
Privacy and Identity Management in Europe for Life

Final research report on next

generation policies

Editors: Sabrina De Capitani di Vimercati (UNIMI)

Pierangela Samarati (UNIMI)

Reviewers: Michele Bezzi (SAP)

Fatih Gey (EMIC)

Identifier: D5.2.3

Type: Deliverable

Version: 1.0

Class: Public

Date: May 19, 2011

Abstract

The open and dynamic nature of today’s Information Society requires the development of
novel privacy-aware paradigms for access control policies and languages. Goal of Work Pack-
age 5.2 is the definition of flexible and comprehensive privacy-aware policies actually deployable
with today’s technology.

This document presents the advancements made in the research work during the third year
of PrimeLife in Work Package 5.2. The document includes one chapter for each task of the work
package, briefly describing the main research results, along with a brief description of plans for
continuing the work after the end of the project. The last chapter lists the abstracts of the
research papers, reporting the findings of Work Package 5.2, published in the third year of the
project.

project PrimeLife.

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 216483 for the

Members of the PrimeLife Consortium

1. IBM Research GmbH IBM Switzerland

2. Unabhängiges Landeszentrum für Datenschutz ULD Germany

3. Technische Universität Dresden TUD Germany

4. Karlstads Universitet KAU Sweden

5. Università degli Studi di Milano UNIMI Italy

6. Johann Wolfgang Goethe - Universität Frankfurt am
Main

GUF Germany

7. Stichting Katholieke Universiteit Brabant TILT Netherlands

8. GEIE ERCIM W3C France

9. Katholieke Universiteit Leuven K.U.Leuven Belgium

10. Università degli Studi di Bergamo UNIBG Italy

11. Giesecke & Devrient GmbH GD Germany

12. Center for Usability Research & Engineering CURE Austria

13. Europäisches Microsoft Innovations Center GmbH EMIC Germany

14. SAP AG SAP Germany

15. Brown University UBR USA

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is

given that the information is fit for any particular purpose. The below referenced consortium members

shall have no liability for damages of any kind including without limitation direct, special, indirect, or

consequential damages that may result from the use of these materials subject to any liability which

is mandatory due to applicable law. Copyright 2009, 2010 by IBM Research GmbH, Unabhängiges

Landeszentrum für Datenschutz, Università degli Studi di Milano, GEIE ERCIM, Università degli Studi

di Bergamo, Europäisches Microsoft Innovations Center GmbH.

2

List of Contributors

Contributions from several PrimeLife partners are contained in this document. The
following list presents the contributors for the chapters of this deliverable.

Chapter Author(s)

Executive Summary UNIMI

Chapter 1 : Policy languages
(Task 5.2.1)

IBM,UNIBG,UNIMI

Chapter 2 : Policy for service
composition (Task 5.2.2)

EMIC,IBM

Chapter 3 : Legal policy
mechanisms (Task 5.2.3)

ULD

Chapter 4 : Abstracts of re-
search papers

EMIC,IBM,ULD,UNIBG,UNIMI

3

Executive Summary

The widespread access to information enabled by the Information and Communication
Technologies (ICTs) brings significant benefits allowing users to access electronic services
and resources anywhere anytime. These advantages come at a price of higher privacy
risk as a huge amount of (private) information is being shared and stored, often without
direct control of its owner. The definition of access control models and languages for
giving users effective control on their private information when interacting with other
parties, deciding what to release and imposing possible conditions on how such informa-
tion should be handled by the recipient, is therefore one of the most challenging problems
of today’s society. This problem has been under the attention of the research and devel-
opment communities and several investigations have been carried out, proposing novel
privacy-aware policies, models, and languages for emerging scenarios. In particular, work
has aimed at departing from user authentication and providing access control solutions
supporting credential-based and attribute-based specifications. Although these studies
have brought important advancements in the privacy-aware policy and language area,
they tackle only part of the problem. Different aspects still need to be investigated,
including: effective support for the user in specifying (and having enforced) possible
privacy preferences on information to be released when interacting with other parties;
solutions for servers to manage privacy policies, detect and solve possible mismatches
and conflicts between them; and a good understanding of legal requirements for enabling
technical solutions complying with them.

With the observations above in mind, goal of Work Package 5.2 is the definition of a
flexible and comprehensive approach to privacy policies. In particular, Work Package 5.2
aims at providing the basis for an effective and easily deployable privacy-aware policy
solution that can be adopted in current information systems with minimal impact on
existing technologies. The Work Package is organized in three tasks: Task 5.2.1 – Policy
languages focuses on the definition of policy languages able to protect the user’s privacy;
Task 5.2.2 – Policies for web service composition focuses on the security and privacy
aspects related to Web services; Task 5.2.3 – Legal policy mechanisms focuses on the
investigation of the protection models that are at the basis of current regulations.

For each task of the Work Package 5.2, this document presents the research work
carried out in the third year of the project, which can be summarized as follows.

• Task 5.2.1 addressed the problem of developing a powerful, flexible, and easy to
use solution for specifying privacy preferences to offer clients a more meaningful
control over information released to a server. The task also provided a formal
modeling of the concepts that have to be supported for enforcing the new access
control paradigm needed in open scenarios, and proposed a flexible solution allow-
ing servers to specify how their policies should be communicated to clients.

5

6

• Task 5.2.2 focused on privacy mismatches, obligations, and privacy policies in
Service-Oriented Architectures (SOAs). The task analyzed the privacy mismatches
that may arise when multiple layers of abstraction exist to represent privacy prefer-
ences and privacy policies. The task also studied the dependencies between autho-
rizations and obligations with the goal of avoiding ambiguous interactions between
them. Finally, the task defined an abstract framework to reason on privacy policies
in SOAs.

• Task 5.2.3 developed new ways to strengthen the protection of personal data by
better understanding the underlying legal requirements. The task developed a
legal framework for processing personal data, existing policy languages, and their
potentials and shortcomings, as well as the different approaches of finding a suitable
policy language that matches the different use cases. The results will lead to
a new generation of technically supported privacy policies that implement legal
requirements in a suitable way.

The remainder of this document is organized in four chapters. The first three chapters
(Chapters 1, 2, and 3) present the main research results obtained during the third year of
the project within Tasks 5.2.1, 5.2.2, and 5.2.3, respectively. The last chapter (Chapter 4)
lists the abstracts of the research papers reporting the findings of Work Package 5.2
published in the third year of the project.

Contents

1 Policy languages (Task 5.2.1) 11

1.1 Introduction . 11

1.2 Supporting privacy preferences in credential-based access control 12

1.2.1 Modeling of the client portfolio . 12

1.2.2 Portfolio sensitivity . 14

1.2.3 Server request and client disclosure 16

1.2.4 Computing a minimal disclosure 17

1.3 Policy definition and management in open scenarios 19

1.3.1 Expressive and deployable access control policies 19

1.3.2 Fine-grained disclosure of access policies 26

1.4 Conclusions . 29

2 Policies for service composition (Task 5.2.2) 31

2.1 Propagating privacy mismatches through multiple abstraction layers . . . 31

2.1.1 Overview . 32

2.1.2 Results and future work . 33

2.2 Dependencies between authorizations and obligations 35

2.2.1 Legal perspective . 36

2.2.2 Technical solution . 36

2.3 Privacy policies in Service-Oriented Architectures 38

2.3.1 Overview . 38

2.3.2 Results and future work . 40

3 Legal policy mechanisms (Task 5.2.3) 43

3.1 Legal framework for processing personal data 44

3.2 Gaps in current policy language approaches 45

3.2.1 XACML – Extensible Access Control Markup Language 46

3.2.2 P3P - Platform for Privacy Preferences 46

3.3 Methodology . 47

3.3.1 Looking into privacy policies . 48

3.3.2 Looking at the law . 48

3.4 Use case analysis . 49

3.4.1 Online shopping . 49

3.4.2 Social networking . 51

3.5 Outreach and potential deployment . 52

3.6 Central results and further research . 53

7

8

4 Abstracts of research papers 55

Bibliography 66

List of Figures

1 An example of hierarchy of credential types 13
2 An example of a portfolio graph . 14
3 An example of a portfolio graph, extended with sensitivity labels, associ-

ations, and disclosure constraints (a) and of a disclosure graph (b) 16
4 Execution time of the heuristic algorithms (a) and the Weighted Max-SAT

prototype (b), compared with the exhaustive algorithm 18
5 An example of colored policy tree (a) and corresponding policy tree view

(b) . 28

6 Overview . 32
7 Examples of matching and mismatching obligations 37

8 Overview of different purposes in an Online-shopping scenario 50
9 Necessity to process personal data for contracts with non-recurring obli-

gations . 51

9

List of Tables

2 Disclosure policies and their effect on conditions 25

10

Chapter 1
Policy languages (Task 5.2.1)

Despite the great improvements of ICT systems in access to information and commu-
nication, there are important user-side and server-side requirements that are currently
not completely satisfied in policy language definition and implementation. On one hand,
users want to regulate disclosure of their credentials and properties when interacting with
servers in open scenarios. On the other hand, service providers need a simple, expres-
sive, and flexible language to specify access control policies that suit the requirements
introduced by open scenarios. The Chapter illustrates the research results of Task 5.2.1
aimed at supporting privacy-aware client-server interactions, and for user empowerment.

1.1 Introduction

Advancements in the Information Technology allow unknown parties to interact over
the Internet, to the aim of offering/accessing resources. In such open scenarios, selec-
tive access to resources is typically based on the evaluation of (certified or uncertified)
properties that clients requesting access present to the servers offering resources [BS02].
Since the client and the server may be unknown to each other, the client cannot know
which properties she should present to acquire access. Analogously, the server does
not know the client properties to decide if access should be permitted or denied. It
is therefore necessary for the server to disclose its access control policies and for the
client to release a set of credentials certifying her properties. Since both client cre-
dentials and server access control policies may contain sensitive information, their re-
lease must minimize the disclosure of unnecessary information. The development of a
privacy-preserving system for open scenarios requires to address several issues at both
the server and client side, also empowering users to specify restrictions on information
they possibly release to servers to the purpose of obtaining access. The remaining of
this chapter is organized as follows. Section 1.2 presents client-side solutions for reg-
ulating the release of private personal information (i.e., credentials). The definition of
an expressive and flexible approach for regulating the release of client personal data
requires a fine-grained modeling of the client portfolio and the definition of simple tech-

11

12 Policy languages (Task 5.2.1)

niques that permit the client to easily manage each portfolio element according with her
disclosure preferences [ADF+11, ADF+10c, ADF+10d, ADF+10e]. Section 1.3 first de-
scribes novel concepts that have to be supported by an access control system suitable for
open scenarios, to the aim of providing an expressive solution actually deployable with
today’s technology. It then describes a server-side solution that permits the server to
selectively disclose its policies, which may contain sensitive data that must be kept con-
fidential, while guaranteeing the client to have enough information for possibly gaining
access [ADF+10b,ADP+11,ADN+10].

1.2 Supporting privacy preferences in credential-based ac-

cess control

Access control solutions for open systems are typically based on the assumption that a
client may adopt approaches specifically designed for the server to protect the disclo-
sure of her sensitive information. These solutions however do not consider the specific
privacy requirements characterizing the client. This section describes a novel approach
that puts forward the idea of adopting a different model at the client-side, aimed at
minimizing the amount of sensitive information released to a server. This model is based
on a formal modeling of the client portfolio and easily supports the definition of pri-
vacy preferences and disclosure limitations for empowering the user in the release of her
personal information.

1.2.1 Modeling of the client portfolio

A key requirement for a framework empowering a client with full control over personal
information released during the interactions with a server is the definition of an ex-
pressive model representing such a personal information. The model should enable
the client to easily state her preferences on the disclosure of credentials/properties and
should take advantage from emerging credential technologies that support the selec-
tive release of properties within credentials, as allowed by novel anonymous credentials
(e.g., [AL04,HBH07]). In the following, the term portfolio will be used to refer to the
set of certified properties (credentials) and uncertified properties (declarations) charac-
terizing a client [BS02].

• Abstractions over credential types. Each credential in the client portfolio is char-
acterized by a unique identifier, a set of certified properties, an issuer, and a type.
The type of a credential identifies the properties that the credential certifies. The
declarations form a special credential of type “declaration” whose issuer is the client
itself. Abstractions can be defined over the credential types, possibly introducing
a hierarchy of types. Formally, a hierarchy H of credential types is a pair (T ,�isa),
where T is the set of all credential types and abstractions over them, and �isa is
a partial order relationship over T . Given two types ti and tj in T , ti�isatj if tj
is an abstraction of ti. Hierarchy H has a unique root, denoted with ∗, such that
ti�isa∗, for each ti∈T . Figure 1 illustrates a hierarchy of credential types where,
for example, id is an abstraction of credential types id_card and dr_license (i.e.,
id_card�isaid and dr_license�isaid). The hierarchy of credential types represents

Section 1.2: Supporting privacy preferences in credential-based access control 13

∗

zz
zz
z

EE
EE

E

credential

||
||
|

BB
BB

BB
declaration

id

��
��
�

AA
AA

A cc

id_card dr_license

Figure 1: An example of hierarchy of credential types

the common knowledge shared between a client and a server. Since a server has
not any knowledge about the client portfolio, any request by the server for a set
of (certified) properties may only refer to credential types and abstractions in the
hierarchy.

• Atomic vs non-atomic credentials. Atomic credentials can only be released as a
whole, that is, their release entails the disclosure of all the properties they certify.
By contrast, non-atomic credentials support the selective release of individual prop-
erties extracted from the credential. Atomic credentials (e.g., X.509 certificates)
are the most common kind of credential used today in distributed systems. By con-
trast, non-atomic credentials (e.g., U-Prove and Idemix [Bra00,CL01]) are based
on modern technologies and permit also to certify the possession of an instance
of a given credential type, without disclosing the properties within it. Clearly,
declarations are non-atomic credentials.

• Credential-independent vs credential-dependent properties. Properties in the client
portfolio can be associated uniquely with the client or can depend on the specific
credential certifying them. For instance, name is a property that can be certified by
different credentials but its value depends only on the owner of these credentials. A
property representing a credit card number can instead be specific of the credential
certifying it. In the following, the terms credential-independent and credential-
dependent will be used to refer to properties whose values depend only on the
credential owner and on the specific credential certifying them, respectively.

The client portfolio can be conveniently modeled as a portfolio graph, which is a
bipartite graph having a vertex for each credential and each property in the portfolio,
and an edge connecting each credential to the properties contained in it. Figure 2
illustrates an example of a portfolio graph, where credential are represented as rectangles
and property are represented as ovals. The portfolio includes four credentials, myId (of
type id_card), myLicense (of type dr_license), myVISA and myMC (both of type cc),
and a declaration decl . The only non atomic credential is myLicense, while all the other
credentials are atomic. In the figure, atomic credentials can be distinguished from non
atomic credentials since all the edges incident to an atomic credential are attached to a
black semicircle.

14 Policy languages (Task 5.2.1)

Figure 2: An example of a portfolio graph

1.2.2 Portfolio sensitivity

When accessing a service/resource, a client may need to release personal information
according to a server request, stating the information about which conditions need to be
satisfied for the access to be granted. A client has then to determine which properties/-
credentials disclose to gain access while also limiting the release of sensitive information
that is not strictly necessary. For instance, suppose that for accessing a specific service,
a server requires the address or the phone number of the requesting client. In this case,
the client may prefer to release her address instead of her phone number since she con-
siders the phone number more sensitive than the address. Clearly, if there are several
alternative options from which the client can choose, the task of determining which prop-
erties/credentials release may become complex. A simple, while effective and flexible,
solution to express privacy preferences on the release of properties/credentials is then
needed to: i) automatically regulate the disclosure of sensitive information upon server
requests; and ii) preserve the privacy of the client by providing a support for determining
the minimal information that has to be released to acquire a service.

Information privacy preferences on a portfolio can be specified in terms of sensitivity
labels that the user can associate with the different components (or combinations thereof)
in her portfolio. The set Λ of sensitivity labels could be any set of values, provided the
existence of a (partial) order relationship � over them and a composition operator ⊕ that
determines the label resulting from the combination of two labels. This generic definition
of sensitivity labels permits to capture different ways of expressing preferences. For
instance, sensitivity labels could be classical multilevel security classifications (e.g., Top
Secret, Secret, Confidential, Unclassified, possibly with associated categories) with the

Section 1.2: Supporting privacy preferences in credential-based access control 15

⊕ operator corresponding to the least upper bound . Also, they could be positive integer
values, where the ⊕ operator can be either the sum (i.e., λi⊕λj = λi+λj) and therefore
reflect an additive property , or the maximum (i.e., λi⊕λj=max (λi, λj)). In the following,
for simplicity, Λ corresponds to the set Z of positive and negative integer values. Note
that a user may specify different preferences for different servers, by assigning a different
label to each component in its portfolio, depending on the server requesting the release.
The request is then evaluated on the instance of the labels determined by the server with
whom the user is interacting [ADF+11].

Sensitivity of properties and credentials. The first step for the user to specify how
much she values information in her portfolio is to associate a sensitivity label λ with
each property p and credential c .

• λ(p): reflects how much the user considers property p sensitive and therefore how
much she values its release.

• λ(c): defines the sensitivity of the existence of a credential. This is the additional
information carried by the credential itself, regardless of the information contained
in it. For instance, a dialysis certificate may include only properties Name and
Address, but the existence of the certificate itself has an additional sensitivity
that goes beyond the demographic information of the user.

Sensitivity of associations. In general, releasing a set of elements entails a sensitivity
corresponding to the combination of the sensitivity of all the elements involved. There
are however cases where merging some elements might produce an information release
that does not precisely correspond to the composition of the labels of the individual
elements. Let a be any set of properties and/or credentials. The user can specify λ(a)
as the additional , positive or negative, sensitivity to take into account in computing the
sensitivity of the set of elements jointly released.

• Sensitive views (positive λ(a)). They reflect the fact that a set of portfolio elements
jointly released carries more information than the composition (i.e., the sum) of
the labels of the individual elements. For instance, the association between a
user Address and one of her credit cards (e.g., MyVISA) can be considered more
sensitive than the composition of the sensitivity labels of property Address and
credential MyVISA.

• Dependencies (negative λ(a)). They reflect the fact that a set of portfolio elements
jointly released carries less information than the composition of the labels of the
individual elements. For instance, the association between a complete Address and
Country can be considered less sensitive than the sum of the sensitivity labels of
the two. As a matter of fact, the information carried by the address includes the
country where the user lives.

Disclosure constraints. The user may want to specify additional constraints that
cannot be simply expressed with a sensitivity label.

16 Policy languages (Task 5.2.1)

(a) (b)

Figure 3: An example of a portfolio graph, extended with sensitivity labels,

associations, and disclosure constraints (a) and of a disclosure graph (b)

• Forbidden views. Some associations of the portfolio elements might be not only
much more sensitive than the combination of the labels of the elements, but should
be definitely prohibited by the user. For instance, a user might have in its portfolio
both a real Name and a NickName, each one with a sensitivity label (to be considered
when the element is released), but their association should never be disclosed.

• Disclosure limitations. In some cases, the user might wish to put a limitation of
the kind at most n of these elements on the release of properties and credentials.
For instance, a user may specify disclosure limitation {Address,Phone,eMail}1,
meaning that at most one among its contacts can be released.

The portfolio graph is therefore extended to include both associations and disclosure
constraints, which are modeled as vertexes in the graph, with edges connecting each
association/disclosure constraint with the involved properties and/or credentials. Each
vertex in the extended portfolio graph, but disclosure constraints, is associated with its
sensitivity label. Figure 3(a) illustrates an example of a portfolio graph, obtained by
extending the portfolio in Figure 2.

1.2.3 Server request and client disclosure

Consider an open web-based scenario that consists of remote communications between
a client and a server. The client starts the communication by requesting access to a
resource available on the server. In turn, the server sends a request for a set of properties
to the client, to evaluate and enforce the policies protecting the resource. The request of
the server is modeled as a boolean formula R, which describes the set of properties (and

Section 1.2: Supporting privacy preferences in credential-based access control 17

the way in which they should be certified) that the client needs to disclose to acquire a
given service.

A disclosure D represents a subset of the client portfolio, which is communicated
to the server for satisfying a request. A disclosure can be modeled as a subgraph of
the portfolio graph, called disclosure graph. Intuitively, this subgraph includes all the
vertices and edges corresponding to credentials, properties, associations, and disclosure
constraints that are exposed by the disclosure. Note that the disclosure to the server
of a subset of the properties in the portfolio must also imply the release of a set of
credentials certifying them, additional properties included in atomic credentials, associ-
ations, and disclosure constraints. Therefore, while each disclosure is a subgraph, the
vice versa is not necessarily true. A subgraph of the portfolio graph can be considered
a disclosure graph only if it correctly represents a possible release of information. In
particular, in a disclosure: 1) each disclosed property must be certified by (at least) a
credential, that is, credential existence is also disclosed (certifiability); 2) if a property
of an atomic credential is disclosed, all its properties are disclosed (atomicity); 3) if all
properties/credentials composing an association are disclosed, the sensitive association
must be considered disclosed (association exposure); 4) if all properties/credentials com-
posing a forbidden view or more than n properties/credentials composing a disclosure
limitation are released, the disclosure constraint must be considered violated (constraint
violation). Figure 3(b) illustrates an example of a disclosure graph, which is a subgraph
of the portfolio graph in Figure 3(a). The vertices and edges in the portfolio graph that
also belong to the disclosure graph are represented with a bold line in the figure.

The sensitivity label λ(D) of a disclosure D is computed by composing the labels of
the credentials and properties in D, and of the exposed associations. A disclosure is said
to be valid if it does not violate any disclosure constraint specified by the client. Note
that only valid disclosures can be released. Figure 3(b) illustrates an example of a valid
disclosure D, with λ(D) = 1 + 5 + 5 + 10 + 1 + 3 + 5 = 30.

Given a server request R, the client is interested in determining, if it exists, a valid
disclosure D that satisfiesR, while minimizing the sensitivity label of the disclosure. This
problem is however NP-hard (the minimum cover problem reduces to it in polynomial
time) [ADF+10d].

1.2.4 Computing a minimal disclosure

Since the problem of computing a valid disclosure D that satisfies R with minimum
sensitivity label is NP-hard, it is necessary to design efficient solutions able to compute
a good, although non optimal, solution to the problem. To this purpose, two different
approaches can be adopted, as described in the following.

Graph-based approach [ADF+10c]. This solution is based on a graph modeling of
the server request and uses graph isomorphisms to check if a disclosure graph satisfies a
request. Even if the problem of computing a minimal disclosure that satisfies a request
resembles a problem of graph matching, the model illustrated [ADF+10c] has some pe-
culiarities that cannot be simply handled by off-the-shelf graph matching algorithms. As
a consequence, a specific heuristic algorithm has been designed to take the peculiarities
of the problem into consideration.

18 Policy languages (Task 5.2.1)

 10

 1000

 60000

 0 5 10 15 20 25 30 35

T
im

e
(m

s)

Number of total credentials

Exhaustive 50%
Exhaustive 25%
Exhaustive 10%

Exhaustive 0%
Heuristic

 10

 1000

 60000

 0 5 10 15 20 25 30 35

T
im

e
(m

s)

Number of Total Credentials

Exhaustive 50%
Exhaustive 30%
Exhaustive 10%

Exhaustive 0%
Max-Sat

(a) (b)

Figure 4: Execution time of the heuristic algorithms (a) and the Weighted

Max-SAT prototype (b), compared with the exhaustive algorithm

To assess the efficiency and effectiveness of the heuristic, the algorithm has been imple-
mented in C++. Experiments have been run on a PC with two Intel Xeon Quad 2.0GHz
L3-4MB, 12GB RAM, and a Linux Ubuntu 9.04 operating system. Overall, the heuristic
algorithm was able to produce the optimum in 98% of the cases, and when the optimum
was not identified, the distance from the optimum was on average 13% above the opti-
mum. Figure 4(a) compares the execution time of the heuristic with the execution time
of an exhaustive algorithm, considering an increasing number of credentials (from 0 to
35) and 4 configurations obtained by assuming 50%, 25%, 10%, and 0% of the credentials
to be non-atomic. As expected, the heuristic was always able to produce an answer in
less than 10ms, whereas the exhaustive algorithm requires exponential time in the size
of the portfolio, with a strong dependence on the number of non-atomic credentials.

SAT-based approach [ADF+10d]. This solution is based on the translation of the
problem of computing a minimal disclosure into an instance of the Weighted Max-SAT
problem and on the availability of SAT solvers, known to be able to efficiently solve
large problems. This translation interprets credentials and properties as Boolean vari-
ables, and associations, disclosure constraints, and the server request as clauses. The
Weighted Max-SAT problem can be formulated as follows: given a set of clauses, find a
truth assignment that maximizes the sum of weights of satisfied clauses.
To prove the effectiveness and evaluate the efficiency of the solution proposed, a prototype
that realizes the translation of any instance of the problem into an equivalent instance
of the Weighted Max-SAT problem has been realized. The set of clauses obtained by the
prototype are then given as input to the Yices SAT solver (http://yices.csl.sri.com). Ex-
periments have been run on a PC with two Intel Xeon Quad 2.0GHz L3-4MB processors,
12GB RAM, and a Linux Ubuntu 9.04 operating system, considering four different port-
folio configurations, where 50%, 25%, 10%, and 0% of the credentials are non-atomic.
Figure 4(b) compares the performance of the proposed solution with the exhaustive algo-
rithm. As expected, the exhaustive algorithm becomes quickly infeasible, with a strong

Section 1.3: Policy definition and management in open scenarios 19

dependence on the number of non-atomic credentials. On the contrary, the approach that
uses the Max-SAT solver can compute, for all the considered configurations, a solution
in less than 10ms.

1.3 Policy definition and management in open scenarios

Traditional access control solutions, based on preliminary identification and authentica-
tion of the access requester, are not adequate for the context of open web service systems,
where servers generally do not have prior knowledge of the requesters. The research
community has acknowledged such a paradigm shift and several investigations have been
carried out for new approaches to regulate access control in open dynamic settings. Many
works and progresses in credential-based and attribute-based access control rely on the
idea that the server communicates to the client the credentials that she must possess, or
the properties that she needs to satisfy, to acquire access. Several works have also inves-
tigated the different aspects of credential-based access control, and presented different
models and languages (e.g., [ACK+10,ADN+10,BS02,IY05,JSSS01,WCJS97,YWS03]).
Typically, a logic-based language is proposed, allowing for compact and expressive spec-
ifications of the access control policy as well as its communication to the client. Further-
more, when privacy is an issue, these works assume that the client can enforce her own
policy and initiate a negotiation with the server, during which access policies, credentials,
and attributes are exchanged, until access is eventually granted or denied. Nevertheless,
many logic-based proposals, while appealing for their expressiveness, turn out to be not
applicable in practice, where simplicity, efficiency, and consistency with consolidated
technology are crucial. This section describes novel approaches that effectively tackle
these issues to provide enhanced access control systems that address the requirements of
open scenarios.

1.3.1 Expressive and deployable access control policies

Access control systems that fit open and distributed scenarios need to consider novel
concepts that include the support for: i) certified information to express that some
properties should be presented by means of given certificates, possibly imposing condi-
tions, besides on values of the properties, also on the certificates themselves (e.g., their
type or issuer); ii) abstractions representing shorthands to express, with a single con-
cept, a more complex definition (e.g., a set, a disjunction, or a conjunction of concepts);
iii) recursive reasoning on credentials or their properties for expressing policies based on
chains of credentials and for supporting delegation; iv) dialog management, that is, a
new way of enforcing the access control process, which cannot be assumed anymore to
operate with a given prior knowledge and return a definite access decision.

A formal description of the above novel concepts is presented, focusing on the for-
mal representation of the basic building blocks needed for referring to credentials and
reasoning about them, and for supporting abstractions, recursion, and dialog [ADP+11].

20 Policy languages (Task 5.2.1)

Credentials

Credential support requires the possibility of explicitly referring to digital certificates
and relevant conditions about them in the policy specifications. A credential is formally
modeled as follows.

Definition 1.3.1 (Credential) A credential is represented by a symbol c and is mod-
eled as a pair (Mc ,Ac), where:

• Mc is a list of metadata name-value pairs (〈M1,m1〉, . . . , 〈Mk,mk〉) that repre-
sent properties on the credential (e.g., 〈type,id_card〉 is a metadata describing a
credential of type id_card);

• Ac is a list of attribute name-value pairs (〈A1, a1〉, . . . , 〈An, an〉) that represent the
content of the credential (e.g., 〈last_name,Smith〉 represents attribute last_name
whose value is Smith).

The schema of a credential c, denoted c, is the set of its metadata and attribute names
alone, without the specific instances of values. Formally, c = (Mc,Ac), where Mc =

(M1, . . . ,Mk), and Ac = (A1, . . . , An). The proposed notation relies on the triangle (⊲)

symbol and the dot (.) symbol to create credential terms that refer to metadata and
attribute names, respectively, in a credential schema. For instance, terms c ⊲ M and c.A
refer to metadata name M and to attribute name A in credential c, respectively.

Credential terms can then be used to specify credential conditions on certified prop-
erties and on the certificates themselves, which can be used like any other condition
within a subject expression (i.e., the attribute-based expression identifying subjects to
which the authorization applies).

Definition 1.3.2 (Simple credential condition) A simple credential condition is ei-
ther:

• a credential term t, where t is c ⊲ M or c.A, with c=(Mc ,Ac), M ∈ Mc , and
A ∈ Ac;

• an expression of the form t π v, where t is credential term, π is a symbol repre-
senting a standard predicate (e.g., ‘=’, ‘ 6=’, ‘>’, ‘∈’), and v is a metadata value,
an attribute value, or another credential term.

Conditions of the first type (credential terms) have the semantics of requiring the
client to hold a credential with the specified term. If no further condition is specified on
the corresponding metadata/attribute in the subject expression, the semantics is simply
that the metadata/attribute needs to be presented, although its value does not impact
the access control decision. For instance, a subject expression can include as a condition a
term c.last_name, without any further condition on attribute last_name; while the value
of the attribute is not taken into consideration in the access control decision process, it
might be needed for logging purposes (as the name of those who have accessed a service
is logged).

Section 1.3: Policy definition and management in open scenarios 21

Conditions of the second type are satisfied if the client holds a credential with a
term that satisfies the stated restriction. For instance, c.last_name = Smith is satisfied
by a credential including attribute last_name whose value is Smith. Simple credential
conditions can be combined by using the and and or boolean operators to create more
complex conditions, as formally defined as follows.

Definition 1.3.3 (Credential condition) A credential condition is inductively de-
fined as:

• a simple credential condition, or

• s1 ∧ s2, or

• s1 ∨ s2,

where s1 and s2 are credential conditions.

A credential condition represents the basic construct to be used in the definition of
a subject expression in a policy that permits referring to a set of subjects satisfying
certain conditions. Note that a credential condition may include multiple occurrences
of credential symbols. If the same symbol is used, the corresponding simple conditions
refer to (and must therefore be satisfied by) the same credential; if a different symbol
is used, the corresponding simple conditions can be satisfied by different credentials or
must be satisfied by different credentials, if an inequality between the credential symbols
is explicitly specified in the credential condition. For instance, condition “c1 ⊲ type =
passport ∧ c1.last_name = Smith ∧ c1.nationality = US” can be satisfied by presenting a
credential of type passport containing attributes last_name and nationality with values
Smith and US, respectively. Condition “c1 ⊲ type = passport ∧ c1.last_name = Smith ∧
c1.nationality = US ∧ c2 ⊲ type = credit_card ∧ c2.last_name = Smith ∧ c2.cc_number ”
can be satisfied by two different credentials, the first one of type passport, containing
attributes last_name and nationality with values Smith and US, respectively, and the
second one of type credit_card containing attribute last_name with value Smith and
reporting the credit card number (note that the expression is satisfied by the presence
of attribute cc_number, regardless of its value).

Dealing with credentials requires distinguishing, in the language, between certified
and uncertified properties (i.e., properties that can appear in a declaration). Requests
for uncertified properties can be expressed by using simple uncertified conditions of the
form ‘A’ or ‘A π v’, where A is an attribute, π a standard predicate, and v a value or
another attribute. As for credential conditions, also simple uncertified conditions can
be combined by using the and and or boolean operators. For instance, “ last_name =
Smith ∧ nationality = US” is satisfied if the client declares (without any certification)
that the last_name is Smith and the nationality is US.

Abstractions

An abstraction defines a shorthand for new concepts that can be expressed in terms of
conditions on other concepts. Such abstractions simplify the specification of conditional
expressions and provide a support for ontological reasoning. Formally, an abstraction is
defined as follows.

22 Policy languages (Task 5.2.1)

Definition 1.3.4 (Abstraction) An abstraction is a rule of the form simple_cond ←
cond, where simple_cond is a simple credential or uncertified condition, and cond is a
credential or uncertified condition.

For instance, abstractions:

• c ⊲ type = id_document ← c ⊲ type = identity_card ∨ c ⊲ type = passport ∨ c ⊲
type = driver_license;

• c ⊲ type = emoney ← c ⊲ type = credit_card ∨ c ⊲ type = debit_card ∨ c ⊲ type
= paypal

define id_document and emoney as two abstract credential types corresponding to
any element in the sets of credentials {identity_card, passport, driver_license} and
{credit_card, debit_card, paypal}, respectively. Hence, a request for an identifying
document (credential of type id_document) can be satisfied by providing either an iden-
tity card, a passport, or a driver license. Abstractions can be exploited for defining and
organizing concepts and taxonomies without the need for hierarchical data structures
like in traditional ontologies.

Relation conditions and recursive conditions

One of the most interesting features offered by logic-based policy languages is represented
by the support for recursive conditions. Recursion has a crucial role in the representation
of restrictions on how authorities and, more in general, trusted parties delegate the
ability to issue credentials. The delegation consists of a certification of the ability of
another party to produce credentials on behalf of the delegator. In large scale distributed
systems with a complex architecture, delegation increases flexibility and permits the
inexpensive creation of credentials, particularly in an open environment. Such systems
are characterized by application requirements calling for the specification of restrictions
in delegation. The support for recursion in the policy language can be applied to the
expression of conditions on data with a recursive structure.

In the following, the solution supporting delegation is discussed. Let U be the set
of all users that can take part in an access control process. Let ρ ⊆ U × U be a
relation between elements in U . As an example to illustrate the proposed ideas, consider
particular elements in U , namely, certification authorities, and a relation ρ that holds
between two certification authorities u and v if and only if u has signed v’s public key on
a certificate, delegating to v the authority to produce credentials, certified by v, that are
to be considered as certified by u. In turn, v has the possibility to delegate her power to
another certification authority, so that a chain of delegation is created, whose description
must be maintained in some data structure accessible by all the users that rely on the
relevant certification authorities. Θρ carries this information that exhaustively describes
ρ, which is called the context of ρ, in the form of a sequence of credential-like entries
corresponding to all the pairs that ρ induces in U : Θρ = {θ = (Mθ,Aθ) : Mθ = (rel),
θ ⊲ rel = rho, Aθ = (user1, user2), (θ.user1, θ.user2) ∈ ρ}.

When ρ holds between u and v, that is, (u, v) ∈ ρ, there exists a θ ∈ Θρ such that θ ⊲
rel=rho, θ.user1 = u, and θ.user2 = v. Conditions on data with a recursive structure like

Section 1.3: Policy definition and management in open scenarios 23

the one mentioned above can be requested in an access control policy. In the example,
in which ρ is a relation of delegation between certification authorities, a client trying to
access a particular resource may be required by the server to show that the certification
authority car signing her credentials has been delegated by a particular authority cas
preferred by the server. The policy will then include the relevant relation condition, θ ⊲
rel=rho ∧ θ.user1 = cas ∧ θ.user2 = car, which, in general, can be rewritten according
to the following abbreviation: θ.rho=〈u, v〉 ← θ ⊲rel=rho ∧ θ.user1 = u ∧ θ.user2 = v.

In this scenario, the need often arises to deal with the transitive closure of the dele-
gation chain. Instead of setting conditions on the authority that directly delegated the
one signing the client certificate, a server may be interested in ensuring that the root
authority caroot, the one at the very beginning of the delegation chain, is among her
preferred ones. The client can prove that her car is in the relation ρ∗ (i.e., the transitive
closure of ρ) with caroot either by showing that (caroot, cac) ∈ ρ, or by providing a chain
of context entries θ1, . . . , θn ∈ Θρ, where caroot is user1 in θ1, cac is user2 in θn, and for
all 1 ≤ i < n, θi.user2 = θi+1.user1, which can be abbreviated in a recursive condition :

θ.rho*=〈u, v〉 ← θ.rho=〈u, v〉 ∨
(θ.rho=〈u, θ′.user1〉 ∧ θ′.rho*=〈θ′.user2, v〉).

Dialog management

The ability to truly support an open world scenario implies enabling the servers to process
requests for services coming from parties unknown a-priori. As noted, the way access
control is enforced needs to change, since in general the server has not available (either
in its own state or released by the client together with the request) all the information
needed for evaluating access, and cannot return a definite decision. Rather, the server
should be able to evaluate the policy with respect to unknown or partially known clients,
and communicate to them the conditions that need to be satisfied to access the service.
eXtensible Access Control Markup Language (XACML) [OAS10] does not have this
capability and returns indeterminate whenever the evaluation of the access control policy
cannot be reduced to a definite state (permit or deny) and there are conditions whose
truth value cannot be evaluated. The main goal is to depart from the XACML scenario
allowing the server to inform the client of the conditions that it needs to satisfy instead
of communicating it that there are conditions that cannot be evaluated.

An important issue is how the server should communicate its access control policy to
the client. For instance, suppose that an authorization imposes that attribute nationality
should be equal to “US”. Should the server communicate such a condition to the client?
Or should it just inform the client that it has to state the nationality? Clearly there is
no unique response to whether one option is better than the other, and which one is to
be preferred depends on the specific context and information involved. It is clear that
communicating the complete policy (i.e., the fact that the policy will grant access if the
nationality is US) favors the privacy of the client. In fact, a client can know, before
releasing credentials or information to the server, whether the release will be sufficient
to acquire access to the service. In particular, a client associated with a non-US user
can avoid disclosing the nationality of the user. By contrast, communicating only part
of the policy favors the privacy of the server. As a matter of fact, the access control
policy, and the information on which it evaluates, can be considered sensitive too and

24 Policy languages (Task 5.2.1)

as such needs to be protected. For instance, while the server might not mind disclosing
the fact that access to a service is restricted to US citizens, it might not want to disclose
other conditions (or values against which properties are evaluated) as they are considered
sensitive. As an example, consider an authorization allowing access to a service to those
users who work for an organization that does not appear in a Secret Black List (SBL)
kept by the server. The corresponding subject expression is: c ⊲ type = employment ∧
c.employer /∈ SBL. Communicating the complete policy to the client (and allowing its
evaluation by the client) would imply releasing the subject expression, together with
the black list SBL. Also, assuming the content of SBL is not released, the client will
know, in case it will not be granted access, that its employer is black listed. This is
clearly an information the server does not wish to disclose; rather the server wants to
maintain confidential the condition and simply state that the employment certificate is
required. Between the two extremes of simply returning indeterminate (the XACML
approach), on one side, and of completely disclosing the policy, on the other side, there
are therefore other options offering different degrees of protection to the server policy
and of information communicated to the client. Each condition appearing in the policy
can then be subject to a different disclosure policy, regulating the way the presence of
such a condition should be communicated to the client. Five different disclosure policies
have been defined, each one potentially used independently in any condition appearing in
an expression. In terms of formal notation, the disclosure policy is denoted by including
the portion of a condition to not be disclosed in square brackets. For concreteness of the
discussion, a condition c ⊲M π m is used below; the case of a condition on an attribute
(i.e., of the form c.A π v or A π v) is analogous. The following disclosure policies can
be associated with the condition.

• None. Nothing can be disclosed about the condition. It corresponds to the XACML
approach as only the information that the outcome of the policy is indeterminate
is communicated, since there are conditions that cannot be evaluated. Formally,
the condition will appear in the expression completely included in square brackets,
that is, [c ⊲ M π m].

• Credential. Only the information that there is a condition imposed on some meta-
data about a credential (or on some attributes of the credential) can be disclosed.
The metadata (or attributes) on which the conditions are evaluated are not re-
leased. Formally, the condition will appear in the expression as c ⊲ [M π m].

• Property. Only the information that a property (metadata or attributes of a cre-
dential, or uncertified statements) needs to be evaluated can be released; no in-
formation can be released on the control that will be enforced on the property.
Formally, the condition will appear in the expression as c ⊲ M [π m].

• Predicate. Only the information that a property (metadata or attributes of a
credential, or uncertified statements) needs to be evaluated and the predicate with
which it is evaluated can be released; no information can be released on the values
against which the evaluation is performed. Formally, the condition will appear in
the expression as c ⊲ M π [m].

Section 1.3: Policy definition and management in open scenarios 25

Table 2: Disclosure policies and their effect on conditions

Disclosure Condition in Communication

policy expression to the client

none [c ⊲ M π m] []

[c.A π v] []

credential c ⊲ [M π m] c ⊲ []

c. [A π v] c. []

property c ⊲ M [π m] c ⊲ M []

c.A [π v] c.A []

predicate c ⊲ M π [m] c ⊲ M π []

c.A π [v] c.A π []

condition c ⊲ M π m c ⊲M π m

c.A π v c.A π v

• Condition. The condition can be fully disclosed as it is. Formally, the condition
will appear in the expression with no square brackets, signaling that no component
is subject to disclosure restriction, that is, c ⊲ M π m.

Table 2 summarizes the different disclosure policies reporting the formal notation
with which they appear in the expression and the consequent communication to the
client in the dialog.

Note that the disclosure policies of the server, affecting the information released to
the client about the conditions appearing in the policy, also impact the way the client
can satisfy the conditions. In particular, the credential policy implies that the client
will not know which information in the credential is needed and therefore will have to
release the credential in its entirety (assuming that the credential to which the condition
refers is known by other conditions in the policy, else the client will have to disclose all
its credentials). The property policy implies that the client can selectively disclose the
property in the credential (or utter it, in case of a condition on uncertified properties).
The same for the predicate policy, where the client however knows also against what
predicate the property will be evaluated. Finally, in the case of the condition policy, the
client can either provide the property (but it can assess, before submitting, whether such
a release will satisfy the condition) or provide a proof that the property is satisfied [CL01].

Example 1.3.1 Consider a policy stating that “a user can access a service if her na-
tionality is Italian, her city of birth is Milan, and her year of birth is earlier than 1981”.
Suppose that all attributes mentioned in the policy must be certified by an X.509 identity
card or by a SAML passport both released by IT_Gov. The policy is formally stated as:

((c1 ⊲ type = identity_card ∧ c1 ⊲ method = X.509) ∨
(c1 ⊲ type = passport ∧ c1 ⊲ method = SAML)) ∧
c1 ⊲ issuer [= IT_Gov] ∧ c1.nationality [= Italian] ∧
c1.city_of_birth = Milan ∧ c1.year_of_birth < [1981]

Here, the square brackets representing the disclosure policies implicitly state that: i)

26 Policy languages (Task 5.2.1)

conditions on metadata type and method, and attribute city_of_birth can be eventually
disclosed as they are; conditions on metadata issuer and attribute nationality need to
be protected by hiding the control that will be enforced on them; and iii) condition on
attribute year_of_birth needs to be protected by hiding the value against which the
evaluation will be performed. If the above policy applies to a request submitted by a
client for which the server has no information, the following conditions are communicated
to the client.

((c1 ⊲ type = identity_card ∧ c1 ⊲ method = X.509) ∨
(c1 ⊲ type = passport ∧ c1 ⊲ method = SAML)) ∧
c1 ⊲ issuer [] ∧ c1.nationality [] ∧
c1.city_of_birth = Milan ∧ c1.year_of_birth < [].

The client can satisfy such conditions by releasing either an identity card or a passport
containing the requested attributes.

Beside providing a simple and effective formalization of the novel concepts above,
the work in [ADP+11] also illustrates how the modeled concepts can be deployed in the
XACML standard by exploiting its extension points for the definition of new functions,
and introducing a dialog management framework to enable access control interactions
between web service clients and servers. In this context, it presents enhancements to be
made to the standard XACML architecture to support the extended XACML language.
The proposed solution consists in defining new components or in using, in a different way,
existing XACML components. An important characteristic of the proposed deployment
is that it has a limited impact on the original XACML specification and architecture.

1.3.2 Fine-grained disclosure of access policies

Following the proposal for dialog management in [ADP+11], Ardagna et al. [ADF+10b]
present a simple, yet expressive and flexible, approach for enabling servers to specify,
when defining their access control policies, if and how the policy should be communi-
cated to the client (i.e., dialog management). The proposed approach applies to generic
attribute-based access control policies and is therefore compatible with different lan-
guages, including logic-based approaches [BS03] as well as the established XACML stan-
dard [OAS10].

A policy is represented as a boolean expression tree, where operators are internal
nodes, and attributes and values are leaf nodes. In the graphical representation of the
policy tree, nodes representing constant values (in contrast to attributes or operators)
are represented with a square.

Disclosure policy specification. The main goal of the proposed approach is to pro-
vide the server with a means to regulate how its access control policies should be com-
municated to clients. In fact, the server might consider its access control policy, or part
of it, as confidential. To provide maximum flexibility and expressiveness, a fine-grained
approach is defined where each term and predicate operator appearing in a condition,
as well as each boolean operator combining different conditions, can be subject to a
disclosure policy that regulates how the term, predicate operator, or boolean operator

Section 1.3: Policy definition and management in open scenarios 27

should be protected and then communicated to the client. In other words, each node
in the policy tree can be associated with a disclosure policy regulating if and how the
existence of the node and its label should be visible to the client. With respect to the
label, a disclosure policy can state whether the label of a node can be disclosed. With
respect to the existence of a node and therefore the structure of the tree, a disclosure
policy can state whether the structure has to be preserved or can be possibly obfuscated
by removing nodes from the tree.

The disclosure policy associated with each node in the tree is expressed as a color
(green, yellow, or red), which in Figure 5 corresponds to the light gray (green), dark
grey (yellow), and black (red). The specification of disclosure policies results in a colored
policy tree. The semantics of the different colors, with respect to the release to the client
of the colored node, is as follows.

• Green. A green node is released as it is.

• Yellow. A yellow node is obfuscated by only removing its label; the presence of the
node as well as of its children is preserved.

• Red. A red node is obfuscated by removing its label and possibly its presence in
the tree.

Also, although in principle a node in a policy tree can be arbitrarily colored (i.e.,
any disclosure policy can be associated with any node in a tree), not all the colorings
of a policy tree are well defined . A coloring function is well defined if all the following
conditions are satisfied.

• For each green leaf representing a constant value, its sibling representing an at-
tribute is green, and its parent, representing a predicate operator, is not red. The
reason for this constraint is to not allow cases where the only information releasable
to the client is the constant value against which an attribute is compared, without
releasing neither the attribute nor the predicate operator.

• Each green node representing a predicate operator must have at least a non red
child. The reason for this constraint is analogous to the one above. In fact, releasing
a predicate operator (e.g., >, <, =) without its operands would be meaningless.

• For each subtree representing a basic condition on attribute type (of the form
c.type=value), the nodes in the subtree are either all green or all red. The reason
for this constraint is to ensure that if the information that there is a condition
on the type of credential in the policy is released to the client, also the specific
type of credential is disclosed. In fact, it would be meaningless to state that only
credentials of a given type are accepted, without disclosing the type.

Apart from the constraints above restricting the diversity of colors within basic con-
ditions of the policy, any color can be assigned to the different nodes of a policy tree,
each producing a different way in which the server may wish to communicate its policy
to the client. In other words, each coloring produces a possible view of the client on the
policy tree.

28 Policy languages (Task 5.2.1)

(a) (b)

Figure 5: An example of colored policy tree (a) and corresponding policy

tree view (b)

The transformation process. The colored policy tree must be transformed into an
equivalent client policy tree view , which is then communicated to the client. The client
policy tree view is obtained by applying transformation rules that: i) remove the label
of yellow and red nodes, ii) remove unnecessary red leaves, and iii) collapse red internal
nodes in a parent-child relationship into a single red node. These transformation rules
are classified as: i) prune, prune rules operate on internal nodes whose children are
leaf nodes and remove unnecessary red leaves, if any; ii) collapse, a single collapse rule
operates on internal red nodes and removes their non-leaf red children, if any; iii) hide
label , hide label rules operate on yellow and red nodes by removing their labels.

The transformation process works by traversing the colored policy tree with a post-
order visit and, at each node, applies the rules in the order prune, collapse, and hide
label. Figure 5 shows an example of policy transformation. In particular, condition
(c.type=IdCard) is preserved since it is composed of green nodes only. In the subtree
representing condition (age>18), the label of the yellow node 18 is removed (the struc-
ture of the subtree is instead preserved, since both node age and node > are green). Note
that the node representing value 18 is transformed into a circle node, to hide the fact
that the original node represents a value. The subtree representing condition (age<34)
is pruned, since it contains only red nodes. The visit then proceeds with red node ∧
that cannot be collapsed with the red leaf node resulting from the pruning of subtree
representing (age<34). Finally, the root node is visited and the collapse rule is applied,
since the root has a red non-leaf child. Figure 5(b) illustrates the resulting policy view,
where the red leaf represents a suppressed condition.

Properties of the client policy view. Given a policy tree view over a colored policy
tree, it is important to identify the properties that characterize the policy tree view that
needs to be shown to the client. These properties are useful for the server to decide
whether the policy view is meaningful for the client or the application of the disclosure
policies results in a view that does not represent the original policy in a “fair way”. First of

Section 1.4: Conclusions 29

all, a policy view is considered a fair view if it requires the minimum information needed
for evaluating the corresponding policy. In addition to a fair view, a policy tree view can
be characterized as not-fair , over-requesting , or pre-evaluable. A not-fair policy view
means that the policy tree view has been obfuscated by removing too much information
of the original colored policy tree. In this case, if the client releases the information
requested, the policy cannot be evaluated, since some information is missing. An over-
requesting policy view means that the policy tree view requires more information than
the minimum information needed for evaluating the corresponding policy. This happens,
for example, when the label of a disjunction node has been obfuscated by coloring it in
red/yellow. A view is said to be pre-evaluable if the policy evaluates to true at the client
side, it will evaluate to true at the server side.

1.4 Conclusions

The chapter presented some proposals aimed at supporting privacy-enhanced interac-
tions between client and servers in open scenarios. The chapter first focused on client-
side issues describing solutions for regulating the disclosure of sensitive information. It
then discussed the problems on the server side illustrating approaches for defining en-
hanced policy languages supporting credentials, recursive condition, and fine-grained
dialog management.

The research on these topics will continue after the end of the project, investigating
the open issues that still need to be addressed, such as: the definition of simple while
effective model helping users to associate sensitivity labels with portfolio elements based
on their preferences; the support for anonymous credentials in the definition of server-
side disclosure policies; and the integration of client-side and server-side solutions in a
single framework.

Chapter 2
Policies for service composition
(Task 5.2.2)

Task 5.2.2 focused on privacy mismatches, obligations, and privacy policies in SOA. The
task analyzed the privacy mismatches that may arise when multiple layers of abstraction
exist to represent privacy preferences and privacy policies. The task also studied the
dependencies between authorizations and obligations with the goal of avoiding ambiguous
interactions between them. Finally, the task defined an abstract framework to reason on
privacy policies in Service-Oriented Architectures (SOAs).

2.1 Propagating privacy mismatches through multiple ab-

straction layers

When multiple representations exist for one language (e.g., XML) human readable as-
sertions, graphical abstraction, simplified version (predefined choices, icons, etc.), it is
necessary to keep track of translations to bring back feedback in the right representation.
In this section, we summarize work on multiple representations of privacy policies and
preferences an how mismatches are presented in those different representations.

This section presents work on keeping track of mismatches through different abstrac-
tion layers and proposing solutions to users at the right abstraction layer [Rah10]. A pro-
totype has been implemented and allows both parties (i.e., user- and service-side policy
writers) to choose their abstraction (i.e. Domain Specific Language, DSL) when speci-
fying their privacy preferences/policies. In case of a conflict, we analyze the mismatch,
iterate on possible conflicts, and display them in different abstractions by highlighting
the privacy preferences and policies in the editor.

PrimeLife Policy Language (PPL) has a mechanism to measure the similarity between
pieces of policies in order to precisely identify the source of mismatches. This mechanism
has been implemented in Work Package 5.3 and is an indirect result of the research work
presented in this section.

31

32 Policies for service composition (Task 5.2.2)

Figure 6: Overview

2.1.1 Overview

Figure 6 gives an overview of the mechanisms used to handle different DSLs. Privacy
policies (e.g., front-end and downstream policies) are expressed in one or more DSLs
(DSL 1 and DSL 2 in Figure 6). Privacy preferences are also expressed in a DSL (DSL
3). In the prototype, all DSLs are textual but this could be easily generalized to handle
graphical DSLs as well. Each DSL covers a subset of what the formal model can express.
It is thus possible to translate each DSL to the model. Note that the prototype focused on
one language (i.e., PPL) but this approach could be used to combine multiple languages
(e.g., PPL and P3P). This would require that the formal model cover a superset of what
can be expressed with each language. In the prototype, links between assertions in the
DSLs and facts in the formal model are maintained to associate results of the engine
(especially mismatches) with the right part of the policies and preferences.

The prototype uses the “Formal Modeling Using Logic Programming and Analysis”
(FORMULA) [JSS08] to express and reason on the formal model. The DSLs are sub-
set of PrimeLife Policy Language (PPL) as described in [BNP10], that is, PPL where
authorization is based on RBAC instead of XACML.

When the privacy policy of a service does not match user’s privacy preferences,
the matching engine provides a description of mismatches that is used to highlight mis-

Section 2.1: Propagating privacy mismatches through multiple abstraction layers 33

matching parts of the policy and preferences. This information is first used to understand
precisely the mismatch and, when suitable, to modify the preferences (or policy) in order
to have a match. Multiple options can be proposed by the matching engine.

Matching and analysis make it possible to highlight mismatches in policies and pref-
erences expressed with one or more DSLs and to suggest modifications in order to have
a match.

2.1.2 Results and future work

This work is a first step to address a long-term goal of empowering end-users with usable
and effective tools. It introduces user-friendly DSL for privacy documents, automates
comparison of policy statements to each other and, mechanism guiding end-user in case
of mismatch.

As the Internet continues to evolve, new privacy enabling technologies need to come
up to make it a safer place for transaction and to share personal information. Users
need to trust third parties (i.e., data controllers) when providing sensitive data. Oth-
erwise the growth in e-commerce would be slowing because of consumer unwillingness
to supply information. Similar discomfort also exists from organization point of view.
Organizations have semi-automated procedures to handle collected data and it is often
difficult to verifying whether privacy policies are indeed enforced. This work is intended
to provide usable tools for end-users in both sides, to create and manage their privacy
policies. Suppose, all services are bound to write their privacy practices in near future.
This would require their business customers specifying their expectations as well. Both
parties need a convenient tool to define their practices. They need help finding conflicts
early and edit the policies if required. Writing in a natural way and getting guided
assistance for detecting mismatch are critical to them.

We gathered related concerns from various aspects and advocated a set of guidelines
which existing approaches need to consider for better usability and effectiveness. We
further developed a proof-of-concept prototype on proposed design. We allow both par-
ties (i.e., user and service side policy writer) to specify their privacy in DSL. In case of a
conflict, we analyze our reasoning model and filter all possible conflicts at granular level,
which, if resolved, would lead to a match. We not only make a report of the mismatches,
but also relate them with the end-user’s abstraction level (e.g., highlighting in the pol-
icy editor). We also consider priority of suggestions and sort them as the policy writer
commands.

We suggest transforming the policy DSL in an intermediate structured representation.
This helps achieving other important usability supports. This representation can:

1. be transformed into other more-expressive policy language(s) (we translate the
DSL into PPL) which may be used either to get a structured visualization of the
document or any other graphical DSL could be built on top of it. This also enables
reusing a legacy system which uses that structured language on top of it.

2. be transformed into a formal model (the DSL is translated into FORMULA) that
could is used to reason on preferences and policies and analyze mismatch reasons.

3. link the DSL with the implementable policy. In this way, the organizations can
make sure what they publish as plain DSL is indeed what they would enforce.

34 Policies for service composition (Task 5.2.2)

4. maintain the link between different representations by, for instance, keeping track
of which part of the DSL (e.g., line and position) is associated with a given fact
in the formal model. This makes it possible to attach the lower-level mismatch
information back to higher level DSL. Thus, the user gets feedback about the
conflicts at the expected abstraction level.

Our approach of transforming the policy DSL into intermediate representation, for
linking various layers as well as supporting multiple DSLs and other reasoners, is not
specific for privacy domain only, rather could be generalized for other problem domains.
Moreover, we allow a high level DSL on top of FORMULA which is a contribution in
the area of improving support for lower level DSL.

We translated the policy DSLs in a reasoning model. In case of a non-conformity
(i.e., mismatch of privacy documents) our FORMULA engine does not provide enough
besides to extract exact mismatch reason(s). We address this problem by incorporating
additional rules in the FORMULA domain to generate more detail knowledge about
non-conformity (i.e., mismatch). In case of a mismatch, our tool extracts this additional
knowledge. However, this detail information, if not re-mapped with upper level repre-
sentation, would have no clue to effectively guide the end-user. Our approach, while
translating to next lower level, does not loose mapping information. We process the
mismatch details, associate the reasons with mapping values, and finally highlight the
conflicts at the end-user abstraction.

We believe that the proposed approach, if taken forward, would open up possibili-
ties of future work towards user-controlled privacy. From the overall perspective, there
are open research problems. We summarize some issues that future research and prod-
uct groups may address before our work could contribute to a generally useful privacy
technology.

• Downstream Support. An important aspect of usage control (how the data has to be
treated by data collector after it is released) for privacy is downstream usage, that is,
with whom and under which usage control restrictions data can be shared [BNP10].
This is critical in the composed web service (so called mash-ups) scenario where
the primary data controller shares user’s data with other parties.

• Model Finding. We worked for discovering the conflict(s) behind a mismatch and
highlighting accordingly. However, the policy writer needs guidance for a solution
as well. We highlight conflicts in both side so that the user can get an idea with
what values the conflicts need to be solved, but this is not sufficient in many cases,
e.g. for missing values where the counterpart value is not specified or where the
other party’s policy is not visible. Better guidance needs to rely on model finding
for generating a solution (i.e., suggestion to get a match). The reasoner we used,
FORMULA, enables model finding by executing partial models (i.e., containing
unbound but maybe restricted variables) [JSS08]. By symbolically executing such
models FORMULA can find valid bindings for these variables. Using this support,
our approach can be extended to automatically search for alternative solutions and
provide further guidance thereby.

• Multiple Facets. Users may augment their preferences for other facets, for exam-
ple, for Service Level Agreement (SLA). Considering different facets is critical for

Section 2.2: Dependencies between authorizations and obligations 35

an end-to-end privacy management system. For instance, the user may specify
her privacy as well as the service quality preference and the system needs find a
matching solution considering multiple dimensions. Our work can be extended to
address such scenario as FORMULA supports separation of concern.

• User Interface Enhancement. User Interface enables end-users to visualize matches
and mismatches in order to make well-informed decision about sharing personal
data. However, UI designers need enough information from the reasoner to enhance
the usability. One of the intentions behind this work is to generate as detail
information as possible behind a matching scenario. This way, our work also lays
a foundation for further UI research.

2.2 Dependencies between authorizations and obligations

Usage control policies specify how the data is to be treated after it is revealed to a
data controller. Usage control restrictions can be further divided in authorizations and
obligations, where:

• an authorization is the right to perform a certain action on the data (e.g., for-
warding the data to selected business partners). Executing an action that is not
explicitly authorized by the policy is a violation of the policy. Not executing an
authorized action, however, does not violate the policy.

• an obligation is the duty to perform a certain action (e.g., deleting the data after
a certain amount of time). Not executing an obligation imposed by the policy is a
violation of the policy.

While the above definition may give the impression that authorizations and obliga-
tions are separate, orthogonal parts of a policy, in [BNS10] we investigated a number of
subtle dependencies that can arise between them.

1. An obligation to perform a certain action can often be rephrased as the authoriza-
tion to perform a complementary action. For instance, the obligation to delete the
data within one month could also be expressed as the authorization to store the
data for at most one month. Vice versa, an authorization for a certain action can
be seen as the obligation to not perform any complementary actions. For example,
the authorization to use data for a specific purpose is equivalent to the obligation
not to use the data for any other purposes.

In previous work [BNP10] as well as in the PrimeLife Policy Language
(PPL) [Pri09a], we avoided this issue by strictly separating the vocabularies for
authorizations and obligations, so that no action defined in one vocabulary has a
complement in the other vocabulary. SecPAL for Privacy [BMB10], on the other
hand, does not separate vocabularies and requires each obligation to be explicitly
authorized.

2. The execution of an authorized action may trigger the execution of an obligation.
For instance, a policy could state that each access to the data for a particular
purpose (authorization) needs to be logged (obligation).

36 Policies for service composition (Task 5.2.2)

3. Adhering to an obligation requires that the data controller is also authorized to do
so. For instance, an obligation to notify the data subject when the data is accessed
requires that the data controller is actually allowed to contact the data subject.

Our work [BNS10] focuses on the latter dependency between authorizations and
obligations. In particular, we give a legal perspective and a technical solution to prevent
over-diligent data controllers from “overdoing” their obligations to the extent that they
become a nuisance to the data subject or degrade the quality of service. For instance, a
data subject who insists to be emailed access reports for its data at least once per year
may experience daily emails as spam. Worse even, the exaggerated enforcement of the
obligation largely defeats its original purpose of giving the data subject an overview of
the accesses to her data.

2.2.1 Legal perspective

A standard use case where a data controller has to adhere to certain obligations is credit
scoring, where a scoring company is provided with a set of relevant information on loans,
credit cards and bank accounts in a regular basis by the providers of the latter. Based
on this data it calculates probabilities and risks of nonpayment, based on its statistical
empirics.

Obviously erroneous data in this data set can have a high impact on the data subject
therefore the correctness is of high relevancy. An easy approach for reducing such errors
would be to regularly inform the data subject on changes in the data set. Depending
on the activity of the data subject, these changes could appear quite often, which yields
the risks, that the data subject would loose track of the changes and would ignore it,
similar to spam. It may therefore in this case be sensible to attach an obligation that
the notifications be sent on a regular basis, but not too often.

This processing calls for a legal basis, as this again is processing of personal data,
with another specific purpose. One legal basis could be the law including a legal obliga-
tion for informing data subjects [Bie10]. Another option could be contractual, where a
credit scoring company could derive market advantage by ensuring the data subjects be
informed about the information stored by them. A number of related problems, how-
ever, cannot be discussed herein. For instance, what if an individual does not want to
be informed? Might she have a “right to not know”? In the case of the results of health
exams, such rights have been constructed previously [TNAAP95].

2.2.2 Technical solution

In the PrimeLife Policy Language (PPL) a data controller can specify its data handling
policy Pol , describing how it intends to treat personal data item after it is received, and a
data subject can specify her preferences Pref , describing how she expects her personally
to be treated after it is transmitted. Both consist of authorizations and obligations. Two
individual authorizations or obligations can be compared against each other by defining
a partial order “more permissive than” (�) over the vocabularies of authorizations and
obligations, respectively.

Section 2.2: Dependencies between authorizations and obligations 37

Figure 7: Examples of matching and mismatching obligations

Matching individual authorizations or obligations usually involves comparing param-
eter values. For instance, we have that

UseForPurpose(P)� UseForPurpose(P ′) ⇔ P ⊇ P ′

NotifyWithFrequency(f)� NotifyWithFrequency(f ′) ⇔ f ≤ f ′

DeleteWithin(t)�DeleteWithin(t′) ⇔ t ≥ t′ .

A policy Pol is said to match preferences Pref , denoted Pref � Pol , if and only
if for all authorizations in the policy there is a more permissive authorization in the
preferences, and for all obligations in the preferences there is a less permissive obligation
in the policy.

PPL implicitly assumes that by proposing (imposing) an obligation in the policy
(preferences), the data controller (data subject) also implicitly requests (grants) the
authorization to perform the action needed to adhere to the obligation. We make the
same assumption in the approach presented here.

PPL does not solve, however, the specific issue of data controllers deviating from
the stated obligation parameters on the side of more privacy-friendly, but possibly more
annoying values. The solution we propose is therefore that obligations, rather than
specifying only the least privacy-friendly permitted value for each parameter, specify the
full range of permitted values. A small range can be described simply by exhaustively
enumerating its elements. If the range is a contiguous interval, it is most efficiently

38 Policies for service composition (Task 5.2.2)

represented by its endpoints. For instance, a data subject’s preferences could contain
the obligation

NotifyWithFrequency({f : once per year ≤ f ≤ once per 3 months})

specifying that the user wants to be notified at least once per year, but at most
once per three months. To match it against a corresponding obligation in the
policy, one has to verify that all frequencies allowed by the policy are also al-
lowed by the preferences. For instance, the obligation NotifyWithFrequency({f :
once per year ≤ f ≤ once per 6 months}) matches the preferences, but the obligation
NotifyWithFrequency({f : once per 6 months ≤ f ≤ once per month}) does not match,
because the data subject does not want to be bothered by monthly reports.

Figure 7 provides a graphical representation of matching and mismatching obligations
with one parameter.

In the full paper [BNS10], we present a more formal framework on how to transform
any obligation with simple parameters to an obligation with intervals, and how matching
should be performed on such obligations. We also observe that data controllers adhering
to more obligations than necessary can be experienced as a nuisance, and that a similar
approach affecting the matching definition of preferences against policies can be used to
prevent it.

2.3 Privacy policies in Service-Oriented Architectures

In Work Packages 5.2 and 6.3, we defined an “Abstract Framework” to reason on privacy
policies in Service-Oriented Architecture (SOA). This work is described in details in
PrimeLife deliverable D6.3.2 [Pri11] and summarized in [BP11]. This section shows that
privacy in SOA needs a lifecycle model. We formalize the lifecycle of personal data
and associate privacy policies in SOA, thus generalizing privacy-friendly data handling
in cross-domain service compositions. First, we describe generic patterns to enable the
use of privacy policies in SOA. Second, we map existing privacy policy technologies
and ongoing research work to the proposed abstraction. This highlights advantages and
shortcomings of existing privacy policy technologies when applied to SOA.

2.3.1 Overview

The Abstract Privacy Policy Framework defines an ideal setting to enforce privacy poli-
cies in SOA. We combine experience learned in defining PPL (PrimeLife’s Activity 5)
and its usage in SOA (PrimeLife’s WP 6.3). Different features specific to SOA are taken
into account to define evaluation criteria.

• Downstream. Data are collected by services (data controller) that may share them
with third parties. When third parties act on behalf of data controllers, they are
referred to as data processors. When third parties are in a different trust domain,
they are referred as downstream data controllers [BNP10]. In the latter case, the
policy of third parties is taken into account by users (data subjects) when deciding
whether data can provided and subsequently be shared.

Section 2.3: Privacy policies in Service-Oriented Architectures 39

• Provider and Consumer. Stakeholders can have both PII Provider and PII Con-
sumer roles. For instance a service collecting customers’ e-mail addresses acts as
a PII Consumer but when this same service shares collected data with another
(downstream) service, it acts as PII Provider.

• Downstream accessibility. A data subject can indirectly (i.e., downstream) interact
with a third party and subsequently have a direct interaction with this one.

• Users as PII Consumer. In basic scenarios, users only provide data. However, a
human being can also collect personal data and act as a PII Consumer. In this case
the user must have a “privacy policy” expressing how she handles collected data and
must accept sticky policies (e.g., license in Enterprise Right Management [Mic09])
attached to data (e.g., documents).

• Aggregation. Collected data can be aggregated. Mechanisms to compute the pri-
vacy constraints on the aggregation are necessary.

• Split. Collected data can be split. Mechanisms to compute the privacy constraints
on each piece of data are necessary.

• Privacy-aware service discovery. Privacy impact may be taken into account when
discovering services. Services may be ranked or filtered out based on privacy con-
straints.

• Targeted disclosure. PII selection (including Identity Selection) may require gen-
erating claims for a given party, or disclosing personal data to a group.

• Distributed enforcement. The enforcement of data handling (including access con-
trol when sharing data) is done by each party getting access to a piece of data.

• Distributed audit. Traces may be generated by all parties getting access to data.
Mechanisms to federate the analysis of the audit traces are necessary.

The abstract framework is instantiated with concrete technologies to compare them.
More precisely, criteria emerging from the abstract framework are used to compare ex-
isting privacy policy technologies and to evaluate their relevance to implement privacy
policies in SOA.

The first instantiation of the abstract framework is based on a combination of two
well-known standards: privacy preferences are expressed with APPEL (A P3P Preference
Exchange Language) [W3C02] and privacy policies are expressed with P3P (the Platform
for Privacy Preferences Project) [W3C06a]. Enforcement may rely on other technology
such as EPAL (Enterprise Privacy Authorization Language) [AHK+03].

The second instantiation of the abstract framework is based on PrimeLife Policy
Language (PPL) [Pri09a,Pri10] an extension of XACML [OAS10] with support for data
handling. This technology is well aligned with the evaluation criteria since a large part
of them were informally taken into account during its design.

The third instantiation of the abstract framework is based on SecPAL for Privacy
(S4P) [BMB10] an extension of logic-based authorization language SecPAL [BFG10].

40 Policies for service composition (Task 5.2.2)

Logic foundations make it possible to reason on the causes of mismatches and fur-
thermore to propose modification of preferences and/or policies thanks to abduction
queries [BMD09].

The fourth instantiation refers to remote management of access control policies (AC)
by the data subject at the data controller. In this setting, the data subject uploads her
data to a data controller and configures the access control policy that must be enforced
by this data controller. The evaluation assumes an expressive access control language
(i.e., XACML [OAS10]). This approach can be considered as “inadequate” [KA10] to
enforce privacy but is largely used. For instance OAuth [HL10] and User-Managed Access
(UMA) [Kan] offer remote management of access control policies.

The fifth instantiation is based on the PRIME Data Handling Policy (PDH or
PRIME-DHP) [ACDS08]. This language is focusing on data handling and access control
but lacks important features to enable multi-hop data handling.

In this evaluation, we decided not to address technologies related to Usage Con-
trol and Right Expression such as eXtensible rights Markup Language (XrML) [XrM02],
Obligation Specification Language (OSL) [PSSW08], MPEG-21 REL [Wan04], or Open
Digital Rights Language (ODRL) [ODR02]. Even if those technologies could be used
to express and enforce privacy constraints on personal data, the way constraints are
agreed upon is fundamentally different than what is required to implement privacy in
service-oriented architectures. Indeed, in usage control and rights management, con-
straints are imposed by the author (i.e., the data subject) without preliminary protocol
with the party receiving the data. As a result key features such a preferences, policies,
and matching algorithm are out of scope.

2.3.2 Results and future work

It appears that using P3P [W3C06a], APPEL [W3C02], and EPAL [AHK+03] together
is not suitable to tackle complex scenarios. First, those technologies do not support
multi-hop data handling, which is quite common in SOA. This is mainly due to the fact
that those technologies are targeting Web 1.0 scenarios. Second, the use of three different
languages for expressing privacy preferences, privacy policies, and their enforcement leads
to semantics mismatches and difficulty to use them recursively.

Letting data subjects specify access control on their data (e.g., OAuth [HL10],
UMA [Kan]) is not sufficient even when obligations can be specified (e.g.,
XACML [OAS10]). The main limitation is due to the fact that remote setting of access
control only covers a small subset of data handling. One advantage of this approach is
to limit the number of copies of personal data and to centralize their management.

PRIME-DHP [ACDS08] provides more features than P3P but does not address the
preference side and complex downstream cases.

S4P [BMB10] offers promising features but only the core functionality (evaluation of
queries) has been implemented. Tools for creating sticky policies, for enforcing policies,
and for auditing execution traces need to be developed.

Finally, PPL [Pri09a] supports a large part of the abstract privacy policy frame-
work. This is not surprising since PrimeLife’s work packages on SOA and on Policies
are strongly connected. PPL mainly lacks homogeneity and logic foundations to enable
reasoning on the policies. Both issues are related to the use of XACML as underlying

Section 2.3: Privacy policies in Service-Oriented Architectures 41

authorization language. XACML is indeed very expressive and difficult to represent for-
mally. As a result, it is not possible to enumerate different modifications of preferences
and policies to resolve a mismatch.

Future work will add instantiations by evaluating the use of Usage Control and Right
Expression Languages. Moreover, the number of criteria will increase by refining existing
evaluation criteria. This work will also impact the evolution of PPL and other policy
languages we are contributing to.

Chapter 3
Legal policy mechanisms (Task
5.2.3)

The research in Task 5.2.3 aims especially at the description and analysis of legal require-
ments for privacy policies, thus building the basis for technical requirements. The results
shall lead to a new generation of technically supported privacy policies that implement
legal requirements in a suitable way. Understanding the underlying legal mechanisms and
how these match with reality and business practices is a necessary foundation for prepar-
ing privacy policies. The legal research within this task had been driven by PrimeLife
partner ULD. In the third year of the project, the previous legal research has been con-
tinued and results have been disseminated towards other activities (e.g., Activity 4) as
well as external stakeholders. To deploy machine readable and matchable policies it is
important to understand which content is essential for policies to be compliant with legal
regulations. During the research leading to H5.2.2 [HS11], but also during discussions on
how the content of privacy policies could be visualized in user-friendly interfaces (Work
Package 4.3), it became clear that the purposes of data processing are a central element
of policies. Describing purposes is particularly necessary to provide a legal basis for any
processing of personal data – be it the informed consent of the user or directly based
upon the law. Purposes also play a central role for assessing which processing of data
may be deemed necessary and is thus allowed by the law.

To develop this understanding further, research on legal policy mechanism aims at
developing the basis for taxonomies and partonomies that can be used as a starting point
in defining vocabulary for technical and legal privacy policies and languages expressing
the latter. To provide a basis for the aforementioned, work on methodologies was also
necessary. Generally, for developing a typology of the processing types of personal data
an empirical approach, looking at the current practice, seems appropriate. The special-
ties, however, are subject to discussion.

Transparency is one of the core principles of data protection legislation in Eu-
rope, Art. 7 of Directive 95/46/EC [Com95], beyond [APE05] and all around the
world [OEC80]. The common understanding is that individuals should be aware of

43

44 Legal policy mechanisms (Task 5.2.3)

‘who knows what about them’ [Ger83]. This concept is supported by the principle of
purpose or collection limitation. This principle stipulates that any collected personal
information may only be processed for those purposes it was collected for. Roots of this
principle can be seen in the sociological concept of ‘functional differentiation’ [Luh77],
or, related, in what Nissenbaum calls ‘contextual integrity’ [Nis04,Nis10,Nis98]. They
appear to be basic conditions of just communication and social interaction in democratic
societies. Often enough, these principles are hard to enact, enforce and above all hard
to understand for a user. The user is confronted with a multitude of different purposes,
often hidden in the lengthy legal text of privacy policies, especially when surfing the web.

A number of approaches are currently trying to tackle this problem, by offering the
user tools and mechanisms for a better understanding of what is happening with their
data. However, in most if not all of these approaches it is unclear what is actually
necessary to communicate. The problem relates to the above. For a higher level of
transparency, the user should be made aware of what actually happens to the data, who
is processing them, and – if collected without the informed consent or knowledge of the
user, what data are processed (e.g., Cookies, IP addresses, clickstreams). While the
types of data processed may be easy to communicate (but still might need some further
thought), the question of expressing in a simple way, how the data are processed, and
for what purpose(s) they are collected, poses difficulties. The multitude of applications
and uses of personal data are highly unstructured, as no comprehensive ontology exists,
and no abstractions are apparent.

The work in PrimeLife’s Activity 5 on Next Generation Policies, especially in
Task 5.2.3 on legal policy mechanisms, aims at a better understanding of the legal aspects
of the processing of personal data, by looking at the current status of this processing in
different contexts and structuring these.

3.1 Legal framework for processing personal data

Recent and ongoing work in user transparency and legal privacy policies is done in
the area of Human-Computer Interaction (HCI), as well as in technical representations
and functional descriptions of policies for privacy and data protection. The Article 29
Working Party has endorsed the use of multi-layered legal policies for websites [Eur04],
which has been implemented in several places on the web [Bro08]. Others have been
developing tools and interfaces to support the user [HCI07]. Finally there are proposals
to use iconography to simplify the recognition of a legal privacy policy for the user [Fis06,
Run06] that have gained some momentum [Pri09b].

For a formal description of privacy policies, P3P is an available specifica-
tion [W3C06a], and offers some structural reference. Approaches discussed for expressing
rules include: XACML [OAS10], EPAL [W3C03], Liberty’s Internet Governance Frame-
work [Ide07], and WS-Policy [W3C06b]. However, these specifications are very limited,
or even completely lacking in offering conventions on describing the aspects most rele-
vant to the user: What is actually going to happen to the data, what purposes are they
used for, under what conditions and with what obligations, and will they be passed on
to third parties, if so to whom?

Last but not least the PRIME project [PRI07] has initiated some research for a more

Section 3.2: Gaps in current policy language approaches 45

thorough ontology in this area and has reached some first results, which further research
should take into account.

General legal requirements for processing personal data are defined in the Data Pro-
tection Directive 95/46/EC and the Directive on Privacy and Electronic Communications
2002/58/EC (DPEC). Legal requirements for privacy policies encompass data collection
as well as data handling, i.e. the processing. The core element of Directive 95/46/EC
is only allowing the collection and processing of personal data if there is a legal basis
or if the data subject unambiguously has given her consent, cf. Article 7 of Directive
95/46/EC.

The legal basis are specific or general provisions as they are contained within the na-
tional data protection laws based on transformations of Art. 7 b-f of Directive 95/46/EC.
These general legal regulations usually require that the processing must be necessary for
the purpose stated within the law. To the best of our knowledge, the element of neces-
sity had not been analyzed in a broader context so far and the sighted legal literature
provides examples rather than a systematic overview.

Where collecting data is permissible, the further process requires the data controller
to ensure that the data is kept accurate and only used for the purposes for which they
have been collected. While the former are relatively easy to define, a specific problem of
the legal requirements is defining the purpose of data collecting.

The difficulty of how precise the policy language has to be, can also be seen in light
of Directive 95/46/EC. According to Article 12, lit a, bullet point 3, the data subject
has the right of information about the data handling. This is also the expression of the
right of informational self-determination of the data subject. Therefore it is necessary
that the data collector displays at least applied information about data handling in her
policy. The data collector also needs a precise policy to comply with her promises when
processing the data internally in her own business. To ensure the implementation of
legal requirements during data handling, the data collector has to advise her employees
on how to process the collected data. To avoid mistakes in handling data, the advice has
to be as precise as possible.

3.2 Gaps in current policy language approaches

Sticky policies promise to improve the state of the art in data protection, both on the
level of better control and on the level of increasing transparency. A sticky policy is
usually the result of an automated matching procedure between the data subject’s data
handling preferences and the data controller’s data handling policy. Associated with a
resource, it is the agreed-upon sets of granted authorizations and promised obligations
with respect to a resource. Sticky policies allow an enforcement of the policy (e.g.,
deletion at the end of the retention period), and thus allow the control on how data
are to be accessed and used and that accompany data throughout an entire distributed
system [CL08].

A privacy policy that would support privacy through sticky policies would need to
implement legal requirements for the employees of the data collector as well as for the
data subject. The maxim of transparency in data collecting and data handling also
argues for the assumption that a privacy policy has to be as precise as possible. This

46 Legal policy mechanisms (Task 5.2.3)

clarifies the need for a precise and well-implemented privacy policy. A number of different
and “complementary” approaches are currently being taken to support legal compliance
in current IT systems.

The objective of these approaches is to support compliant use of the system by mixing
the appropriate technological and organizational mechanisms. The legal framework is
ideally already introduced when defining the specification of the system. Numerous
policy languages currently available or under development address this. In the following,
two approaches, XACML (extended) and P3P, will be highlighted and analyzed with
respect to their potential to support legal compliance.

3.2.1 XACML – Extensible Access Control Markup Language

EXtensible Access Control Markup language (XACML) is an XML-based language for
expressing and interchanging access control policies. The language’s core functionali-
ties are geared towards access control, but it also offers standard extension points for
defining new functions, data types, policy combination logic and more. In addition to
the language, XACML defines both an architecture for the evaluation of policies and a
communication protocol for message interchange, as well as supporting multiple subject
specifications in a single policy, multi-valued attributes, conditions on metadata of the
resources and policy indexing. XACML is an applicable mechanism for technically im-
plementing legal requirements of access control. The control of data handling on the
other hand is not fully covered by XACML, but may potentially be achieved by means
of its extensibility.

During the development of PrimeLife, some effort has been spent on extending
XACML. This work suggests a new obligation handling mechanism, taking into account
temporal constraints, preobligations, conditional obligations and repeating obligations
together with an authorization system, defining the access control rules under which per-
sonal information collected by an entity can be forwarded to a third party (down-stream
usage) [ABD+09].

Part of this work is based on the concept of trusted credentials. XACML was ex-
tended with data handling and credential capabilities. The overall structure of XACML
was maintained, and a number of new elements to support the advanced features the
language offers were introduced. It can be used by the data controller as well as by the
data subject. The result of the completed research towards XACML-PrimeLife is that it
is a suitable way to display the party collecting data, but that there is still difficulty in
displaying the purpose of the data processing. Currently, the research forms a wrapper in
this regard that can be used to contain elements of the Platform for Privacy Preferences
(P3P), but also could include different ontologies.

3.2.2 P3P - Platform for Privacy Preferences

For a formal description of privacy policies, P3P is an available specification that offers
some structural reference [W3C06a]. P3P enables websites to express their privacy prac-
tices in a standard format that can be retrieved automatically and interpreted easily by
user agents.

Concern has been raised that P3P may be too complicated to be understandable for

Section 3.3: Methodology 47

users. However, P3P has the advantage of describing the aspects most relevant to the
user: what is actually going to happen to the data, what purposes they are used for and
under which conditions and with what obligations [Rag09].

Moreover, the expressiveness of P3P, especially in regard to describing purposes,
is limited (albeit extensible). The predefined set of purposes was limited to so-called
secondary purposes in the first specification (http://www.w3.org/TR/P3P/), which was
then complemented with a flat partonomy of some twenty “primary purposes” in ver-
sion 1.1 [W3C06a]. Taking into account the requirements for displaying the purpose
to the user, as well as requirements of internally achieving legal processing of the data
within the limits of the purpose, this appears to be too limited, as we have analyzed in a
number of scenarios [HS11] and will need further extension in its vocabulary, potentially
by way of a more comprehensive ontology, or at least a taxonomy or partonomy.

3.3 Methodology

The methods that had been applied consisted of desk research in legal literature and
judicature and an analysis of use cases. To derive a basis for developing a vocabulary
following the criteria specified for sticky policies, empirical approaches were analyzed
and evaluated with regards to their value for developing such a basis:

• the German corpus iuris, especially those norms in federal law, allowing the pro-
cessing of personal data by public bodies and agencies;

• “Verfahrensverzeichnisse”, a regulation specific to German data protection law that
mandates data controllers to maintain a list of those processes, within which they
are processing personal data, cf. § 4 lit. e BDSG;

• privacy policies from the internet, possibly in cooperation with further entities;

• PrimeLife use cases.

The goals of such an approach are to find and to define vocabularies for the following
attributes:

• processes and services for personal data;

• purposes of processes and a partonomy/taxonomy thereof, to be sorted by rele-
vance;

• typical sets of data, expressed as a partonomy of data types and data sets;

• data types and possibly qualifications/attributes (such as sensitive information as
defined by Directive 95/46/EC);

• reference to the legal basis for the processing (norms, legal privacy policies);

• text elements from legal privacy policies;

48 Legal policy mechanisms (Task 5.2.3)

• possible further elements, especially obligations, such as logging, deletion, blocking,
further information (e.g., in case of incidents), and retention periods (currently not
included in the research);

• categories of data processors, and a partonomy/taxonomoy thereof (currently not
included in the research).

It is due to the very nature of data processing that it is impossible to conduct
a comprehensive ontology towards this topic, but there seems to be the option of an
advanced taxonomy and possibly an ontology, which would cover processing to a certain,
possibly defined, level of detail and brevity.

3.3.1 Looking into privacy policies

Our research, conducted on a limited number of privacy policies, has shown differing
results on the usability of the analyzed policies. We have analyzed 34 privacy policies,
most of them from Dutch websites and therefore most of them under the legislation of
the Directive 95/46/EC. From the analysis resulted that some of the privacy policies
implemented the legal requirements for collecting data in a legally compliant manner
while others did not. The implementation of legal requirements for data handling on
the other hand was not displayed very well. The main problem in privacy policies seems
to be the description of data handling. This is also a legal requirement, but only few
policies implemented it. More detailed information about the analysis can be found in
PrimeLife Heartbeat H5.2.2 [HS11].

Many of the analyzed policies did not have the level of transparency that they should
have provided, which raised some concern, as to whether they complied with the require-
ments of the legal framework in place. This alone would certainly have been an interesting
field for further research, but was not within scope of the conducted research.

Another difficulty that arises when analyzing such policies is a possible bias of in-
terpretation. One approach to balance this bias would have been to have each policy
analyzed by two researchers, with a third looking at those policies, where the previous
results differed. This approach, although promising, was dismissed, taking into account
the resources available for the research, but it should be taken into consideration for
further research.

3.3.2 Looking at the law

The German corpus iuris appeared to be another interesting empirical basis. Due to the
specific construction within German law, the processing of personal data by governmental
agencies needs a specific legal basis, therefore a broad data set was to be expected.

After a selection of laws were analyzed, evaluation hinted towards the fact that
this approach might not be the most effective. The specific language chosen in many
cases would not provide results of the granularity necessary. Again, this indicates that
even lawmakers do not achieve a reasonable level of transparency in their laws, which
unfortunately also makes this approach inefficient.

A similar, but slightly different approach based on German law, was using German
Verfahrensverzeichnisse (i.e., literally: processing directories). This specificity of Ger-
man law mandates data controllers to describe each process wherein personal data is

Section 3.4: Use case analysis 49

processed. While this approach seemed promising, the available material from the Ger-
man Verfahrensverzeichnisse was too limited to come to an effective result.

3.4 Use case analysis

Further research concentrated on researching selected use cases. On one hand, working
with use cases has the disadvantage that a very comprehensive ontology does not seem to
be in reach on this basis. On the other hand, there are several advantages in working with
use cases. For instance, each possible scenario could be analyzed quite comprehensively
and the problems in real life in connection with privacy protection can be displayed very
well.

During the course of PrimeLife, the project has developed a set of use cases. Thus
there was already a strong foundation to build upon. The approach promised a high
level of compatibility for other research aspects within the project. One of the use
cases that was analyzed and will be analyzed further is the scenario of a ‘classical’
online shop (which had already been a good scenario to display the problems concerning
privacy protection during the PRIME project). Subsequently, the methodology was
also performed on a social network site’s use case. Social network sites comprise a
higher degree of complexity related to purposes of data handling because many different
constellations may appear and many different data controllers or processors respectively
may exist. Given the complexity of social network sites, we were also able to assess the
limits of the methodology.

During later parts of the research PrimeLife also closely cooperated with the ad-hoc
working group of the German data protection authorities assessing specific questions of
the newly introduced German electronic identity card (eID). The law regarding the new
German eID provides that personal data will be transmitted only if the service provider
has shown the holder of the eID an access certificate indicating inter alia the service
provider’s identity, the categories of personal data to be transmitted, and the purpose
of the planned data processing, § 18 sec. 4 of the German Personalausweisgesetz. To
attain this certificate, service providers need an authorization by a German government
agency (Bundesverwaltungsamt). This authorization will be granted only for categories
of data actually necessary for the intended purpose. This evaluation will be done by the
Bundesverwaltungsamt and become part of the access certificate. To aid the authorities
with the assessment of the necessity of data processing the German data protection
authorities have contributed with a guideline paper. To ensure practical deployment,
the analysis focused on use cases likely to become widespread use cases such as shopping
scenarios, but included also views on eGovernment applications.

3.4.1 Online shopping

For reasons of brevity, the use cases can only be described by examples. For this chapter,
age verification was chosen, as it has a number of interesting implications, then the legal
intricacies from an analysis in the context of the German eID will be outlined to go into
more depth. A more comprehensive overview of different aspects analyzed is illustrated
in Figure 8, where the multitude and hierarchy of purposes is shown. The latter, however
maybe misleading, often a definite hierarchy of purposes cannot be described.

50 Legal policy mechanisms (Task 5.2.3)

Figure 8: Overview of different purposes in an Online-shopping scenario

Coming back to the example: One of many questions for a web shop scenario is the
task of age verification. If a shop - such as Amazon - sells comics like Donald Duck,
there is no need to verify the age of the user. This assessment would be different where
the sold good concerns (e.g., alcoholic beverages).

Often the collection may also already be legally based on the fact that it may be
“necessary for the purposes of the legitimate interests” (cf. Art. 7, lit. e of Directive
95/46/EC), but in many other scenarios the controller will rely on the user actively giving
consent to the processing of the information - or not be legally compliant. A broad range
of all purposes for collecting data have to be displayed, to sufficiently inform the user.
Paradoxically, this would render an informed decision impossible. A more thorough
analysis of the web shop use case illustrates the fact that purposes of data handling
can be lined out on a very granular level. From this perspective, the web shop use
case appears to be a very well-defined case. Purposes can be differentiated clearly and
depicted relatively easily.

Due to the research done within this task, a method for the assessment of the necessity
to process personal data had been suggested that can be applied to a variety of use
cases. In accordance with the principle of data minimization, it is to check whether less
information may suffice. For this, a system to analyze use cases by the stages of typical
phases of (contract) negotiations has been suggested. It shows that customers should be
enabled to remain anonymous until they actually take over a legal obligation without
fulfilling it immediately (e.g., by means of pre-payment). Exceptions apply for cases

Section 3.4: Use case analysis 51

Figure 9: Necessity to process personal data for contracts with non-recurring

obligations

where some kind of authorization is required because accessing a resource is limited to
certain audiences such as buying alcohol or accessing adult videos or where identification
is required by law as is usual in the banking sector to prevent money laundering.

This staged model had been applied to several use cases. In case of the probably
most frequent transaction in practice, the exchange of goods and services for payment,
an identification of the customer is necessary only when the other party bears the risk of
not getting the agreed benefit in return. Only then the seller or service provider bears the
risk that filing a lawsuit becomes necessary. The existence of this risk could be narrowed
down to few cases where the customer is allowed to pay after having received the goods
or duties in return. The decision matrix to assess can be depicted as shown in Figure 9.

Note that in the opposite direction customers of services or goods are usually allowed
to identify the service provider as the law grants the customer guarantees and other rights
and remedies in case the service or goods lack conformity while the rights of the service
provider usually extend only to the full and timely payment. For a detailed description
and other analyzed use cases see [Zwi11].

3.4.2 Social networking

Social networking implies some very specific legal questions, many of which are currently
under heavy discussion within jurisprudence. They may currently be considered as one of
the more difficult legal challenges in privacy legislation. It therefore seemed reasonable to

52 Legal policy mechanisms (Task 5.2.3)

believe, that if a model could be developed for social networking, it would be possible to
cover other areas with a similar approach. Over and above, better understanding privacy
in social networks is one of the core research areas for PrimeLife, making studying a social
network use case a logical step.

Purposes in social network sites can vary greatly. Provider-defined purposes in social
network sites can be quite complex. The purposes for data handling depend inter alia
on the different purposes of the social network sites per se. For instance, in those social
network sites that involve primarily commercial or business objectives, other purposes
may occur than in social network sites addressing leisure and recreational activities.
We can therefore conclude that business oriented networks tend to define purposes for
data handling mainly to promote the career benefits for the users. Other social network
sites have different purposes such as “getting in touch with old classmates or friends”
and “getting concrete answers to questions inside the network” [Lin10]. Such a network
that is purely career oriented obviously defines other purposes for data handling. Apart
from the network’s business model and niche, many different functionalities can be used
within social networks. For instance, Facebook offers functionalities such as mobile phone
usage or SMS usage [Fac10]. The different applications again have different purposes
and therefore different purposes for data handling. Thus, social network sites offer a
(potentially unlimited) wide variety of user defined purposes for status messages and
thereby for data handling.

On the other hand there are user-defined purposes, which can differ largely from
provider-defined purposes. Users are self-defining the purposes for data handling on a
case by case basis, which makes it very difficult to asses from the service provider’s view
beforehand. These user-defined purposes in turn also tend to be more defined by aspects
of usage culture between users. In this area the research was therefore following a slightly
different approach, which eventually was integrated into a separate project. One way of
predefining purposes in a user-defined scenario might be the Privicon approach [CSBS],
where users can predefine how the recipient of an email should handle the mail.

3.5 Outreach and potential deployment

The research had been published in German language as guidelines of the ad-hoc work-
ing party of the German data protection authorities [Dat10] and as a slightly modified
guideline paper published by the Bundesverwaltungsamt [Lei10]. These guidelines are
available as reference for businesses considering the application for an access certificate
and are deployed by the Bundesverwaltungsamt in daily practice. An English paper has
been presented at the IFIP / PrimeLife Summer School 2010 [Zwi11]. Further dissemi-
nation of the result will be done by PrimeLife Partner ULD towards the European eID
community within the project SSEDIC (Scoping the Single European Digital Identity
Community). Via SSEDIC various stakeholders within the European eID community
can be reached. The clearer understanding of purposes and the partonoymy developed
will aid data controllers to formulate privacy policies to be sufficiently accurate. This
is also required from service providers applying for an access certificate with the Bun-
desverwaltungsamt providing potential for future outreach of these results towards the
German eID community.

Section 3.6: Central results and further research 53

3.6 Central results and further research

The research completed and described within this chapter leads to the conclusion that
many data controllers act on the assumption that it is precise enough to display the
legitimate reason of the data collector on handling data as a legal basis (see German
Federal Data Protection Law (BDSG) [Deu08], § 28, para. 1, number 2 or art. 7, lit. d
of the Directive 95/46/EC) as part of their policies. This ‘catch-all element’ – legitimate
reason – is used as a general reason (BDSG, § 28, marginal number 1). However, this
should not be the state of the art of privacy policies, as it does not allow a reasonable
level of transparency for the data subjects.

Our research has shown that to avoid this for the future, a more precise description of
policies is necessary. Moreover, it has also demonstrated that this can be done, at least in
the selected cases. The completed work includes and compares different methodological
approaches, the research based on use cases as well as the research with larger empirical
bases. All approaches had a common goal in mind: the need of technical policy languages,
supporting privacy protection.

After carefully analyzing broader empirical approaches, a promising and extensive
analysis yielded extensive efforts. To be more precise: the empirical analysis of German
data protection law alone, and privacy policies of German sites only, would be immense.
An analysis of published privacy policies yielded similar limitations, especially when
trying to effectively rule out bias of interpretation, the effort doubles or triples. The
completed empirical research also leads to the conclusion that all analyzed approaches
have deficiencies. This is why a mixed approach has been taken: empirical research
has been supplemented by use case-based analysis. This approach although it did not
promise the comprehensiveness of an empirical analysis intended to rather focus on
an exemplification of the required expressivity of the language. It includes, however,
the advantage of being able to look deeper into the technical processes underlying the
respective policies, rather than solely looking at what is published in privacy policies.
One of the benefits of this approach is the fact that it is easier to handle a known system
as a basis of research than to handle unknown systems.

Future research will have to take all possible options into account if a more compre-
hensive overview of data handling practices is to be achieved. A database structure for
collecting such material was also developed as part of the research. The use case scenario
‘online shopping’ has also suggested that there are certain shortcomings in displaying
data processes via the specifications that P3P offers, or at least that a higher expressivity
is not only doable, but also possible. However, future research will have to look into a
careful comparison of both approaches by matching the results of the use case described
herein to the expressivity of P3P.

Pursuing efforts in this area of legal policy research beyond PrimeLife should include
the identification of legal requirements to collect personal data of users. This collection
is necessary to be able to identify where the deployment of evolving privacy preserving
technologies may require adaptations of the legal context as well. It seems, for example,
that many businesses collect personal data of customers primarily for the purpose of
being able to file a lawsuit in case that this may become necessary. In the future this
requirement could be met without storing personal data by deploying cryptographic
methods. However, this may also require an adaptation of the formal requirements for

54 Legal policy mechanisms (Task 5.2.3)

filing a lawsuit in civil procedural rules. These results may act as enablers of future eID
infrastructures.

Chapter 4
Abstracts of research papers

1. C.A. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini, P. Samarati,
M. Verdicchio, “Expressive and Deployable Access Control in Open Web Service
Applications,” in IEEE Transactions on Service Computing. [ADP+11].
Abstract. Traditional access control solutions, based on preliminary identification
and authentication of the access requester, are not adequate for the context of open
Web service systems, where servers generally do not have prior knowledge of the
requesters. The research community has acknowledged such a paradigm shift and
several investigations have been carried out for new approaches to regulate access
control in open dynamic settings. Typically based on logic, such approaches, while
appealing for their expressiveness, result not applicable in practice, where sim-
plicity, efficiency, and consistency with consolidated technology are crucial. The
eXtensible Access Control Markup Language (XACML) has established itself as
the emerging technological solution for controlling access in an interoperable and
flexible way. Although supporting the most common policy representation mecha-
nisms and having acquired a significant spread in the research community and the
industry, XACML still suffers from some limitations which impact its ability to sup-
port actual requirements of open Web-based systems. In this paper, we provide a
simple and effective formalization of novel concepts that have to be supported for
enforcing the new access control paradigm needed in open scenarios, toward the
aim of providing an expressive solution actually deployable with today’s technol-
ogy. We illustrate how the concepts of our model can be deployed in the XACML
standard by exploiting its extension points for the definition of new functions, and
introducing a dialog management framework to enable access control interactions
between Web service clients and servers.

2. C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati,
“Minimising Disclosure of Client Information in Credential-Based Interactions,” in
International Journal of Information Privacy, Security and Integrity [ADF+11].
Abstract. The advancements in ICT allow people to use and access resources and
services on the Web anywhere and anytime. Servers offering resources typically re-

55

56 Abstracts of research papers

quire users to release information about them, which is then used to enforce possible
access policies on the offered services. Effective access to such resources requires
the development of approaches for enabling the user to organize and manage all her
credentials and regulate their release when interacting with other parties over the
Web. In this paper, we provide a means for the user to specify how much she values
the release of different properties, credentials, or combinations thereof as well as
additional constraints that she might impose on information disclosure. Exploit-
ing a graph modeling of the problem, the user can determine the credentials and
properties to disclose to satisfy a server request while minimizing the sensitivity of
the information disclosed. We develop a heuristic approach that shows execution
times compatible with the requirements of interactive access to Web resources.

3. C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, T. Grandison, S. Jajodia, P.
Samarati, “Access Control for Smarter Healthcare Using Policy Spaces,” in Com-
puters & Security [ADF+10a].
Abstract. A fundamental requirement for the healthcare industry is that the de-
livery of care comes first and nothing should interfere with it. As a consequence,
the access control mechanisms used in healthcare to regulate and restrict the disclo-
sure of data are often bypassed in case of emergencies. This phenomenon, called
“break the glass”, is a common pattern in healthcare organizations and, though
quite useful and mandatory in emergency situations, from a security perspective,
it represents a serious system weakness. Malicious users, in fact, can abuse the
system by exploiting the break the glass principle to gain unauthorized privileges
and accesses. In this paper, we propose an access control solution aimed at bet-
ter regulating break the glass exceptions that occur in healthcare systems. Our
solution is based on the definition of different policy spaces, a language, and a
composition algebra to regulate access to patient data and to balance the rigorous
nature of traditional access control systems with the “delivery of care comes first”
principle.

4. C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, G. Neven, S. Paraboschi,
F.-S. Preiss, P. Samarati, and M. Verdicchio, “Fine-Grained Disclosure of Access
Policies,” in Proc. of the 12th International Conference on Information and Com-
munications Security (ICICS 2010) [ADF+10b].
Abstract. In open scenarios, where servers may receive requests to access their
services from possibly unknown clients, access control is typically based on the
evaluation of (certified or uncertified) properties, that clients can present. Since
assuming the client to know a-priori the properties she should present to acquire
access is clearly limiting, servers should be able to respond to client requests with
information on the access control policies regulating access to the requested ser-
vices. In this paper, we present a simple, yet flexible and expressive, approach for
allowing servers to specify disclosure policies, regulating if and how access control
policies on services can be communicated to clients. Our approach allows fine-grain
specifications, thus capturing different ways in which policies, and portions thereof,
can be communicated. We also define properties that can characterize the client
view of the access control policy.

57

5. C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati,
“Minimizing Disclosure of Private Information in Credential-Based Interactions: A
Graph-Based Approach,” in Proc. of the 2nd IEEE International Conference on
Information Privacy, Security, Risk and Trust (PASSAT 2010) [ADF+10c].
Abstract. We address the problem of enabling clients to regulate disclosure of
their credentials and properties when interacting with servers in open scenarios. We
provide a means for clients to specify the sensitivity of information in their portfolio
at a fine-grain level and to determine the credentials and properties to disclose to
satisfy a server request while minimizing the sensitivity of the information disclosed.
Exploiting a graph modeling of the problem, we develop a heuristic approach for
determining a disclosure minimizing released information, that offers execution
times compatible with the requirements of interactive access to Web resources.

6. C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati,
“Supporting Privacy Preferences in Credential-Based Interactions,” in Proc. of the
9th Workshop on Privacy in the Electronic Society (WPES 2010) [ADF+10d].
Abstract. Users can today enjoy the many benefits brought by the development
and widespread adoption of Internet and related services conveniently accessing
digital resources. Servers offering such resources typically require users to release
information about them, which servers can then use for enforcing possible access
policies on the offered services. A major problem in this context relates to providing
users with the ability of determining which information to release to satisfy the
server requests during their electronic interactions. In this paper, we provide an
approach for empowering the user in the release of her digital portfolio based on
simple sensitivity labels expressing how much the user values different properties,
credentials or combinations thereof, as well as on additional constraints that the
user might impose on information disclosure. We provide a generic modeling of
the problem and illustrate its translation in terms of a Weighted MaxSat problem,
which can be conveniently and efficiently managed by off the shelf SAT solvers,
thus resulting efficient and scalable.

7. C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, P. Samarati,
“Supporting User Privacy Preferences on Information Release in Open Scenarios,”
in Proc. of the W3C Workshop on Privacy and Data Usage Control [ADF+10e].
Abstract. Access control solutions for open systems are typically based on the
assumption that a client may adopt approached specifically designed for the server
to protect the disclosure of her sensitive information. These solutions however do
not consider the specific privacy requirements characterizing the client. In this
paper, we put forward the idea of adopting a different model at the client-side,
aimed at minimizing the amount of sensitive information released to a server. The
model should be based on a formal modeling of the client portfolio and should
easily support the definition of privacy preferences and disclosure limitations for
empowering the user in the release of her personal information.

8. C.A. Ardagna, S. De Capitani di Vimercati, G. Neven, S. Paraboschi, F.-S. Preiss,
P. Samarati, M. Verdicchio, “Enabling Privacy-Preserving Credential-Based Ac-
cess Control with XACML and SAML,” in Proc. of the 3rd IEEE Interna-

58 Abstracts of research papers

tional Symposium on Trust, Security and Privacy for Emerging Applications (TSP
2010) [ADN+10].
Abstract. In this paper we describe extensions to the access control industry stan-
dards XACML and SAML to enable privacy-preserving and credential-based access
control. Rather than assuming that an enforcement point knows all the requester’s
attributes, our extensions allow the requester to learn which attributes have to
be revealed and which conditions must be satisfied, thereby enabling to leverage
the advantages of privacy-preserving technologies such as anonymous credentials.
Moreover, our extensions follow a credential-based approach, i.e., attributes are
regarded as being bundled together in credentials, and the policy can refer to at-
tributes within specific credentials. In addition to defining language extensions,
we also show how the XACML architecture and model of evaluating policies can
be adapted to the credential-based setting, and we discuss the problems that such
extensions entail.

9. L. Bussard, G. Neven, J. Schallaböck, “Data Handling: Dependencies between Au-
thorizations and Obligations,” in Proc of the W3C Workshop on Privacy and Data
Usage Control [BNS10]
Abstract. Authorizations and obligations are keystones of data handling. On one
hand there are ambiguous links between authorization and obligations. On the
other hand a clear separation between both concepts is necessary to improve read-
ability and to avoid inconsistencies. This position paper focuses on authorizations
necessary to enforce obligations. Such authorizations are necessary to prevents
over-diligent data controllers from “overdoing” their obligations to the extent that
they become a nuisance to the data subject. This problem is discussed from a legal
perspective and is addressed in a technical solution that keeps a clear separation
between authorizations and obligations.

10. L. Bussard, U. Pinsdorf, “Abstract Privacy Policy Framework: Addressing Privacy
Problems in SOA,” in iNetSec 2011, Open Problems in Network Security [BP11]
Abstract. This paper wants to make the point that privacy in SOA needs a
lifecycle model. We formalize the lifecycle of personal data and associated privacy
policies in Service Oriented Architectures (SOA), thus generalizing privacy-friendly
data handling in cross-domain service compositions. First, we describe generic
patterns to enable the use of privacy policies in SOA. This summarizes our learning
in two research projects: PrimeLife and SecPAL for Privacy. Second, we map
existing privacy policy technologies and ongoing research work to the proposed
abstraction. This highlights advantages and shortcomings of existing privacy policy
technologies when applied to SOA.

11. S. Tanvir Rahman, “Analyzing Causes of Privacy Mismatches in Service Oriented
Architecture,” in Master thesis at Rheinisch-Westfälische Technische Hochschule
and European Microsoft Innovation Center [Rah10]
Abstract. Internet users want controlled disclosure of their private data. They are
concerned about what personal information they may reveal inadvertently while
accessing websites. Intelligent systems can alleviate user’s concern by assessing
website’s data practices automatically, assuming machine readable privacy policies.

59

In case of mismatch with user expectations, these systems can also help both
parties reviewing their privacy statements by providing useful information. In
the context of the collaborative research project PrimeLife (Privacy and Identity
Management for Europe in Life), IBM, SAP, ULD, W3C and European Microsoft
Innovation Center (EMIC) are working on new languages to define privacy policies.
Specifying logic-based languages is important to enable reasoning on mismatches,
i.e. understanding why service’s privacy policy does not match user’s privacy
preferences. This master thesis, done with EMIC, uses domain specific language to
specify privacy and focuses on mechanisms to analyze mismatches and to propose
modifications for getting a match, at a higher abstraction level, e.g. DSL. In case
of mismatch, this guidance permits the user judging the required amendments and
make the right choice thereby, i.e. reject service’s policy or modify her preference
accordingly. Another concern of this work is separating different aspects of a
privacy management system and link them effectively as required. The proposed
approach is validated by developing a proof-of-concept prototype implementation
with Microsoft’s textual DSL tool, MGrammar and formal language, FORMULA.

12. H. Zwingelberg, “Necessary Processing of Personal Data: the Need-to-Know Princi-
ple and Processing Data from the new German Identity Card,” in Proc. of 6th IFIP
WG 9.2, 9.6/11.7, 11.4, 11.6/PrimeLife International Summer School [Zwi11]
Abstract. The new German electronic identity card will allow service providers
to access personal data stored on the card. This imposes a new quality of data
processing as these data have been governmentally verified. According to Euro-
pean privacy legislation any data processing must be justified in the sense that the
personal data are necessary for the stipulated purpose. This need-to-know princi-
ple is a legal requirement for accessing the data stored on the eID card. This text
suggests a model as basis for deriving general guidelines and aids further discussion
on the question whether collecting personal data is necessary for certain business
cases. Beyond the scope of the German eID card the extent and boundaries of
what can be accepted as necessary data processing poses questions on a European
level as well.

13. E. Forrest, J. Schallaböck, “Privicons – An Approach to Communicating Privacy
Preferences between Users,” in Internet Architecture Board, Internet Privacy Work-
shop [FS10]
Abstract. Alongside privacy challenges posed by technical problems like faulty
architecture or insecure protocols are everyday privacy harms caused by basic fail-
ures of communication. For example, when a user unthinkingly forwards an e-mail
chain that includes crass private remarks, or casually passes along information
from an e-mail that was meant to have been kept secret, that user violates privacy
by ignoring or misunderstanding norms, not code. Privicons uses a strategy of
code-based norms or a “neighborliness” approach to address communications pri-
vacy problems like e-mail carelessness that occur within the bounds of code but
neverthe- less are ultimately problems of privacy norms and social signals: prob-
lems not readily solvable by code alone. The code in Privicons thus serves mainly
to help users clarify and understand social norms, signals, and expectations about
privacy. If users can easily convey their privacy expectations, and recipients can

60 Abstracts of research papers

understand and process those expectations in terms of widely understood social
norms about privacy, then courtesy and care will help to prevent privacy harms
caused by carelessness or misunderstanding about privacy expectations.

Bibliography

[ABD+09] C.A. Ardagna, L. Bussard, S. De Capitani di Vimercati, G. Neven,
E. Pedrini, S. Paraboschi, F.-S Preiss, P. Samarati, S. Trabelsi, and
M. Verdicchio. Primelife policy language. In Proc. of the W3C Workshop
on Access Control Application Scenarios, Luxembourg, November 2009.

[ACDS08] C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Sama-
rati. A privacy-aware access control system. Journal of Computer Security
(JCS), 16(4):369–392, September 2008.

[ACK+10] C.A. Ardagna, J. Camenisch, M. Kohlweiss, R. Leenes, G. Neven, B. Priem,
P. Samarati, D. Sommer, and M. Verdicchio. Exploiting cryptography for
privacy-enhanced access control: A result of the prime project. Journal of
Computer Security (JCS), 18(1):123–160, January 2010.

[ADF+10a] C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, T. Grandison, S. Ja-
jodia, and P. Samarati. Access control for smarter healthcare using policy
spaces. Computers & Security, 29(8):848–858, November 2010.

[ADF+10b] C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, G. Neven, S. Para-
boschi, F.-S. Preiss, P. Samarati, and M. Verdicchio. Fine-grained disclosure
of access policies. In Proc. of the 12th International Conference on In-
formation and Communications Security (ICICS 2010), Barcelona, Spain,
December 2010.

[ADF+10c] C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and
P. Samarati. Minimizing disclosure of private information in credential-
based interactions: A graph-based approach. In Proc. of the 2nd IEEE
International Conference on Information Privacy, Security, Risk and Trust
(PASSAT 2010), Minneapolis, MN, USA, August 2010.

[ADF+10d] C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and
P. Samarati. Supporting privacy preferences in credential-based interac-
tions. In Proc. of the 9th Workshop on Privacy in the Electronic Society
(WPES 2010), Chicago, IL, USA, October 2010.

[ADF+10e] C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and
P. Samarati. Supporting user privacy preferences on information release in
open scenarios. In Proc. of the W3C Workshop on Privacy and Data Usage
Control, Cambridge, MA, USA, October 2010.

61

62 Bibliography

[ADF+11] C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and
P. Samarati. Minimising disclosure of client information in credential-based
interactions. International Journal of Information Privacy, Security and
Integrity (IJIPSI), 2011.

[ADN+10] C.A. Ardagna, S. De Capitani di Vimercati, G. Neven, S. Paraboschi, F.-
S. Preiss, P. Samarati, and M. Verdicchio. Enabling privacy-preserving
credential-based access control with XACML and SAML. In Proc. of the 3rd
IEEE International Symposium on Trust, Security and Privacy for Emerg-
ing Applications (TSP 2010), Bradford, UK, June-July 2010.

[ADP+11] C. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini,
P. Samarati, and M. Verdicchio. Expressive and deployable access control
in open web service applications. IEEE Transactions on Service Computing
(TSC), 2011.

[AHK+03] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise
privacy authorization language (EPAL 1.2), 2003.

[AL04] A. Anderson and H. Lockhart. SAML 2.0 profile of XACML. OASIS,
September 2004.

[APE05] APEC. Chapters II and VIII of the APEC privacy framework. http:

//www.apec.org/apec/newsmedia/factsheets/apecprivacyframework.

MedialibDownload.v1(21.109), 2005.

[BFG10] M.Y. Becker, C. Fournet, and A.D. Gordon. SecPAL: Design and semantics
of a decentralized authorization language. Journal of Computer Security
(JCS), 18(4):619–665, 2010.

[Bie10] K. Biermann. Datenbrief wird ernsthaft beraten. http://www.zeit.de/

digital/datenschutz/2010-04/datenbrief-bmi-arbeitsgruppe, April
2010. Die Zeit Online.

[BMB10] M.Y. Becker, A. Malkis, and L. Bussard. A practical generic privacy lan-
guage. In Proc. of the 6th International Conference on Information Systems
Security (ICISS 2010), Gandhinagar, India, December 2010.

[BMD09] M. Y. Becker, J. F. Mackay, and B. Dillaway. Abductive authorization
credential gathering. In Proc. of the 10th IEEE International Symposium
on Policies for Distributed Systems and Networks (POLICY 2009), London,
UK, July 2009.

[BNP10] L. Bussard, G. Neven, and F.-S. Preiss. Downstream usage control. In
Proc. of the 11th IEEE International Symposium on Policies for Distributed
Systems and Networks (POLICY 2010), Fairfax, VA, USA, July 2010.

[BNS10] L. Bussard, G. Neven, and J. Schallaböck. Data handling: Dependencies
between authorizations and obligations. In Proc. of the W3C Workshop on
Privacy and Data Usage Control, Cambridge, MA, USA, October 2010.

Bibliography 63

[BP11] L. Bussard and U. Pinsdorf. Abstract privacy policy framework: addressing
privacy problems in SOA. In iNetSec 2011, Open Problems in Network
Security. Springer, 2011.

[Bra00] S.A. Brands. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge, MA, USA, 2000.

[Bro08] K. Brown. The infocard identity revolution. http://technet.microsoft.
com/enus/magazine/cc160966(printer).aspx, 2008.

[BS02] P. Bonatti and P. Samarati. A unified framework for regulating service
access and information release on the Web. Journal of Computer Security
(JCS), 10(3):241–272, 2002.

[BS03] P. Bonatti and P. Samarati. Logics for authorizations and security. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging
Applications of Databases. Springer-Verlag, 2003.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Proc. of the
International Conference on the Theory and Application of Cryptographic
Technique - Advances in Cryptology (EUROCRYPT 2001), Innsbruck, Aus-
tria, May 2001.

[CL08] D. Chadwick and S. Lievens. Enforcing “sticky” security policies through-
out a distributed application application. In Proc. of the 1st International
Workshop on Middleware Security (Midsec 2008), Leuven, Belgium, De-
cember 2008.

[Com95] European Commission. Art. 7 of the data protection directive 95/46/EC,
1995.

[CSBS] R. Calo, M. Senges, A. Braendhagen, and J. Schallaböck. Privicons - privacy
icons for email usage. http://privicons.org/.

[Dat10] Datenschutzbeauftragte. Datenschutzrechtliche leitlinien für die erteilung
von berechtigungen nach § 21 abs. 2 PAuswG aus sicht der ad-hoc-
arbeitsgruppe npa der datenschutzbeauftragten des bundes und der länder.
Technical report, Ad-hoc-Arbeitsgruppe nPA der Datenschutzbeauftragten
des Bundes und der Länder, September 2010.

[Deu08] Deutscher Bundestag. Bundesdatenschutzgesetz in der Fassung der Bekan-
ntmachung vom 14. January 2003 (BGBl. I S. 66), das zuletzt durch Artikel
1 des Gesetzes vom 14. August 2009 (BGBl. I S. 2814) geändert worden ist.
Deutscher Bundestag - Bundesanzeiger Verlag, 2008.

[Eur04] European Commission - Article 29 Working Party. Wp 100 opinion on
more harmonised information provisions, 2004. http://ec.europa.eu/

justicehome/fsj/privacy/.

64 Bibliography

[Fac10] Facebook profile options, 2010. http://www.facebook.com/settings/

?tab=privacy\&ref=mb.

[Fis06] J. Fishenden. Creative commons and its wider potential. http://ntouk.

com/?view=pli, 2006.

[FS10] E. Forrest and J. Schallaböck. Privicons - an approach to communicating
privacy preferences between users. In Proc. of the 2010 Internet Privacy
Workshop (IAB 2010), Boston, MA, USA, December 2010.

[Ger83] German Supreme Court. BVerfGE, 65, 1 (Volkszählung, Az.1 BvR 209).
Entscheidungen des Bundesverfassungsgerichts, 65:1, 1983.

[HBH07] D. Hardt, J. Bufu, and J. Hoyt. OpenID attribute exchange 1.0. http:

//openid.net/developers/specs/, December 2007.

[HCI07] HCI guidelines. https://www.primeproject.eu/primeproducts/

reports/arch/pubdelD06.1.fecwp06.1v1final.pdf, 2007.

[HL10] E. Hammer-Lahav. RFC 5849: The OAuth 1.0 Protocol, 2010.

[HS11] L.-E. Holtz and J. Schallaböck. PrimeLife Heartbeat H5.2.2- Report on re-
search on legal policy mechanisms. Internal Hearbeat within the PrimeLife
Project, 2011.

[Ide07] Identity governance, 2007. http://projectliberty.org/li.

[IY05] K. Irwin and T. Yu. Preventing attribute information leakage in automated
trust negotiation. In Proc. of the 12th ACM Conference on Computer and
Communications Security (CCS 2005), Alexandria, VA, USA, November
2005.

[JSS08] E. K. Jackson, W. Schulte, and J. Sztipanovits. The power of rich syntax
for model-based development. Technical report, Microsoft Research, 2008.

[JSSS01] S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible
support for multiple access control policies. ACM Transactions on Database
Systems (TODS), 26(2):214–260, June 2001.

[KA10] L. Kagal and H. Abelson. Access control is an inadequate framework for
privacy protection. In Proc. of the W3C Workshop on Privacy for Advanced
Web APIs, London, UK, July 2010.

[Kan] Kantara Initiative. User managed initiative. http://kantarainitiative.
org/confluence/display/uma/.

[Lei10] Leitlinie für die Vergabe von Berechtigungen für Diensteanbieter nach § 21
Abs. 2 Personalausweisgesetz, 2010. Vergabestelle für Berechtigungszerti-
fikate.

[Lin10] Linkedin. User agreements. http://www.linkedin.com/static?key=

useragreementtrk=hbftuserag, 2010.

Bibliography 65

[Luh77] N. Luhmann. Differentiation of society. Canadian Sociological Review,
2:29–53, 1977.

[Mic09] Microsoft. Rights Management Services. http://www.microsoft.com/

windowsserver2008/en/us/ad-rms-overview.aspx, 2009.

[Nis98] F.H. Nissenbaum. Protecting privacy in an information age: The problem
of privacy in public. Law and Philosophy, 17:559–596, 1998.

[Nis04] H. F. Nissenbaum. Privacy as contextual integrity. Washington Law Review,
79(1), 2004.

[Nis10] H. F. Nissenbaum. Privacy in context: Technology, policy and the integrity
of social life. Stanford Law Books 65, 2010.

[OAS10] OASIS. eXtensible Access Control Markup Language (XACML) v3.0, Au-
gust 2010. http://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=xacml.

[ODR02] ODRL. Open Digital Rights Language (ODRL), version 1.1, 2002.

[OEC80] OECD. OECD guidelines on the protection of privacy and transborder flows
of personal data. OECD, 1980.

[PRI07] PRIME data model. https://www.primeproject.eu/ont/Datamodel.

html, 2007.

[Pri09a] PrimeLife Project. Draft 2nd Design for Policy Languages and Protocols
(Heartbeat: H 5.3.2), July 2009.

[Pri09b] Privacy-rights-agreements. http://wiki.igfonline.net/wiki/

Privacy-rights-agreements, 2009. Dynamic Coalition Privacy.

[Pri10] PrimeLife Consortium. Second Release of the Policy Engine (D5.3.2),
September 2010.

[Pri11] PrimeLife Consortium. Infrastructure for Privacy for Life (D6.3.2), January
2011.

[PSSW08] A. Pretschner, F. Schütz, C. Schaefer, and T. Walter. Policy evolution in
distributed usage control. In Proc. of the 4th International Workshop on
Security and Trust Management (STM 2008), Trondheim, Norway, June
2008.

[Rag09] D. Raggett. Draft 2nd design for policy languages and protocols, 2009.

[Rah10] S. T. Rahman. Analyzing causes of privacy mismatches in service oriented
architecture. Master’s thesis, RWTH, 2010.

[Run06] M. Rundle. International data protection and digital identity management
tools (using icons to express user preferences). http://identityproject.
lse.ac.uk/mary.pdf, 2006. Presentation at IGF2006 PrivacyWorkshop 1,
Athens, Greece.

66 Bibliography

[TNAAP95] M. Temmerman, J. Ndinya-Achola, J. Ambani, and P. Piot. The right not
to know HIV-test results. Lancet, 345(8955):969–70, Apr 1995.

[W3C02] W3C. A P3P preference exchange language 1.0 (APPEL1.0). http://www.
w3.org/TR/P3P-preferences/, 2002.

[W3C03] W3C. Enterprise privacy authorization language (EPAL 1.2). http://www.
w3.org/Submission/2003/SUBM-EPAL-20031110/, 2003.

[W3C06a] W3C. The platform for privacy preferences 1.1 (P3P1.1) specification.
http://www.w3.org/TR/P3P11/, 2006.

[W3C06b] W3C. Web services policy 1.2 - framework (WS-Policy). http://www.w3.

org/Submission/WS-Policy/, 2006.

[Wan04] X. Wang. MPEG-21 Rights Expression Language: Enabling Interoperable
Digital Rights Management. IEEE MultiMedia, 11(4):84–87, 2004.

[WCJS97] M. Winslett, N. Ching, V. Jones, and I. Slepchin. Assuring security and
privacy for digital library transactions on the Web: Client and server se-
curity policies. In Proc. of the 4th International Forum on Research and
Technology Advances in Digital Libraries (ADL 1997), Washington, DC,
USA, May 1997.

[XrM02] XrML 2.0 Technical Overview. XrML 2.0 Technical Overview. http://

www.xrml.org/reference/XrMLTechnicalOverviewV1.pdf, 2002.

[YWS03] T. Yu, M. Winslett, and K.E. Seamons. Supporting structured credentials
and sensitive policies trough interoperable strategies for automated trust.
ACM Transactions on Information and System Security (TISSEC), 6(1):1–
42, February 2003.

[Zwi11] H. Zwingelberg. Necessary processing of personal data: The need-to-know
principle and processing data from the new german identity card. In
S. Fischer-Hübner, P. Duquenoy, M. Hansen, R. Leenes, and Ge G. Zhang,
editors, Privacy and Identity Management for Life, volume 352 of IFIP
Advances in Information and Communication Technology, pages 151–163,
2011.

