upon sets of granted authorizations and promised obligations associated
with a resource. Sticky policies are policies that control how data is to be assessed
and used and that accompany data throughout an entire distributed system (see http:
//www.cs.kuleuven.be/conference/MidSec2008/sticky.pdf).

To clarify, how legal requirements for DHP and ACP can be displayed best, further
research has to be done. Our research of a number of policies have shown different results
on the usability of the tested policies. Some of them implemented the legal requirements
for collecting data well, others did not. The implementation of legal requirements for data
handling on the other hand were not displayed that well. The main problem in privacy
policies seems to be the displaying of data handling. This also is legal requirement, but
only few policies implemented it. So further research is needed, which could be done
either in use-cases or in empirical studies.

It is due to the very nature of data processing that it is impossible to conduct a
comprehensive ontology towards this topic, but there is the option of advanced taxonomy
and possibly an ontology, which would cover processing to a certain level of detail and
brevity.

3.5 Future research

There are still some questions in displaying legal requirements in policy languages un-
acknowledged. Further research will work on answering these questions and on finding
solutions of best practicable displaying legal requirements in privacy policies to improve
the state of art of this topic. To improve the state of art, the state of art still has to

46 Legal policy mechanisms (Task 5.2.3)

be assessed. In the completed research, this was tried by different scientific approaches
(see [Sam09]).

The research leads to the conclusion that actually many policies according data han-
dling act on the assumption that it is enough to display the legitimate reason of the data
collector on handling data as legal basis (see BDSG, article 28, deposit 1, number. 2 or
article 7, deposit d of the DPD). This leads to the conclusion that the catchall element
- legitimate reason - is used as general reason (see [SS08], BDSG, article 28, marginal
number 1). This should not be the state of art of privacy policies. To avoid this for the
future, a more precise description of policies is necessary.

The completed work includes different approaches of research, the research with use-
cases as well as the research with empirical studies. Both approaches had the common
goal in mind: the need of having access control policy languages that, on one hand,
provide access control functionality and, on the other hand, protect the privacy of the
involved parties and of their personal information.

It has to be stated that there has already been relevant effort with empirical ap-
proaches, which lead to some results, but yield the question of whether an extensive
analysis, albeit promising, is achievable with reasonable efforts. To be more precise:
Even the empiric analysis of only German data protection law and privacy policies of
German sites would be immense. An analysis of published privacy policies yields similar
limitations, especially when trying to effectively rule out bias of interpretation, the effort
doubles or triples. The completed empiric research also leads to the conclusion that all
analyzed approaches have deficits, like it is shown above. Developing the future research
only on the analyzed approaches therefore would not lead to the best result.

Therefore empirical research will be supplemented by use-cased based analysis, where
selected use cases are looked at from a legal perspective (i.e., what data is needed for what
purposes, and in what processes). This approach does not promise the comprehensiveness
of an empirical analysis, but rather focuses on an exemplification of the needed expressive
power of the language. It includes, however, the advantage, of being able to look deeper
into the technical processes underlying the respective policies return than solely looking
at what is published in privacy policies. One focal point of future research therefore will
be seen in research with use-cases. One of the benefits of this approach is the fact that it
is easier to handle a known systems as a basis of research than to handle with unknown
systems. Research with empiric studies would not lead to more exact results, because
the use-case scenario can display all possible ways of collecting and processing data as
well as all possible purposes and the necessary legal basis for it. One scenario that will
display all this is the scenario of a web-shop, which is analyzed in the H5.2.2 deliverable.
Nevertheless, the future research will take all possible options of approach.

Chapter 4
Abstracts of research papers

1. M. Ali, L. Bussard, U. Pinsdorf, “Obligation language and framework to enable
privacy-aware SOA,” in 4th International Workshop on Data Privacy Management
(DPM 2009) [ABP09].
Abstract. Privacy policies defines rights and obligations on data (e.g. personally
identifiable information) collected by services. Tackling privacy policies in a ser-
vice oriented architecture spanning multiple trust domains is difficult because it
requires a common specification and distributed enforcement. This paper focuses
on the specication and enforcement of obligations. We describe the requirements,
the resulting language, and its implementation. Finally, we compare our results
with obligation support in the state of the art. The key contribution of this work
is to bridge the gap between specific mechanisms to enforce obligations and under-
specified support for obligations in today’s access control and data handling policy
languages.

2. C.A. Ardagna, J. Camenisch, M. Kohlweiss, R. Leenes, G. Neven, B. Priem, P.
Samarati, D. Sommer, and M. Verdicchio, “Exploiting cryptography for privacy-
enhanced access control: a result of the PRIME project,” in Journal of Computer
Security (JCS) [ACK+10].
Abstract. We conduct more and more of our daily interactions over electronic
media. The EC-funded project PRIME (Privacy and Identity Management for Eu-
rope) envisions that individuals will be able to interact in this information society
in a secure and safe way while retaining control of their privacy. The project had
set out to prove that existing privacy-enhancing technologies allow for the con-
struction of a usercontrolled identity management system that comes surprisingly
close to this vision. This paper describes two key elements of the PRIME iden-
tity management systems: anonymous credentials and policy languages that fully
exploit the advanced functionality offered by anonymous credentials. These two
key elements enable the users to carry out transactions, e.g., over the Internet, re-
vealing only the strictly necessary personal information. Apart from presenting for
the first time these two key results, this paper also motivates the need for privacy

47

48 Abstracts of research papers

enhancing identity management, gives concrete requirements for such a system and
then describes the key principles of the PRIME identity management solution.

3. C.A. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini, and P.
Samarati, “An XACML-based privacy-centered access control system,” in 1st ACM
Workshop on Information Security Governance (WISG 2009) [ADP+09a].
Abstract. The widespread diffusion of the Internet as the platform for access-
ing distributed services makes available a huge amount of personal data, and a
corresponding concern and demand from users, as well as legislation, for solutions
providing users with form of control on their data. Responding to this require-
ment raises the emerging need of solutions supporting proper information security
governance, allowing enterprises managing user information to enforce restrictions
on information acquisition as well as its processing and secondary use. While the
research community has acknowledged this emerging scenario, and research efforts
are being devoted to it, current technologies provide still limited solutions to the
problem. In this paper, we illustrate our effort in pursuing the goal of bringing
information security governance restrictions deployable in current organizational
contexts. Considering the large success and application of XACML, we extend the
XACML architecture and modules complementing them with functionalities for
effective credential-based management and privacy support. Our proposal com-
bines XACML with PRIME, a novel solution supporting privacy-aware access con-
trol, resulting in an infrastructure that provides the flexible access functionality of
XACML enriched with the data governance and privacy features of PRIME.

4. C.A. Ardagna, S. De Capitani di Vimercati, E. Pedrini, S. Paraboschi, P. Samarati,
and M. Verdicchio, “Extending XACML for open web-based scenarios,” in W3C
Workshop on Access Control Application Scenarios [ADP+09b].
Abstract. Traditional access control solutions, based on preliminary identification
and authentication of the access requester, are not adequate for open Web service
systems, where servers generally do not have prior knowledge of the requesters. In
this paper, we provide some extensions to the eXtensible Access ControlMarkup
Language (XACML), which is the most significant and emerging solution for con-
trolling access in an interoperable and flexible way, to make it easily deployable
and suitable for open Web-based systems.

5. C.A. Ardagna, L. Bussard, S. De Capitani di Vimercati, G. Neven, E. Pedrini, S.
Paraboschi, F. Preiss, P. Samarati, S. Trabelsi, and M. Verdicchio, “PrimeLife
policy language,” in W3C Workshop on Access Control Application Scenar-
ios [ABD+09].
Abstract. The sudden popularity of social networks and web 2.0 applications
changed radically the Internet landscape and the users’ behavior. Today’s young
people are the first generation with the ability to distribute information quickly,
cheaply and to large groups of people. The amount of personal and private informa-
tion published and stored in the servers becomes so huge that the traditional con-
cepts of privacy were radically affected. To appease such concerns, enterprises and
service providers publish privacy statements that promise fair information prac-
tices. Written in natural language or formalized using languages like P3P, EPAL,

49

XACML etc. . . they are only promises but not necessarily enforced by technical
measures. These problems are amplified if personal data is used not only by the
enterprise that collected the data, but also by secondary users such as partner
organizations, or government agencies. These flows of data are complex. Threats
to data privacy can come from inside (accidental disclosure, insider curiosity and
subornation) as well as from the outside (uncontrolled secondary usage) of each
organization. Putting customer information online further increases the risk of ex-
posing private and sensitive information to outsiders. In this paper we propose a
new policy language handling access control and data usage at the same time. In
the context of the European ICT PrimeLife we propose an extension of the eXtensi-
ble access control markup language (XACML 3.0) offering one of the most popular
standardized policy language. This extension suggests a new obligation handling
mechanism taking into account temporal constraints, pre-obligations, conditional
obligations, and repeating obligations together with a down-stream usage autho-
rization system defining the access control rules under which personal information
collected by an entity can be forwarded to a third party. Moreover, our language
is based on the concept of trusted credentials.

6. P. Bichsel, S. Mueller, F. Preiss, D. Sommer, M. Verdicchio, “Security and trust
through electronic social network-based interactions,” in Workshop on Security and
Privacy in Online Social Networking [BMP+09].
Abstract. The success of a Public Key Infrastructure such as the Web of Trust
(WoT) heavily depends on its ability to ensure that public keys are used by their
legitimate owners, thereby avoiding malicious impersonations. To guarantee this
property, the WoT requires users to physically gather, check each other’s creden-
tials (e.g., ID cards), to sign the trusted keys, and to subsequently monitor their
validity over time. This trust establishment and management procedure is rather
cumbersome and, as we believe, the main reason for the limited adoption of the
WoT. To overcome this problem, we propose a solution that leverages the intrinsic
properties of Electronic Social Networks (ESN) to establish and manage trust in
the WoT. In particular, we exploit dynamically changing profile and contact in-
formation, as well as interactions among users of ESNs to gain and maintain trust
in the legitimacy of key ownerships without the disadvantages of the traditional
WoT approach. We see our proposal as an effective way to make security and trust
solutions available to a broad audience of non-technical users.

7. J. Camenisch, S. Mödersheim, G. Neven, F.-S. Preiss, and D. Sommer, “Credential-
based access control extensions to XACML,” in W3C Workshop on Access Control
Application Scenarios [CMN+09].
Abstract. Access control and authentication systems are currently undergoing a
paradigm shift towards openness and user-centricity where service providers com-
municate to the users what information they need to provide to gain access to
a given resource. This paradigm shift is a crucial step towards allowing users to
manage their identities and privacy. To ensure the service provider of the valid-
ity of the presented information, the latter is typically attested to by a trusted
issuer or identity provider. There are multiple means to transmit such attestation
to the service provider including X.509 certificates, anonymous credentials, and

50 Abstracts of research papers

OpenIDs. In this position paper, we advocate to abstract all attestation means
into the concept of a ‘credential’ and propose to extend XACML so that it allows
service providers to specify the set of credentials that a user is required to present
to get access to a given resource. Our extensions not only allow one to express con-
ditions on the credentials that the user has to present, but also which attributes
have to be disclosed, and to whom, and which statements the user has to consent
to before being granted access.

Bibliography

[ABD+09] C.A. Ardagna, L. Bussard, S. De Capitani di Vimercati, G. Neven,
E. Pedrini, S. Paraboschi, F. Preiss, P. Samarati, S. Trabelsi, and M. Verdic-
chio. Primelife policy language. In W3C Workshop on Access Control Ap-
plication Scenarios, Luxembourg, November 2009.

[ABP09] M. Ali, L. Bussard, and U. Pinsdorf. Obligation language and framework
to enable privacy-aware SOA. In Proc. of the 4th International Workshop
on Data Privacy Management (DPM 2009), Saint Malo, France, September
2009.

[ACDS08] C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati.
A privacy-aware access control system. Journal of Computer Security (JCS),
16(4):369–392, 2008.

[ACK+10] C.A. Ardagna, J. Camenisch, M. Kohlweiss, R. Leenes, G. Neven, B. Priem,
P. Samarati, D. Sommer, and M. Verdicchio. Exploiting cryptography for
privacy-enhanced access control: A result of the prime project. Journal of
Computer Security (JCS), 18(1):123–160, 2010.

[ADP+09a] C. A. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini, and
P. Samarati. An XACML-based privacy-centered access control system. In
Proc. of the 1st ACM Workshop on Information Security Governance (WISG
2009), Chicago, Illinois, USA, November 2009.

[ADP+09b] C.A. Ardagna, S. De Capitani di Vimercati, E. Pedrini, S. Paraboschi,
P. Samarati, and M. Verdicchio. Extending xacml for open web-based sce-
narios. In W3C Workshop on Access Control Application Scenarios, Lux-
embourg, November 2009.

[AHK+03] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise
privacy authorization language (EPAL 1.2), 2003. http://www.w3.org/
Submission/EPAL/.

[AHKS02] P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3P privacy policies
and privacy authorization. In Proc. of the ACM Workshop on Privacy in the
Electronic Society (WPES 2002), Washington, DC, USA, November 2002.

[AL04] A. Anderson and H. Lockhart. SAML 2.0 profile of XACML. OASIS,
September 2004.

51

52 Bibliography

[BCC04] E.F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In Proc. of the 11th ACM Conference on Computer and Communications
Security (CCS 2004), Washington, DC, USA, October 2004.

[BHS07] F. Baader, I. Horrocks, and U. Sattler. Description logics. In F. van Harme-
len, V. Lifschitz, and B. Porter, editors, Handbook of Knowledge Represen-
tation. Elsevier, 2007.

[BMB09] M.Y. Becker, A. Malkis, and L. Bussard. A framework for privacy pref-
erences and data-handling policies. Technical Report MSR-TR-2009-128,
Microsoft Research, September 2009.

[BMP+09] P. Bichsel, S. Mueller, F. Preiss, D. Sommer, and M. Verdicchio. Security
and trust through electronic social network-based interactions. In Proc. of
the Workshop on Security and Privacy in Online Social Networking, Van-
couver, Canada, August 2009.

[Boa07] S. Boag et al. XQuery 1.0: An XML Query Language. World Wide Web
Consortium (W3C), 2007.

[Bra99] S. Brands. Rethinking Public Key Infrastructure and Digital Certificates —
Building in Privacy. PhD thesis, Technical University Eindhoven, 1999.

[BS02] P. Bonatti and P. Samarati. A unified framework for regulating access and
information release on the Web. Journal of Computer Security, 10(3):241–
272, 2002.

[Cha85] D. Chaum. Security without identification: Transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[CHK+06] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich. How to win the clonewars: efficient periodic n-times anony-
mous authentication. In Proc. of the 13th ACM Conference on Computer
and Communications Security (CCS 2006), Alexandria, VA, USA, October-
November 2006.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Proc. of
EUROCRYPT 2001, Innsbruck, Austria, May 2001.

[CMN+09] J. Camenisch, S. Mödersheim, G. Neven, F.-S. Preiss, and D. Sommer.
Credential-based access control extensions to xacml. In W3C Workshop on
Access Control Application Scenarios, Luxembourg, November 2009.

[Con02] ContentGuard. XrML 2.0 Technical Overview. http://www.xrml.org/
reference/XrMLTechnicalOverviewV1.pdf, 2002.

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In Proc. of the 23rd Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 2003.

Bibliography 53

[DFJS07] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. Access
control policies and languages in open environments. In T. Yu and S. Jajo-
dia, editors, Secure Data Management in Decentralized Systems. Springer-
Verlag, 2007.

[eXt05] eXtensible Access Control Markup Language (XACML) Version 2.0,
February 2005. http://docs.oasis-open.org/xacml/2.0/access\
_control-xacml-2.0-core-spec-os.pdf.

[GPSC09] J. Gomez, T. Pinnick, A. Soltani, and B. Carver. Knowprivacy, June 2009.
http://www.knowprivacy.org/report/KnowPrivacy_Final_Report.pdf.

[GS07] P. Gola and R. Schomerus. Bundesdatenschutzgesetz - Kommentar (accom-
panying commentary), 2007.

[HBP05] M. Hilty, D. Basin, and A. Pretschner. On obligations. Lecture Notes in
Computer Science, 3679:98–117, 2005.

[JSS08] E.K. Jackson, W. Schulte, and J. Sztipanovits. The power of rich syntax for
model-based development. Technical report, Microsoft Research, 2008.

[Leu07] M. Leumann. Policy evaluation and negotiation in distributed usage control
(Master Thesis), 2007.

[ODR02] ODRL. Open Digital Rights Language (ODRL), version 1.1, 2002.

[OEC80] OECD. OECD guidelines on the protection of privacy and transborder flows
of personal data. Organisation for economic Co-operation and Development,
1980.

[PS04] J. Park and R. Sandhu. The UCONABC usage control model. ACM Trans-
actions on Information System Security, 7(1):128–174, 2004.

[PSSW08] A. Pretschner, F. Schütz, C. Schaefer, and T. Walter. Policy evolution
in distributed usage control. In Proc. of the 4th International Workshop
on Security and Trust Management (STM 2008), Trondhem, Norway, June
2008.

[Rag09] D. Raggett. Draft 2nd design for policy languages and protocols. Technical
Report H5.3.2, PrimeLife project, July 2009.

[Sam09] P. Samarati. First research report on research on next generation policies.
Technical Report D5.2.1, PrimeLife project, February 2009.

[SD01] P. Samarati and S. De Capitani di Vimercati. Access control: Policies, mod-
els, and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of
Security Analysis and Design, LNCS 2171. Springer-Verlag, 2001.

[SK07] N. Seki and M. Kudo. Access control policy for XML. In M. Gertz and
S. Jajodia, editors, Handbook of Database Security: Applications and Trends.
Springer-Verlag, 2007.

54 Bibliography

[SS08] G. Spindler and F. Schuster. Recht der Elektronischen Medien. Verlag C.
H. Beck München, 2008.

[W3C02] W3C. A P3P Preference Exchange Language 1.0 (APPEL1.0), April 2002.
http://www.w3.org/TR/P3P-preferences/.

[W3C06] W3C. The Platform for Privacy Preferences 1.1 (P3P1.1) Specification,
2006. http://www.w3.org/TR/P3P11/.

[Wan04] X. Wang. MPEG-21 rights expression language: Enabling interoperable
digital rights management. IEEE Multimedia, 11(4):84–87, 2004.

