

Second Release of the Policy
Engine

Editors: Slim Trabelsi, (SAP)

Reviewer: Tobias Pulls, (KAU)

Identifier: D5.3.2

Type: Deliverable

Class: Public

Date: September 30, 2010

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 216483 for the
project PrimeLife.

Privacy and Identity Management in Europe for Life

Abstract

The document presents the implementation details of the second version of the PrimeLife policy engine
(called PPL engine). This deliverable describes the specification of the PPL language, the architecture
of the PPL engine and the testing demo provided with the engine.

2

Members of the PrimeLife Consortium

1. IBM Research GmbH IBM Switzerland

2. Unabhängiges Landeszentrum für Datenschutz ULD Germany

3. Technische Universität Dresden TUD Germany

4. Karlstads Universitet KAU Sweden

5. Università degli Studi di Milano UNIMI Italy

6. Johann Wolfgang Goethe – Universität Frankfurt am Main GUF Germany

7. Stichting Katholieke Universiteit Brabant TILT Netherlands

8. GEIE ERCIM W3C France

9. Katholieke Universiteit Leuven K.U.Leuven Belgium

10. Università degli Studi di Bergamo UNIBG Italy

11. Giesecke & Devrient GmbH GD Germany

12. Center for Usability Research & Engineering CURE Austria

13. Europäisches Microsoft Innovations Center GmbH EMIC Germany

14. SAP AG SAP Germany

15. Brown University UBR USA

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The above referenced consortium members shall have no liability for
damages of any kind including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory due to applicable law. Copyright
2009 by Unabhängiges Landeszentrum für Datenschutz Schleswig-Holstein, Technische Universität Dresden,
Tilburg University, Katholieke Universiteit Leuven, Europäisches Microsoft Innovations Center GmbH.

3

List of Contributors

This deliverable has been jointly authored by multiple PrimeLife partner organisations. The
following list presents the contributors for the individual parts of this deliverable.

Chapter Author(s)

Introduction SAP, EMIC

Chapter 1 SAP

Chapter 2 SAP

Chapter 3 SAP

Chapter 4 SAP

Chapter 5 SAP

Chapter 6 SAP

Chapter 7 SAP

Conclusion SAP

5

Contents

1. Introduction 7

Terminology .. 8

2. PPL Specification 10

2.1 Introduction .. 10
2.2 Collaboration diagram ... 10
2.3 Functional specification ... 11

2.3.1 PPL language specification ... 11

3. Architecture 14

3.1 High level architecture ... 14
3.1.1 Data Subject .. 14
3.1.2 Data Controller ... 15

3.1.3 Third party .. 15
3.2 Detailed architecture .. 15

3.2.1 Presentation layer .. 16

3.2.2 Business layer ... 17

3.2.3 Persistence layer ... 18

4. The Language 19

4.1 Language Structure .. 19
4.2 Defining matching rules ... 24

5. Use Case 26

6. Demo 31

6.1 Getting Started With the Demo.. 31
6.1.1 System Requirement ... 31

6.1.2 Installation of the Demo ... 32

6.2 Scenario ... 34
6.3 Changing the Configuration of the Demo .. 36

7. PPL Engine Data Model 39

7.1 Data model package diagram ... 39
7.1.1 Package pii .. 40
7.1.2 Package policy.Impl.. 41

7.1.3 Package Credential ... 44

7.1.4 Package Obligation ... 46

7.1.5 Package StickyPolicy .. 48

7.2 Detailed Sequence diagrams .. 52
7.3 Component diagram ... 53

8. Annex: XSD Policy Schema 55

XACML 2.0 schema .. 55
PPL main schema .. 58
PPL authorization schema ... 62

6

PPL Obligation Schema .. 63
PPL Credential Schema ... 68
PPL Sticky Policy Schema .. 69

References 71

7

Chapter 1

1.Introduction

This document presents the implementation and integration results obtained in the context of
Work Package 5.3. The main goal of the deliverable is to develop the second release of the
PPL (PrimeLife Policy Language) policy engine. The concept and the specifications of this
language were already defined in the internal deliverable H5.3.2 [1]. Part of these
specifications are in this document, but it is important to take a look to the H5.3.2 specification
document in order to understand the concepts presented here.. Since the PPL language is
specified as an extension of the XACML (eXtensible Access Control Markup Language) [2]
language, the PPL engine is designed to run together with the HERAS-XACML engine [3]
(that only handles XACML access control rules). The architecture chosen for the
deployment of the PPL engine is symmetric because data owners (that we call data subjects)
and data collectors (that we call data controllers) have similar requirements: deciding whether
a given personal information (resp. collected data) can be shared with a data controller (resp.
third party); handling obligations associated with data; storing data and associated preferences
(resp. sticky policies). Using the same architecture everywhere to handle scenarios where one
party can have multiple roles (e.g. collecting data and next disclosing it to third parties). The
PPL engine executes multiple tasks in an automated way like: enforcing access control
policies, generating and verifying cryptographic proofs related to credential requirements,
matching between data handling preferences and data handling policies, generating and
enforcing sticky policies, checking authorization, controlling the downstream usage of data,
handling obligations …

Besides the documentation related to the implementation engine, we propose in chapter 6 a
description of the web-based demo illustrating the scenario of a subscription to the PrimeLife
social network Clique1. This demo is used as a working prototype of the PPL engine used to
test the underlying concepts and principles defined in the specification part. This demo shows
how a user that wants to create an account on a social network website will control the

1 http://www.primelife.eu/results/opensource/40-clique

8

disclosure of her personal data as required by the server. At any point of time when executing the
demo we can visualize how the data is treated.

Terminology

Access Control

The means to control access to resources such as web pages. This may be on the basis of the
identity of the entity requesting access, or more generally the presentation of a set of
credentials, and possibly some representation of the purpose for accessing the resource, as well
as other contextual information, such as the time of day and properties of the resource itself.

Credentials

The credential is an attestation of qualification, competence, or authority issued to an
individual by a third party with a relevant de jure or de facto authority or assumed competence
to do so. In this document, we define digital credentials to be lists of attribute-value statements
certified by an issuer. The authenticity of the attribute values can be verified using concrete
mechanisms (cryptographic or other). We do not impose any restrictions on which attributes
can be contained in a credential, but typically these either describe the identity of the
credential's owner or the authority assigned to her.

Personal Data PII

Personally Identifiable Information or PII means any information relating to an identified or
identifiable natural person or "Data Subject".

An identifiable person is someone who can be identified, directly or indirectly, in particular by
reference to an identification number or to one or more factors specific to his or her physical,
physiological, mental, economic, cultural or social identity.

The processing of special categories of data, defined as personal data revealing racial or ethnic
origin, political opinions, religious or philosophical beliefs, trade-union membership, and of
data concerning health or sex life, is prohibited, subject to certain exceptions [4].

Data Controller

The Data Controller means the entity which alone or jointly with others determines the
purposes and means of the processing of personal data. The processing of personal data may be
carried out by a Data Processor acting on behalf of the Data Controller.

Downstream Data Controller

When a Data Controller passes personal data to a third party, that third party incurs obligations
in respect to the Data Subject, and is referred to in this document as a downstream data
controller.

Data Subject

The Data Subject is the person whose personal data are collected, held or processed by the
Data Controller.

The controller must give the Data Subject the following information about the data being
processed:

1. confirmation as to whether or not data related to him or her are being processed;

2. information about the purposes of the processing operation, the categories of data
concerned, and the recipients or categories of recipients to whom the data are disclosed;

9

3. communication of the data undergoing processing and of any available information as to
their source;

4. knowledge of the logic involved in any automated decision process concerning him or
her.

The Data Subject has the right to access her data and to require the Controller to rectify
without delay any inaccurate or incomplete personal data. The Data Subject has the right to
require the Controller to erase data if the processing is unlawful.

Data Subject’s privacy preferences

The expectation of a Data Subject in terms of how his or her personal data should be handled.

Sticky privacy policy

An agreement between a Data Subject and a Data Controller on the handling of personal data
collected from the Data Subject. Sticky policies (as well as privacy preferences and privacy
policies) defines how data can be handled. Different aspects are defined:

• Authorizations:

o Usage: what the Data Controller can do with collected data (e.g. use them for a
specific purpose).

o Downstream sharing: under which conditions data can be shared with another
Data Controller.

• Obligations: what the Data Controller must do.

Tracking what obligations apply to which items of data is a significant challenge, and further
involves the need to track the binding to the Data Subject involved. A complication is that
information on the identity of the Data Subject is limited to the credentials provided in the
request. The implications have yet to be fully worked through.

Software that needs to access personal data should do so through APIs that enable the Data
Controller to identify the entity that is requesting access as well as the purpose involved. This
report does not provide such an API, which is left for future work.

User Agent

A software system (such as a web browser) acting on behalf of a user. The user agent acts on
user preferences when dealing with a server acting on behalf of a Data Controller.

10

Chapter 2

2.PPL Specification
2.1 Introduction

In this section we describe briefly the specification aspects behind the software deliverable.
This section is a summary (with some updates) about what was proposed in the internal
delivery H5.3.2 [1]. This summary is proposed to help the understanding of the new concepts
and functionalities proposed in the in this deliverable.

2.2 Collaboration diagram

PPL (Privacy Policy Language), the new proposed policy language considers the scenario
depicted in Figure 1, where the Data Subject wants to access a resource hosted by the Data
Controller, but has to reveal some personal data in order to access the resource. Furthermore,
the Data Controller may want to further forward the Data Subject's personal data to a
Downstream Data Controller. The PPL policy language allows the Data Controller to express
which personal data he needs from the Data Subject and how he will treat this data, and allows
the Data Subject to express to whom she is willing to release her personal data and how she
wants her data to be treated.

11

Figure 1: Collaboration diagram

The PPL policy language supports the following features that we see as its main contributions
over the current state-of-the-art:

Two-sided data handling policies/preferences with automated matching: Both the Data
Controller and the Data Subject can specify in their data handling policies (resp.
preferences) how collected personal data will be treated (resp. should be treated). An
automated matching procedure detects whether a match can be found between the
policies of both sides. Policies and preferences can be specified for explicitly revealed
personal data (e.g., name, birth data) as well as data that is implicitly revealed by
setting up a connection (e.g., IP address).

• Credential-based access control: The access control conditions can be specified in
terms of the credentials that need to be presented. The concept of credentials acts as a
useful abstraction for many authenticating technologies, including in particular
anonymous credentials.

• Language symmetry: By considering personal data as a special type of resource in its
own right, the same language can be used on the Data Subject's side to express to
whom and under what conditions she is willing to reveal her data, as on the Data
Controller's side to specify which personal data needs to be revealed in order to access
a service and how that data will be treated.

• Downstream usage: By exploiting the above symmetry, the Data Subject's personal
data can itself become a resource offered by the Data Controller to further
Downstream Data Controllers. Our policy language allows the Data Subject to specify
to whom and under which such forwarding can take place.

2.3 Functional specification
2.3.1 PPL language specification

As described above in a simplified way, the new privacy policy language should define
different new requirements to strengthen the users’ privacy. The language handles access
control and data usage at the same time. It provides a new obligation handling mechanism
taking into account temporal constraints, pre-obligations, conditional obligations, and
repeating obligations together with a down-stream usage authorization. The downstream usage
authorization system definines the access control rules under which personal information
collected by an entity can be forwarded to a third party. Moreover, the language should support
privacy enhanced credential-based access control. The credential-based aspect of the language
introduces credentials as a common abstraction for the various authentication mechanisms.

The privacy enhancements allow attaching two-sided data handling policies to privacy-
sensitive resources, specified by means of a concrete set of obligations and set of
authorizations.

Moreover, the typical interaction sequence is changed so that the Data Subject is informed
about the applicable policies and if his preferences agree with the data handling policy by an
automated matching mechanism, before transmitting his personal information.

12

2.3.1.1 Credential

The credential-based aspect of the new language introduces credentials as a common
abstraction for the various authentication mechanisms. The privacy enhancements allow
attaching two-sided data handling policies to privacy-sensitive resources, specified by means
of a concrete set of obligations. Moreover, we change the typical interaction sequence so that
the Data Subject is informed about the applicable policies before transmitting his personal
information.

The requirements language is oriented towards enabling user-centric and privacy-friendly
access control on the basis of certified credentials. While the language leverages the advanced
privacy and anonymity features offered by anonymous credential systems, it should be
designed to be technology-agnostic in the sense that it addresses general credential concepts
without targeting one technology in particular.

By a credential we mean an authenticated statement about attribute values made by an issuer,
where the statement is independent from a concrete mechanism for ensuring authenticity. The
statement made by the issuer is meant to affirm qualification. A credential serves as means for
proving qualification, i.e., it typically serves as proof of identity, proof of authority, or both
proof of identity and authority at the same time.

For example, national identity cards are proofs of identity, movie tickets are proofs of
authorization to watch a particular movie from a particular seat, and driver's licenses are proofs
of identity and of authorization to drive motor vehicles of a certain category at the same time.

2.3.1.2 Obligation

We define an obligation as: “A promise made by a Data Controller to a Data Subject in relation
to the handling of his/her personal data. The Data Controller is expected to fulfill the promise
by executing and/or preventing a specific action after a particular event, e.g. time, and
optionally under certain conditions".

Obligations play an important role in daily business. Most companies have a process to collect
personally identifiable information (personal data) on customers and ad-hoc mechanisms to
keep track of associated authorizations and obligations. State of the art mechanisms to handle
collected personal data accordingly to a privacy policy are lacking expressiveness and/or
support for cross-domain definition of obligations.

We identify and define four main challenges related to obligations.

• Service providers must avoid committing to obligations that cannot be enforced. For
instance, it is not simple to delete data when backup copies do exist. Tools to detect
inconsistencies are necessary.

• Services should offer a way to take user's preferences into account. Preferences may be
expressed by ticking check boxes, be a full policy, or even be provided by a trusted
third party. Mechanisms to match user's privacy preferences and service's privacy
policies are necessary.

• Services need a way to communicate acceptable obligations to users, to link
obligations and personal data, and to enforce obligations.

13

• Finally, users need a way to evaluate the trustworthiness of service providers, i.e. know
whether the obligation will indeed be enforced. This could be achieved by assuming
that misbehavior impacts reputation, by audit and certification mechanisms, and/or by
relying on trusted computing.

The first challenge is focused by providing a mechanism to enforce obligations, and the second
and the third aspect by providing mechanisms to match obligations. The fourth challenge is
addressed by assuming a simple trust model: audit and reputation mechanisms.

14

Chapter 3

3.Architecture

In this chapter we will present the design phase of the PPL engine. We present the architecture
of the PPL system by defining a high level and a detailed architecture.

3.1 High level architecture

As presented previously in the collaboration diagram (Figure 1), the high level architecture
presents an abstract overview of the PPL architecture and the interaction between the different
entities; DS, DC and third party.

Figure 2: High level architecture

3.1.1 Data Subject

15

Policy engine: This component is in charge of parsing and interpreting the privacy preferences
of the Data Subject. This policy engine supports the entire PrimeLife Language capabilities
(Preferences, Access control, DHP, Obligations, credentials etc). For this reason this module is
replicated on the Data Controller side and the third party side.

Repository: represent the PII and policy repositories. It is a database containing data owned by
the Data Subject. This data could be composed of personal data, credentials, certificated, and
other information that should be used during the interaction with the Data Controller
application. It contains also the policy files representing his privacy preferences.

Interface & communication: This interface represents a communication interface with the Data
Controller implementing the message exchange protocol.

3.1.2 Data Controller

Policy engine: this component is the same as the one described in the Data Subject section.

Repository: this repository represents a database that contains all the information collected
from the Data Subject during her interaction with the Data Controller. This data represents
PIIs, credentials, certificates, and other information provided by the user. Also, this database
contains the privacy policies related to the different resources and services that the Data
controller held.

Interface & communication: This interface represents a communication interface with the data
subject implementing the message exchange protocol. This interface plays the role of user
interface described in the data subject section, in case of downstream interaction between the
data controller and a third party.

3.1.3 Third party

All the components supported by these actors are the same as those described in the Data
Controller section. This is due to the fact that the Third Party plays the role of a Data
Controller in case of downstream usage of the data.

3.2 Detailed architecture

The entire architecture can be represented by three layers: the first one presents the user
interface layer. The second, business layer, represents the core of the PPL Engine. The last
layer represents the persistence layer that is in charge of data persistence.

16

Figure 3: PPL architecture

3.2.1 Presentation layer

The presentation layer is responsible for the display to the end user. The presentation layer
contains two components:

• The policy editor: displays and provides a way to manage all the information related to
the Data Subject, Data Controller and the third party. This information can be the
personal data (PIIs, the credentials, etc), the privacy policy or preference, the
information involved during a transaction between the different entities.This
component is not yet integrated to the current version of the demonstrator but should
be part of the next release. Actually policies are written manually.

• The matching handler: displays to the user the result of the matching. In the case of a
mismatch a set of tools are provided that allows the data subject to manage, or make an
informed decision about, the mismatch.

17

The UI layer should be independent from the business layer. For that, an interface component
might is deployed between these two layers in order to provide an abstraction level.

3.2.2 Business layer

The business layer which represents the core of the PPL engine is composed of four main
elements that implements the new concepts introduced within PrimeLife. These components
are:

• Policy Enforcement point (PEP): this component formats and then dispatches the
data to the corresponding component according to the state of the execution process.
The decision made by the PDP is enforced in the PEP, meaning that if the PDP
decided to provide data or enforce the access of one resource, this data or resource is
collected, formatted and sent to the receiver through the PEP.

• Policy Decision Point (PDP): it is the core of the PPL engine where all decisions are
made. It can be broken down into two subcomponents:

o Matching engine: this functionality matches between the preferences of the
Data Subject and the privacy policy of the Data Controller. The matching is
done to verify if the intentions of the data controller in terms of PII usage are
compliant with the data subject’s preferences.

o Access control engine: this component is in charge of the application of the
access control rules related to the local resources. It analyses the resource
query, checks the access control policy of the requested resource and decides
whether or not the requester satisfies the rules.

• Credential handler: one of the new features introduced in PPL is the support of the
credential based access control. This feature is implemented by the credential handler
that manages the collection of credentials held by an entity, selects the appropriate
credentials in order to generate a cryptographic proof and verifies the cryptographic
proofs of the claims received from external entities. The credential handler component
contains the subcomponent Rule Verification; the PPL policy contains a description of
the credential requirements (for access control), the Rule Verification component
evaluates whether the claim provided by a user that wants to access a resource satisfies
the credential based access control rule.

• Obligation handler: it is responsible for handling the obligations that should be
satisfied by the Data Controller/third party. This engine executes two main tasks; it
setups the triggers related to the actions required by the privacy preferences of the Data
Subject, and executes the actions specified by the data subject whenever it is required.

The other components of the architecture play a secondary role in the concept introduced by
the PPL engine:

• Web server: an embedded web server that represents the entry point of the core of the
PPL Engine. It can be seen as an interface to the PEP.

18

• Persistence handler: can be described as an interface between the business layer and
persistence layer. It encapsulates access to the storage medium business objects. It
makes transparent to the business layer location and storage model of the data it
manipulates. In general, this layer is supported by a Persistence Framework. The
defined objects in this layer are generally DAOs (Data Access Object). The persistence
handler provide management functions to handle the DAOs known as CRUD (Create,
Retrieve, Update, Delete) methods. The persistence handler provides the functions to
manage the PIIs and the policies in the different databases.

3.2.3 Persistence layer

The persistence layer is represented by the:

• PII/Policy store: this database (or other way of persistence, such as LDAP, etc)
contains all the information related to the PIIs and their related policies.

• Credential store: this database contains all the credentials and certified information
held by an entity. Access to this store is exclusively dedicated to the credential handler
component.

19

Chapter 4

4.The Language
4.1 Language Structure

The PPL language extends XACML 2.0 with a number of privacy-enhancing and credential
based features. The PPL language is intended to be used:

• by the Data Controller to specify the access restrictions to the resources that he offers;

• by the Data Subject to specify access restrictions to her personal information, and how
she wants her information to be treated by the Data Controller afterwards;

• by the Data Controller to specify how “implicitly” collected personal information (i.e.,
information that is revealed by the mere act of communicating, such as IP address,
connection time, etc.) will be treated;

• by the Data Subject to specify how she wants this implicit information to be treated.

For that, we maintain the overall structure of the XACML language and we introduce a
number of new elements to support the advanced features that our language aims to offer.

20

Figure 4: Domain class diagram

PolicySets, Policy and Rules

As in XACML, the main elements of our language are PolicySet, Policy and Rules.
Each Rule element has an effect, either “Permit” or “Deny”, that indicates the consequence
when all conditions stated in the rule have been satisfied. Rules are grouped together in Policy.
When a Policy is evaluated, the rule combining algorithm2 of the policy (as stated in an XML
attribute of the Policy) defines how the effects of the applicable rules are combined to
determine the effect of the Policy. Policies, on their turn, are grouped together in PolicySet; the
effect of a PolicySet is determined by the effects of the contained Policies and the stated policy
combining algorithm. Finally, different PolicySet can be further grouped together in parent
PolicySet.

The PolicySet, Policy and Rule elements are composed by different elements:
• a Target (plain XACML:Target), which describes the resource, the subject, and the

environment variables for which this PolicySet, Policy or Rule are applicable;

• CredentialRequirements, describing the credentials that need to be presented in order
to be granted access to the resource; this element was not defined in XACML

• ProvisionalActions, describing which actions (e.g., revealing attributes or signing

statements) have to be performed by the requestor in order to be granted access; this
element was not defined in XACML

• XACML:Condition, specifying further restrictions on the applicability of the rule

beyond those specified in the target and the credential requirements;

2 Rule combining algorithms provides the final authorization decision by combining the effects

of all the rules in a policy, as: Deny-overrides: If one of the rules evaluates to Deny, then the

final authorization decision is Deny. Permit-overrides: If any rule evaluates to Permit, then the

final authorization decision is also Permit.

21

• DataHandlingPolicy, describing how the information that needs to be revealed to
satisfy this rule will be treated afterwards; this element was not defined in XACML

• DataHandlingPreferences, describing how the information contained in the resource

that is protected by this rule has to be treated; this element was not defined in
XACML.

Credential Requirements
The policy language that we present is geared towards enabling technology-independent, user-
centric and privacy-friendly access control on the basis of certified credentials. By a credential
we mean an authenticated statement about attribute values made by an issuer, where the
statement is independent from a concrete mechanism for ensuring authenticity. The statement
made by the issuer is meant to affirm qualification. As credentials are not directly supported in
the traditional policy languages, we extended the XACML Rule element such that credentials
are the basic unit for reasoning about access control.
Each Rule can contain a CredentialRequirements element to specify the credentials that have to
be presented in order to satisfy the Rule. The CredentialRequirements element contains a
separate Credential element for each credential that needs to be presented. Each Credential
element contains a unique identifier CredentialId that is used to refer to the credential from
elsewhere in the Rule.
The CredentialRequirements element can also occur in parent Policy and PolicySet elements.
They follow a typical distributive semantics; namely, one should treat the
CredentialRequirements element of a Rule as if it contained all Credential elements specified
within the rule itself, as well as those specified within all parent Policy and PolicySet elements.

Provisional Actions
The ProvisionalActions element is used to specify the provisional actions that a requestor must
perform before being granted access to the resource. Currently supported actions include
revealing of attributes (to the Data Controller or to a Third Party) optionally under handling
policy and credential proof, signing a statement, and so-called “spending” of credentials, which
allows to put restrictions on the number of times that the same credential is used to obtain
access. Each action is described in a ProvisionalAction element; the language has to be
extensible so that new types of ProvisionalActions can easily be added later on, and can refer
to DataHandlingPolicy and Credential elements.

Data Handling Policies
The main purpose of the data handling policies is for the Data Controller to express what will
happen to the information about the Data Subject that is collected during an access request.
The provisional action to reveal an attribute value, for example, therefore contains an optional
reference to the applicable DataHandlingPolicy.
Each Rule, Policy, or PolicySet element can contain a number of DataHandlingPolicy. A
DataHandlingPolicy can be referred to from anywhere in the rule by its unique PolicyId
identifier.
A DataHandlingPolicy consists of a set of Authorizations, that the Data Controller wants to
obtain on the collected information, and a set of Obligations, that he promises to adhere to.
Before the Data Subject reveals her information, these Authorization and Obligation are
matched against the Data Subject’s DataHandlingPreference to see whether a matching
StickyPolicy can be agreed upon.

Data Handling Preferences

22

The data DataHandlingPreference how the information obtained from the resource protected
by the Data Subject is to be treated after access is granted. The preferences are expressed by
means of a set of Authorizations and Obligations, just like DataHandlingPolicy. When access
to the resource is requested, the DataHandlingPreference element has to be matched against a
proposed DataHandlingPolicy to derive the applicable StickyPolicy – if a match can be found.
An important difference between DataHandlingPreference and DataHandlingPolicy is the
resource that they pertain to: DataHandlingPreference always describe how the resource
protected by the Data Subject itself has to be treated after being collected.,While
DataHandlingPolicy pertain to inform that a requester will have to reveal information in order
to be granted access to the resource.
The main use of DataHandlingPreference is for a Data Subject to specify how she wants her
PII to be treated by a Data Controller, i.e., which Authorizations she grants to the Data
Controller with respect to her personal data, and which Obligations the Data Controller will
have to adhere to.
Optionally, if the DataHandlingPreference contain a AuthorizationDownstreamUsage, this can
be interpreted by, optionally, including a Policy specifying the downstream access control
policy, i.e., the access control policy that has to be enforced on the downstream data
controllers.

Sticky Policies
The StickyPolicy element is associated to a resource, meaning the agreed-upon sets of granted
authorizations and promised obligations with respect to a resource. The StickyPolicy is usually
the result of an automated matching procedure between the Data Subject’s
DataHandlingPreference and the Data Controller’s DataHandlingPolicy.
The main difference between the StickyPolicy and the DataHandlingPreferences is that the
former contains the Authorizations and Obligations that the policy-hosting entity itself has to
adhere to, while the latter contains Authorizations and Obligations that an eventual recipient
has to adhere to. Typically, a Data Subject will not impose on his or her self any Authorization
or Obligation concerning her own PII, so her policy will not contain a StickyPolicy element.
The Data Controller, on the other hand, will describe in the StickyPolicy the Authorization and
Obligation that she, herself, has to adhere to, while the DataHandlingPreferences contain those
that a Downstream Data Controller has to adhere to. Usually, the Downstream Data Controller
(Third Party) will be subject to the same or stronger restrictions than the Data Controller
herself, meaning that the policy specified in the DataHandlingPreferences will usually be at
most as permissive as the policy specified in the StickyPolicy.

Obligations
The data handling policies, preferences, and sticky policies contain a set of Obligations. An
Obligation is defined as: “A promise made by a Data Controller to a Data Subject in relation to
the handling of her PII. The Data Controller is expected to fulfill the promise by executing
and/or preventing a specific action after a particular event, e.g. time, and optionally under
certain conditions".
An obligation is often defined as Event-Condition-Action:

 On Event If Condition Do Action.

For facilitating the comparison of Obligations, we consider Triggers as events filtered by
conditions. In other words, we replace the notions of events and conditions by Trigger. The
Triggers are events that are considered by an obligation and can be seen as the set of events

23

that result in actions. Additionally, in order to simplify obligations management, we specify a
validity period for each obligation: Do Action when Trigger (from Start to End)
For example, we can define “Do {Notify User} when {User’s personal data is read} (from .. to
..)”. Obligations are thus defined as a set of Triggers, an Action.
Obligations in PPL language, consists of a set of Obligation elements. This latter defines a set
of Triggers describing the events that trigger the obligation, and the related Action that has to
be performed.
The reason that we didn’t choose to use the standard XACML Obligations element to specify
the obligations that we embed in the data handling policies or preferences, is that XACML
Obligations can only be used to specify obligations that the PEP has to adhere to when an
access request occurs for the resource that is protected by this rule. This cannot be used for our
data handling policies, since the latter pertain to information that the requestor will have to
reveal in order to obtain access, rather than to the resource being protected. It cannot be used
for our data handling preferences either, since the latter specify obligations that the recipient of
the resource has to adhere to, rather than the PEP that is protecting access to the resource.
Meaning, by populating the XACML:Obligations element that protects her personal data, a
Data Subject would impose obligations that she herself has to adhere to each time a Data
Controller requests access to the personal data, rather than imposing obligations on the Data
Controller.
The only use that we could have had for the XACML:Obligations element is to store and
enforce those obligations, that the Data Controller committed to in an agreed-upon sticky
policy that are triggered by access requests. Since obligations triggered by access requests are
only a small subclass of the obligations that we consider here, we chose to leave the storage
and enforcement of obligations entirely up to the obligation Engine, and let the PEP simply
signal the obligation Engine each time an access request occurs.

Authorizations
DataHandlingPolicy, DataHandlingPreference, and StickyPolicies contain, apart from the set
of Obligations described above, also a set of Authorizations. While obligations specify actions
that the Data Controller is required to perform on the transmitted information, authorizations
specify actions that it is allowed to perform. Similarly to what we did for obligations, we
recognize that it is impossible to define an exhaustive list of authorizations that covers all
needs that may ever arise in the real world. Rather, we define a generic, user-extensible
structure for authorizations so that new, possibly industry-specific authorization vocabularies
can be added later on. We do provide however a basic authorization vocabulary for using data
for certain purposes and for downstream access control (to forward the information to third
parties), and we describe how these authorizations can be efficiently matched via a general
strategy.

• Authorization Purposes: The first concrete authorization type that we define is the
authorization to use information for a particular set of purposes. Purposes are referred
to by standard URIs specified in agreed-upon vocabularies of usage purposes. These
vocabularies of URIs may be organized as flat lists or as hierarchical ontologies.

• Authorization for downstream usage: The second concrete authorization type that
we define is the authorization to forward the information to third parties, so-called
downstream data controllers. Optionally, this authorization enables the data subject to
specify the access control policy under which the information will be made available,
i.e., the minimal access control policy that the (primary) data controller has to enforce
when sharing the information with downstream data controllers.

24

4.2 Defining matching rules

This section describes the matching rules, by means of how a Data Controller’s proposed data
handling policy (DHPolicy) is matched with a Data Subject’s required data handling
preferences (DHPreferences). Matching is generally done by the Data Subject but, depending
on the trust model, may occur at Data Controller-side.
Note that the same mechanism is used by a Data Controller in order to decide whether a
collected piece of data can be shared with a third party (downstream data controller). In this
case, the Data Controller matches the proposed DHPolicy of the downstream Data Controller
with committed DHPreferences attached to a piece of personal data.
Matching service's privacy policy ‘PS’ with user's privacy preference ‘PU’ is necessary to
inform the user under which condition his PII should be used. We express the fact that policy
PS is less (or equally) permissive than preference PU as PS ⊴ PU. This intuitively means that
PS provides less (or equal) authorizations than PU and that PS defines more (or equal)
obligations than PU. Note that PS ⋬ PU does not imply PU ⊴ PS. We define a service data

handling policy as the set of authorizations and a set of obligations. We define PS ⊴ PU as

following:

L:Policy ⊴ R:Policy ⇔ ((L.authorizations ⊴ R.authorizations) ∧ (L.obligations ⊴

R.obligations))

This can be read as left-side policy (L) is less (or equally) permissive than right-side policy (R)
if and only if the set of authorizations specified in the left-side policy (L.authorizations) is less
(or equally) permissive as the set of authorizations specified in the right-side policy
(R.authorizations) and the set of obligations specified in the left-side policy (L.obligations) is
less (or equally) permissive as the set of obligations specified in the right-side policy
(R.obligations). The meaning of less permissive for a set of authorizations and obligations is
defined below.
This means that a policy (e.g. service policy PS) is less restrictive than another policy (e.g. user
preferences PU) when the list of authorizations and the list of obligation are more restrictive.
The matching function for lists of rights is:

L:ListAuthorizations ⊴ R:ListAuthorizations ⇔ ∀ (i ε L) : ∃ (j ε R) where (i ⊴ j)

This means that for each authorization in the policy, there exists a more permissive
authorization in the preferences.
The matching function for obligations is quite different:

L:ListObligations ⊴ R:ListObligations ⇔ ∀ (j ε R) : ∃ (i ε L) where (i ⊴ j)

This means that for each obligation in the preferences, there exists a less permissive obligation
in the policy. Obligations are compared as following:

25

L:Obligation ⊴ R:Obligation ⇔ (((L.action ⊴ R.action) ∧ (L.triggers ⊴ R.triggers)) ∧

(L.validity ⊴ R.validity))

Where “action” is the action resulting from the obligation, “triggers” is the list of triggers
resulting in the execution of the action, and “validity” is the validity period of the obligation.
Validities are compared as follows:

L:Validity ⊴ R:Validity ⇔ ((L.start ≤ R.start) ∧ (L.end ≥ R.end))

The matching function for a list of triggers is:

L:ListTriggers ⊴ R:ListTriggers ⇔ ∀ (b ε R) : ∃ (a ε L) where (a ⊴ b)

In other words, for a given obligation, all triggers in the preferences must be in the policy, but
the policy can specify other triggers.

26

Chapter 5

5.Use Case

To explain in a more easy way how the PPL engine works, we present a scenario that describes
a subscription to an online shopping website. We present in Figure 5 the different information
exchanged between the different parties using the entities format presented in the domain class
diagram above.
Alice is a privacy-aware user who regularly shops online, but who is concerned about what
happens to the data that she provides about herself. Before starting shopping online, she has to
create an account at an online store store.example.com (step 1). In order to validate her
subscription, the online store will need to collect some personal information, namely her
(uncertified) e-mail address and her street address as stated on her identity card..

Figure 5: Domain sequence diagram

This information is contained in an access control policy (step 2 and 3). The online store will
send this policy to Alice (sequence 4), together with the privacy policy related to the requested

27

personal data, and an assertion proving the authenticity of the web store and its privacy seals.
The access control and data handling policy sent to Alice will contain these elements:

• Policy

o Target (represents the assertions about the Data Controller):

� Subject:- ID: store.example.com

- EuroPriSe privacy seal: true

o ProvisionalAction:

� Reveal [e-mail] Under DataHandlingPolicy [DHPolicy1]

� Reveal [id.address
3
] Under DataHandlingPolicy [DHPolicy1] and should

be certified by a credential

� Reveal [cc.number
4
] Under DataHandlingPolicy [DHPolicy2] and should

be certified by a credential

� Reveal [cc.exp] Under DataHandlingPolicy [DHPolicy2] and should be

certified by a credential

o DHPolicy1:

� Use for purposes: Statistics, Administration, Marketing

� Can pass the data to Downstream usage: yes

� Obligation: Delete after 1 year

o DHPolicy2:

� Use for purpose: Payment

� Obligation: Delete within 1 month

o CredentialRequirements:

� Credential id::NationalID by fgov.be

� Credential cc::CreditCard by visa.com or amex.com

� Condition: id.birthdate < today – 18Y and cc.exp > today and id.name

= cc.name

After receiving this resource request, Alice’s PPL Engine will process the policy by first
checking if the required credentials can be provided (step 5 and 6). Suppose that her credential
store contains one Belgian eID card, one Visa credit card and one American Express credit
card, so that Alice has two possible ways of satisfying the policy: either by using her eID card
and Visa card, or by using her eID card and American Express card. For both combinations,
let’s suppose that the proposed website privacy policy is matched with Alice’s privacy
preferences for the different requested attributes. Alice eID card (all attributes), and uncertified
e-mail preferences contain these elements:

• Policy

o Target (represent the access control):

� Permit : any subject, any action

3 Id.address : the address under the identity identification
4 cc: means credit card. cc.number: means the credit card number

28

o DHPreference:

� Use for purposes: Statistics, Administration, Marketing, Contact, Account

� Can pass the data to Downstream usage: yes, with this restriction

• Policy (Europrise privacy seal, any action)

• Purpose: Contact, Marketing

• Obligation: Delete after 3 months

� Obligation: Delete after 1 year

Alice credit card preferences contain these elements:
• Policy

o Target (represent the access control):

� Permit : any subject, any action

o DHPreference:

� Use for purposes: Payment

� Can pass the data to Downstream usage: no

� Obligation: Delete within 7 days

Alice’s matching engine generates two possible claims that she can reveal to obtain access, one
using her Visa Card and one using her American Express card. She is notified however that the
proposed retention time of 1 month for the credit card number is longer than the 7 days that she
specified in her preferences. She chooses (step 7) to use her Visa card to authenticate and
agrees to overrule her preferences regarding the retention time of the credit card number,
resulting in the following claim to be transported to the online store:

• Policy

o Target: Europrise privacy seal, any action

o StickyPolicy1:

� Purpose: Statistics, Administration, Marketing

� Downstream usage: yes, with restriction - Policy (Europrise privacy seal,

any action)

• Purpose: Contact, Marketing

• Obligation: Delete (3 months)

� Obligation: Delete (1 year)

o StickyPolicy2:

� Purpose: Payment

� Obligation: Delete within 1 month

o Credentials:

� Credential id::NationalID by fgov.be

� Credential cc::CreditCard by visa.com or amex.com

� Condition: id.birthdate < today – 18Y and cc.exp > today and id.name

= cc.name

o ProvisionalAction:

� RevealUnderDHP (e-mail = ”alice@example.com”, StickyPolicy1)

29

� RevealUnderDHP (id.address = “Kerkstraat 1, 1000 Brussel”,

StickyPolicy1)

� RevealUnderDHP (cc.number = “1234 005678 90”, StickyPolicy2)

� RevealUnderDHP (cc.expirationdate = “2011-02-28”, StickyPolicy2)

The online store receives Alice’s personal data and its sticky policy (step 8). First, the PPL
Engine verifies by the credential handler Alice’s credentials (step 9), after that the data will be
used to create Alice’s account. Then the PIIs are stored in a secure repository with a pointer to
their respective sticky policy. Finally, the online store configures the actions and the triggers
related to the obligations defined in the sticky policy.
The online travel agency (www.travel.example.com) decided to start an e-mail advertising
campaign. In order to target a wide scope of persons, the www.travel.example.com admin
asked his partner store.example.com (step 10) to provide him with valid e-mail addresses for
marketing and statistics purposes. The request will contain a resource query for e-mail and a
privacy policy:
- DHPolicy:

o Purpose: Marketing, Statistics

o Obligation: Delete within 2 months

The policy engine of store.example.com will match the privacy policy of travel.example.com
with the sticky policy related to the e-mail of Alice (step 11), and will conclude that access
must be refused, because the sticky policy does not allow to forward for the purpose of
statistics (marketing alone would have been allowed though).
In general, the full matching occurs between travel.example.com’s policy and
store.example.com’s preferences, then between travel.example.com policy and Alice sticky
policy.

The shipping company shipping.example.com needs to get in touch with Alice to inform her of
the tracking number of her package. The shipping company requests access to Alice’s email
address, with the following privacy policy:
- DHPolicy:

o Purpose: Contact

o Obligation: Delete within 7 days

After the matching, a new sticky policy will be generated from the matching result:
- StickyPolicy:

o Purpose: Contact

o Obligation: Delete in 7 days

The shipping.example.com website receives the e-mail address of Alice with a sticky policy
and configures the actions and the triggers related to the obligations, after storing the PII and
the sticky policy in a secure manner.

30

31

Chapter 6

6.Demo

6.1 Getting Started With the Demo

In this section we explain how to install and execute the Demo proof of concept of the PLL engine.
We decided to add a web interface in the scenario in order to make more user friendly the
interaction with the engine. For this version of the engine, since the policy editor is not yet ready,
the tester has to check manually the XML policies that are used and generated by the engine. The
idea here is to deploy the PPL engine on the Data Controller and the Data Subject sides and execute
a simple scenario of a registration to a website. The scenario is quite simple, but the idea here is to
play with this tool by verifying the generated policies, sticky policies and claims. The user of this
demo can modify the policies and the preferences and observe the behaviour of the engine. For
some integration reasons the Credential Handler is not yet connected to the PPL engine and does
not work for this Demo.

6.1.1 System Requirement

First of all copy the zip file , extract the archive on your local folder that we will call
$root.

6.1.1.1 Database

We used the MySQL 5.1.43 database (should be changed for the final deliverable). In order to
manage this database we used the EasyPHP 5.3.2 package that includes the Apache HTTP web
server, PHP, MySQL and phpMyAdmin. You can find the installation file for EasyPHP 5.3.2
in the $root /Install folder of the deliverable or at this url:
http://www.easyphp.org/download.php

6.1.1.2 .Net Framework 4

32

The obligation handler and the obligation matching engine are launched as Web Services
running over the .Net framework. You can find the installation file for the .Net Framework 4 in
the $root /Install folder of the deliverable or at this url: http://www.microsoft.com/net/

6.1.1.3 Java VM

The executable for the PPL engine requires Java
version 1.6.0_18. In order to install it you can use
the JDK file in the $root /Install folder called jdk-
6u18-windows-i586.exe or go to this url:
http://www.oracle.com/technetwork/java/javase/dow
nloads/jdk6-jsp-136632.html

6.1.1.4 Mozilla Firefox 4 Beta 3

The demo is web-based and the user interface should
be displayed in a browser. The user interface is a Firefox Plug-in that is compatible with the
Firefox 4 Beta 3 version. For this reason this version of the browser must be installed and the
setup file can be found in the $root /Install folder or go to this url: http://www.mozilla.com/en-
US/firefox/4.0b3/releasenotes/ . If an automatic update of the browser is asked, you have to refuse
it.

6.1.1.5 PPL Firefox Plug-in

This plug-in is only available in the Install directory under the name
PrimeLifePolicyUI.V4.2.xpi

In order to install the plug-in you just have to drag and drop this file into the Firefox browser.
In order to configure it please do the following. This has to be done only once. Go to Firefox:
Choose Tools >> PrimeLife Policy UI; in preference tab please set PPL Engine URL to
http://127.0.0.1:9477/controller/. Verify thet the API call suffix box is empty

6.1.2 Installation of the Demo
6.1.2.1 Creating the persistence database

Launch your MySQLAdmin session from you’re my SQL application (Figure 6 shows the
admin interface of the EasyPHP application) . In your admin interface you have to import the
SQL files $root //sql/ppl.sql and /sql/ppl-dc.sql if the admin interface does not have an import
function, just edit the two files in Notepad, copy the contents and execute it as an SQL query in
phpMyAdmin.

33

Figure 6: Creating the persistence database

Figure 6 shows how to create the databases using the Easyphp admin tool.

Figure 7 shows how to check if the persistence database is created and where to find the PII
elements stored these.

Figure 7: Checking the PIIs in the database

6.1.2.2 Starting the Demo

To run the demo, please launch:

34

1. Run the installer “/Obligation Matching Engine/PrimeLife Obligation Matching
Engine.msi (this installer is only executable on Vista and Windows 7)

2. Check if the obligation engine is running on the application on your Start-> Programs
menu of Windows

3. Lauch the Data Subject’s Server ($root /ds/ds.bat)

4. Launch the Data Controller Server ($root /dc/dc.bat)

The Firefox on http://localhost:8081/

6.2 Scenario

The task for the demo is to register a new user. The process works as follows.

1. Please click on the Register Link in the Login box on the main page. (Figure 8)

2. The Register page (register.html) will open. After some time (at few seconds), the
PrimeLife plugin overlay shows the result of the policy matching. (Figure 9).
IMPORTANT: don not fill the form, everything will be done automatically.

3. In case there are mismatches accept the mismatch and click on send (Figure 10).

4. After some seconds, the success-page opens and you will find links to the sticky
policies. (Figure 11). After displaying the result page, you can click on the links in
order to see what are the PII collected by the DC and under which sticky policy they
are handled.

5. To try again, you can use the link Restart.

35

Figure 8: Clique page

Figure 9: PrimeLife plug-in dialog

36

Figure 10: Mismatching example

Figure 11: Display result for accessing resource

6.3 Playing and Changing the Configuration of the Demo

To change the policy preferences on the client side, you can edit the $root //pii-
import/preferences/DemoPii.xml and the corresponding preference files. Initially we provide
the files $root //pii-import/preferences/AddressPreferences.xml and $root //pii-
import/preferences/EmailPreferences.xml. All these files can be found in the resource folder.
These files must be imported to the client database (ppl) by running $root //pii-import/pii-
import.bat.

NOTE: To make the changes take effect, please re-launch the DS Server (/ds/ds.bat) after
the import.

Examples:

- Add a new PII to the DemoPii.xml

37

- Create file DemoPreferences.xml, using AddressPreferences.xml as a draft and modify the
authorization preferences in DemoPreferences.xml:

o allow DownstreamUsage or

o change the purpose from individual-analysis to e.g. statistics

- Change the $root //dc/policies/DCtoDSpolicy.xml (that is the DC privacy policy related to
the Clique Website) to ask for the postal code by adding a provisional action. You may
also add a new DataHandlingPolicy which matches with your privacy preferences in order
to get a matching.

In order to see the content of the sticky policy that is generated after every matching go to the sub-
folder $root //ds/sticky_policies

In order to see the claims sent by the DS to the DC go to the subfolder $root //dc/claims

38

39

Chapter 7

7.PPL Engine Data Model

In this section we define all the implementation details of the PPL engine. We are using class
and package diagrams to describe in detail how the different components of the engine are
implemented and how the communication between different entities (sometimes developed by
different partners of the project) are done.

In order to facilitate the manipulation of the different elements of the XML policy we decided
to map all these elements into Java classes. These classes are then stored into the persistence
database and called as soon as we need to read, modify or generate a new policy. for example
if we want to generate a sticky policy, after matching a privacy policy and a preference, we call
all the classes related to the elements of this sticky policy and we generate an XML file. This
method is less complex than the selection and assembling of pure XML elements. In this
chapter all the PPL language elements are describes as Java classes.

7.1 Data model package diagram

The package diagram is used to represent the dependencies between the different packages.

40

Figure 12: Data model package diagram

The Figure 12 represents the dependencies between the packages that we will describe in the
next section.
For the next sections, we define the PPL prefix of one element to define that it as a PrimeLife
element, and the XACML prefix for the XACML elements.

7.1.1 Package pii

The package pii contains the data class to represent the PII. It’s constituted by the PIIType
class. The PPIType is used to represent the Personally Identifiable Information (PII) in a
simple way.

41

Figure 13: Simplified PII package

This class is composed by:
- The AttributeName element, describing the name identifier of the PII, for example,

http://www.w3.org/2006/vcard/ns#email which indicates the email PII, or also
http://www.fgov.be/eID/address to indicates the address information;

- The AttributeValue element, describing the value of the PII, for example if we consider the
previous AttributeName examples, we can have mail@mail.com as a value corresponding
to the http://www.w3.org/2006/vcard/ns#email AttributeValue;

- CreationDate and DateModification, describing some extra date information to the user.

7.1.2 Package policy.Impl

This package contains all the data classes to represent the skeleton of the language data
structure.

42

Figure 14: Simplified policy data model class diagram

At the high level, we have the PPL PolicySetType and PPL PolicyType elements that
successively extend the XACML PolicySet and the XACML Policy classes. The latter are
present in the XACML package, and the former implements the PPLEvaluatable interface.
The use of PPLEvaluatable interface is to provide a generic way to define a ‘Policy, because a
Policy can be defined by either the PolicySetType class or by the PolicyType class.
The PolicySetType class is a top level element. It is an aggregation of other PolicySetsType’s
and PolicyType’s. And the PolicyType class is an aggregation of other PolicyType’s and
RuleType’s elements.
The PolicySetType, PolicyType and RuleType classes are composed of a different class;
CommonDHPSPType, which is a generic class for the DataHandlingPolicy,
DataHandlingPreferences and StickyPolicy classes, CredentialRequirements class and
ProvisionalActions class.
As the DataHandlingPolicyType, the DataHandlingPreferencesType and the StickyPolicyType
classes represent the same data structure, and they are only different from the interpretation
meaning, they extends the generic class, CommonDHPSPType.

43

The CommonDHPSPType consists of a set of authorizations, defined by the
AuthorizationsSetType class, and a set of obligations, expressed in the ObligationsSet class
(defined in the next section).
The AuthorizationsSetType class is composed of a set of authorizations defined by the abstract
class AuthorizationType. This is due to that our language supports an extensible authorization
vocabulary, but we predefine two concrete authorization types here. The first is the
authorization to use the information for a list of purposes, enumerated inside the
AuthzUseForPurpose class. The second predefined authorization type
,AuthzDownstreamUsage, contains a Boolean attribute indicating whether downstream usage is
allowed or not in association with a PolicyType attribute that represents the policy preferences
for the third party.
The ProvisionalActionsType class is composed by a set of ProvisionalActionType. This latter
describes a single provisional action that needs to be fulfilled in order to satisfy a rule. The
ProvisionalActionType class contains the ActionId attribute and a set of xacml AttributeValue.
The ActionId attribute represent the identifier (URI) of the action to be performed. The set of
the XACML AttributeValue represents arguments of the action, which may include other
functions. The semantics of the argument depend on the particular action being performed.
Some actions are defined:

• http://www.primelife.eu/Reveal: This action requires the Data Subject to reveal an
attribute. The attribute could be part of one of her credentials, or could be a self stated,
uncertified attribute. The action takes one or two arguments of data-type
http://www.w3.org/2001/XMLSchema#anyURI. The first (mandatory) argument is the
URI of the attribute to be revealed. The second (optional) argument is a URI referring
to the credential identifier (CredentialID)of the credential that contains the attribute.

• http://www.primelife.eu/RevealUnderDHP: This action requires the Data Subject to
reveal an attribute while specifying the data handling policy that will be applied to the
attribute after it is revealed. The attribute could be part of one of her credentials, or
could be a self-stated, uncertified attribute. The action takes two or three arguments of
data-type http://www.w3.org/2001/XMLSchema#anyURI. The first (mandatory)
argument is the URI of the attribute to be revealed. The second (mandatory) argument
is a URI referring to the data handling policy under which the attribute has to be
revealed. The third (optional) argument is a URI referring to the credential identifier of
the credential that contains the attribute.

• http://www.primelife.eu/RevealTo: This action requires the requestor to reveal an
attribute to an external third party. The attribute could be part of one of her credentials,
or could be a self-stated, uncertified attribute. The action takes two or three arguments
of data-type http://www.w3.org/2001/XMLSchema#anyURI. The first (mandatory)
argument is the URI of the attribute to be revealed. The second (mandatory) argument
is the URI defining the third party to whom the attribute will be revealed. The third
(optional) argument is a URI referring to the credential identifier of the credential that
contains the attribute.

• http://www.primelife.eu/RevealToUnderDHP: This action requires the Data Subject to
reveal an attribute to an external third party while specifying the data handling policy
that will be applied to the attribute after it is revealed. The attribute could be part of
one of her credentials, or could be a self-stated, uncertified attribute. The action takes

44

three or four arguments of data-type http://www.w3.org/2001/XMLSchema#anyURI.
The first (mandatory) argument is the URI of the attribute to be revealed. The second
(mandatory) argument is the URI defining the third party to whom the attribute will be
revealed. The third (mandatory) argument is a URI referring to the data handling
policy under which the attribute has to be revealed. The fourth (optional) argument is a
URI referring to the credential identifier of the credential that contains the attribute.

• http://www.primelife.eu/Sign: This action requires the requestor to sign a statement
before accessing the resource. How the signature is implemented depends on the
underlying technology, but carries the semantics that a verifier can check later that
some Data Subject satisfying the policy explicitly agreed to the statement. The action
takes a single argument of data-type http://www.w3.org/2001/XMLSchema#string
describing the statement that needs to be signed.

• http://www.primelife.eu/Spend: This action requires the requestor to “spend” one of
her credentials, thereby imposing restrictions on now many times the same credential
can be used in an access request. The action takes four mandatory arguments. The first
is of data-type http://www.w3.org/2001/XMLSchema#anyURI and contains the
CredentialId of the credential that has to be spent. The second and third arguments are
of data-type http://www.w3.org/2001/XMLSchema#integer. The second argument is
the number of units that have to be spent for this access; the latter is the spending limit,
i.e., the maximum number of units that can be spent with this credential on the same
scope. The fourth argument is of data-type
http://www.w3.org/2001/XMLSchema#string and defines the scope on which the
credential has to be spent.

7.1.3 Package Credential

45

Figure 15: Simplified Credential data model class diagram

The CredentialRequirementsType class is composed of a set of credentials and conditions.
Each individual credential is a condition within a credential.
The PPL ConditionType class contains an abstract attribute of type XACML:Expression. This
latter class provides a way to define an obligation within a credential.
The CredentialType class is used to declare a credential that has to be held by an access
requester. It contains a CredentialId attribute that identifies the credential element and is in
relation of 1..0 with the UndisclosedExpressionType class. This class acts as a placeholder to
indicate that a credential condition was omitted due to policy sanitization.
Also, the CredentialType class is related to the AttributeMatchAnyOfType class. This class can
specify conditions directly within the CredentialType class.
The AttributeMatchAnyOfType class is used for matching a given attribute with a list of values,
whereby for every list element an individual matching algorithm is used.
Although in principle any attribute can be matched, the AttributeMatchAnyOf construction is
particularly useful for providing lists of accepted credential types or issuers. Clearly, if no
credential types are explicitly specified, then any credential type that contains the necessary
attributes can be used to satisfy the policy. If no issuers are satisfied, then credentials by any
issuer are accepted.
The element AttributeMatchAnyOfType class contains the following attributes; AttributeId
which determine the name of the attribute in this credential that is matched against the list of
values, disclose attribute, the type of policy disclosure used for this element when this policy is
sent to the Data Subject. Possible values are “yes”, “no”, and ”attributes-only”. When the
attribute is omitted, the default value “yes” is assumed.
When set to “yes”, this AttributeMatchAnyOf element is sent unmodified to the Data Subject.
When set to “no”, this AttributeMatchAnyOf element is sanitized by means of the following
substitutions:
- The value of AttributeId is replaced with “undisclosed”.
- Each MatchValue child element within this AttributeMatchAnyOf element is replaced with

an UndisclosedExpression element.

46

When set to “attributes-only”, then only the latter substitution is performed, i.e., all
<MatchValue> child elements are replaced with an UndisclosedExpression element. See
appendix policy sanitization.
The MatchValueType class defines a literal value against which the given attribute (specified
with AttributeId in the parent AttributeMatchAnyOf element) is matched as well as the
matching algorithm that is used. The class contains the following attributes;

• MatchId that indicates the name of the matching algorithm that is used to match the
attribute with the literal.

• DataType attribute of the literal value against which the attribute will be matched
• Disclose attribute that defines the type of policy disclosure used for this element when

this policy is sent to the Data Subject. Possible values are “yes” and “no”.

7.1.4 Package Obligation

The obligation package contains all the data classes to define obligations. The main class in
this package is ObligationsSet class which is composed of a set of Obligation objects. Each
Obligation contains one TriggerSet, which in turn contains a set of Trigger objects describing
the events that trigger the obligation, and one Action element defining the action that has to be
performed.

47

Figure 16: Simplified obligation data model class diagram

There are different types of triggers that extend the abstract class Trigger, and also, different
types of actions that extend the abstract class Action.
The language and the design for defining obligation may be slightly different to express
obligations in Data Controller’s privacy policy, in Data Subject’s privacy preferences, and in
sticky policies.

• The Data Subject’s privacy preferences specifies “required obligations”, i.e. what the
Data Subject requires in terms of obligations to provide a given piece of personal data
to a given Data Controller.

48

• The Data Controller’s privacy policy specifies “proposed obligations”, i.e. what the
Data Controller is willing (and able) to enforce in terms of obligations for a given
collected data.

• The sticky policy specifies “committed obligations“, i.e. the obligations the Data
Subject and the Data Controller agreed upon and that must be enforced by the Data
Controller.

Here is a briefly description of some of the common triggers and actions:
• Trigger at Time: A time-based trigger that occurs only once between start and start +

maxDelay.
• Trigger Periodic : A time-based trigger that occurs multiple times on a periodic basis

between start and end.
• Trigger Personal Data Accessed for Purpose: An event-based trigger that occurs each

time the personal data associated with the obligation is accessed for one of the
specified purposes.

• Trigger Personal Data Sent : An event-based trigger that occurs when the PII
associated with the obligation is shared with a third party (downstream Data
Controller).

• Action DeletePersonalData : This action deletes a specific piece of information, and is
intended for handling data retention.

• Action NotifyDataSubject: This action notifies the Data Subject when triggered, i.e.
send the trigger information to the Data Subject.

• Action Log : This action logs an event, e.g. write in a trace file the trigger information.

7.1.5 Package StickyPolicy

The StickyPolicy package contains all the data classes to define the result of the matching
process. This package is composed of three sub-packages.

7.1.5.1 Sub-package impl

The sub-package impl of the sticky policy package contains the data structure skeleton of the
matching process result.
The StickyPolicy class represents the main component. It contains matching attribute which
indicate if the final matching is true (there’s matching) or not (there’s mismatch), and is
composed by different AttributeType elements.
The AttributeType class represents the data type of a matching PII. So, if in the policy we have
three revealing action, under some data handling policy, of three PII, we will have three
AttributeType objects within the StickyPolicy object. This class contains, as for the
StickyPolicy class:

• a matching attribute to indicate if the PII has a matching or not.
• an attributeURI element to represent the attribute name value of the PII, and composed

by:

49

o authorizationsSet element, which represent the authorizationSet stickyPolicy
of the matching

o obligationsSet element, which represent the obligationsSet StickyPolicy of the
matching process, and a mismatches element in cast that we have a mismatch
result of the matching.

• The MismatchesType class contains two types; authorizationsMismatch and
obligationsMismatch. These elements are only present if it occurs a mismatch of the
corresponding type. Each MismatchType is defined in a separate package, because the
PPL language is extensible, and the definition of the mismatch depends of the
DataHandling type.

Figure 17: Simplified Sticky policy data model class diagram

7.1.5.2 Sub-package Authorizations mismatch

50

Figure 18: Simplified authorization mismatch data model class diagram

51

The sub-package Authorization represents the data classes of the authorizations mismatch.
The AuthorizationsMismatchType class represents the main class. It contains a mismatchId
attribute that is used to be referred within the AuthorizationsSet element, and composed either
by the AuthorizationsSetMismatchType or with the two AuthzUseForPurposeType and
AuthzDownStreamUsageType together (or only one of the elements).
The Mismatch class is defined to help the engine and the UI to display the mismatching
elements and permit to the user to make a decision without being obliged to come back to his
preferences and compare it with the sticky policy.
We distinguish the authorization and the obligation mismatches using the two classes
AuthzUseForPurposeType and AuthzDownStreamUsageType . In some cases, we can have
either an authorization use for purpose mismatch either an authorization downstream usage
mismatch, or both together. To notify and describe the mismatch, we use the same concept
mentioned above, we indicates the policy values (which represent the data controller values)
and the preferences values (which represent the data subject values).

7.1.5.3 Sub-package Obligations mismatch

Figure 19: Simplified obligation mismatch data model class diagram

52

To notify and describe the mismatch, we use the same concept mentioned previously in the
authorization mismatch, we use the matching attribute to indicate whether a matching occurs
or not, and we indicates the policy values (which represent the data controller values) and the
preferences values (which represent the data subject values), in case of matching.

7.2 Detailed Sequence diagrams

Let suppose that the Data Subject wants to access a resource that is held by a Data Controller,
and makes a request. The controller will intercept this request, and notice that it’s a restricted
resource and needs some proof for that the access can be grant. the Data Controller asks the
PPL Engine to provide him the privacy policy corresponding to this resource. The PEP asks
the persistence handler for the resource privacy policy. The persistence handler makes a
request to the database to have the appropriate policy of the resource. Then, this policy is sent
to the DS.

Figure 20: Resource request sequence

The Data Subject UI intercepts the Data Ccontroller response and notices that it is a PPL
response and that contains a PPL privacy policy. This latter is then, send to the PEP bypassing
the PPL web server. The PEP starts to process this policy which is in a special format (SAML
[5] policy claim) to extract the different needed information. The way how SAML is used in
the message formatting is explained in the specification document [1]. The policy is then sent
to the Credential handler to process the credential part of the policy and returns a response
containing different claims combinations5.
After, the PEP formats the original policy claim, concatenates the combinations returned by the
credential handler and sends this new request to the PDP that will generate a response
containing a sticky policy.
The PDP will intercept the request . For each combination, the PDP generates a response
decision evaluation that contains the:

• sticky policy result of the matching process

5 Let’s consider an example to better explain the meaning of the combinations. Let’s suppose that we

have two credit cards (Visa and Master Card with different numbers and expiration dates), and we

suppose that the DC asks the DS to reveal the credit card information (card number, expiration date,

name…) the credential handler will provide two combinations. One with each credit card (because the

DS has two).

53

• list of the missing PII
• list of the PII that present a ‘Deny’ access
• list of the PII that present a mismatch
• list of the response result for each provisional action. This response will be used to

create the final response decision of the PDP.
The PDP uses:
• The provisional action handler to process the different provisional actions;
• The attribute enforcement class to make the enforcement of the requested PII and to

check whether the access can be granted or not.
• The matching handler to provide the sticky policy. The obligation handler is called at

this point to process the obligation matching.

After that, the PDP returns the final decision. The result is sent to the PEP that formats the
result into a claim policy and sends it to the web server that will redirect this response to the UI
to notify the DS about the decision and the matching result. The Data Subject, handle this
result either by accepting or denying the access.
if there is a mismatch, the user is informed about this mismatch and and has to possibility to
evaluate it regarding to his privacy preference, then create an exception to this communication
and sends the agreed sticky policy to the Data Controller.

Figure 21: DS policy handling sequence diagram

The Data Controller intercepts a resource request and includes the cryptographic proof for the
authentication.
Before the Data Controller grants access to the Data Subject , she has to verify the proof
regarding the resource policy.. The Data Controller sends the proof to the PEP then contacts
the credential handler to verify the authenticity of the requested attributes.
If all the verifications are successful, the obligation handler activates the different triggers.

7.3 Component diagram

Figure 22 presents the component diagram of the PPL Engine. The UI component represents
the user interface. It provides the Data Subject (respectively the Data Controller) with tools to
manage the PII -personal information-, (respectively the services, resources, web pages…) and

54

their corresponding preferences (respectively their policies). The UI notifies grafically the Data
Subject with the matching result, .

Figure 22: Component diagram

The UI component communicates with the PEP. It intercepts the request, and uses the
XMLProcessor component to convert the data from the XML data structure to a Java object, so
that the PPL Engine can process the enforcement. The PEP and the PDP components
communicates with the credential handler.
The PDP is composed of two subcomponents; Matching and the AC (Access Control)
components. The matching component contains the Java classes that perform the authorization
matching, and uses the subcomponent OME (Obligation Matching Engine) of the
ObligationHandler component for the obligation matching. The AC component performs the
access control enforcement, this done by delegating this functionality to the Heras XACML6
implementation component.
Apart from the OME subcomponent, the ObligationHandler component contains also the
Obligation Enforcement Engine (OEE) subcomponent.

6 Hears XACML is an open-source project that provides an XACML 2.0 implementation

55

8.Annex: XSD Policy Schema

In this annex we publish all the XSD schema used in the PPL engine.

XACML 2.0 schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os" xmlns:xacml-
context="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

 <xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemaLocation="access_control-xacml-2.0-policy-schema-os.xsd"/>

 <!-- -->

 <xs:element name="Request" type="xacml-context:RequestType"/>

 <xs:complexType name="RequestType">

 <xs:sequence>

 <xs:element ref="xacml-context:Subject"
maxOccurs="unbounded"/>

 <xs:element ref="xacml-context:Resource"
maxOccurs="unbounded"/>

 <xs:element ref="xacml-context:Action"/>

 <xs:element ref="xacml-context:Environment"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <xs:element name="Response" type="xacml-context:ResponseType"/>

 <xs:complexType name="ResponseType">

 <xs:sequence>

 <xs:element ref="xacml-context:Result"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <xs:element name="Subject" type="xacml-context:SubjectType"/>

 <xs:complexType name="SubjectType">

56

 <xs:sequence>

 <xs:element ref="xacml-context:Attribute" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="SubjectCategory" type="xs:anyURI"
default="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"/>

 </xs:complexType>

 <!-- -->

 <xs:element name="Resource" type="xacml-context:ResourceType"/>

 <xs:complexType name="ResourceType">

 <xs:sequence>

 <xs:element ref="xacml-context:ResourceContent"
minOccurs="0"/>

 <xs:element ref="xacml-context:Attribute" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <xs:element name="ResourceContent" type="xacml-
context:ResourceContentType"/>

 <xs:complexType name="ResourceContentType" mixed="true">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <!-- -->

 <xs:element name="Action" type="xacml-context:ActionType"/>

 <xs:complexType name="ActionType">

 <xs:sequence>

 <xs:element ref="xacml-context:Attribute" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <xs:element name="Environment" type="xacml-context:EnvironmentType"/>

 <xs:complexType name="EnvironmentType">

 <xs:sequence>

 <xs:element ref="xacml-context:Attribute" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <xs:element name="Attribute" type="xacml-context:AttributeType"/>

 <xs:complexType name="AttributeType">

57

 <xs:sequence>

 <xs:element ref="xacml-context:AttributeValue"
maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="AttributeId" type="xs:anyURI"
use="required"/>

 <xs:attribute name="DataType" type="xs:anyURI" use="required"/>

 <xs:attribute name="Issuer" type="xs:string" use="optional"/>

 </xs:complexType>

 <!-- -->

 <xs:element name="AttributeValue" type="xacml-
context:AttributeValueType"/>

 <xs:complexType name="AttributeValueType" mixed="true">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <!-- -->

 <xs:element name="Result" type="xacml-context:ResultType"/>

 <xs:complexType name="ResultType">

 <xs:sequence>

 <xs:element ref="xacml-context:Decision"/>

 <xs:element ref="xacml-context:Status" minOccurs="0"/>

 <xs:element ref="xacml:Obligations" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="ResourceId" type="xs:string"
use="optional"/>

 </xs:complexType>

 <!-- -->

 <xs:element name="Decision" type="xacml-context:DecisionType"/>

 <xs:simpleType name="DecisionType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Permit"/>

 <xs:enumeration value="Deny"/>

 <xs:enumeration value="Indeterminate"/>

 <xs:enumeration value="NotApplicable"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- -->

 <xs:element name="Status" type="xacml-context:StatusType"/>

 <xs:complexType name="StatusType">

 <xs:sequence>

 <xs:element ref="xacml-context:StatusCode"/>

58

 <xs:element ref="xacml-context:StatusMessage"
minOccurs="0"/>

 <xs:element ref="xacml-context:StatusDetail"
minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <xs:element name="StatusCode" type="xacml-context:StatusCodeType"/>

 <xs:complexType name="StatusCodeType">

 <xs:sequence>

 <xs:element ref="xacml-context:StatusCode" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="Value" type="xs:anyURI" use="required"/>

 </xs:complexType>

 <!-- -->

 <xs:element name="StatusMessage" type="xs:string"/>

 <!-- -->

 <xs:element name="StatusDetail" type="xacml-context:StatusDetailType"/>

 <xs:complexType name="StatusDetailType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <xs:element name="MissingAttributeDetail" type="xacml-
context:MissingAttributeDetailType"/>

 <xs:complexType name="MissingAttributeDetailType">

 <xs:sequence>

 <xs:element ref="xacml-context:AttributeValue"
minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="AttributeId" type="xs:anyURI"
use="required"/>

 <xs:attribute name="DataType" type="xs:anyURI" use="required"/>

 <xs:attribute name="Issuer" type="xs:string" use="optional"/>

 </xs:complexType>

 <!-- -->

</xs:schema>

PPL main schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="http://www.primelife.eu/ppl" xmlns:ppl="http://www.primelife.eu/ppl"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:ob="http://www.primelife.eu/ppl/obligation"

59

xmlns:cr="http://www.primelife.eu/ppl/credential"
targetNamespace="http://www.primelife.eu/ppl" elementFormDefault="qualified"
attributeFormDefault="unqualified">

 <xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemaLocation="access_control-xacml-2.0-policy-schema-os.xsd"/>

 <xs:import namespace="http://www.primelife.eu/ppl/credential"
schemaLocation="PrimeLifeCredential.xsd"/>

 <xs:import namespace="http://www.primelife.eu/ppl/obligation"
schemaLocation="PrimeLifeObligation.xsd"/>

 <!-- PolicySet -->

 <xs:element name="PolicySet" type="ppl:PolicySetType"
substitutionGroup="xacml:PolicySet"/>

 <xs:complexType name="PolicySetType">

 <xs:complexContent>

 <xs:extension base="xacml:PolicySetType">

 <xs:sequence>

 <xs:element ref="ppl:DataHandlingPolicy"
minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="ppl:DataHandlingPreferences"
minOccurs="0"/>

 <xs:element ref="ppl:StickyPolicy" minOccurs="0"/>

 <xs:element ref="cr:CredentialRequirements"
minOccurs="0"/>

 <xs:element ref="ppl:ProvisionalActions"
minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- -->

 <!-- Policy-->

 <xs:element name="Policy" type="ppl:PolicyType"
substitutionGroup="xacml:Policy"/>

 <xs:complexType name="PolicyType">

 <xs:complexContent>

 <xs:extension base="xacml:PolicyType">

 <xs:sequence>

 <!-- <xs:element ref="ppl:Rule"
maxOccurs="unbounded"/> -->

 <xs:element ref="ppl:DataHandlingPolicy"
minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="ppl:DataHandlingPreferences"
minOccurs="0"/>

 <xs:element ref="ppl:StickyPolicy" minOccurs="0"/>

 <xs:element ref="cr:CredentialRequirements"
minOccurs="0"/>

 <xs:element ref="ppl:ProvisionalActions"
minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- -->

60

 <!-- Rule -->

 <xs:element name="Rule" type="ppl:RuleType" substitutionGroup="xacml:Rule"/>

 <xs:complexType name="RuleType">

 <xs:complexContent>

 <xs:extension base="xacml:RuleType">

 <xs:sequence>

 <xs:element ref="ppl:DataHandlingPolicy"
minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="ppl:DataHandlingPreferences"
minOccurs="0"/>

 <xs:element ref="ppl:StickyPolicy" minOccurs="0"/>

 <xs:element ref="cr:CredentialRequirements"
minOccurs="0"/>

 <xs:element ref="ppl:ProvisionalActions"
minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- -->

 <!-- Common Type of DHP, DHPreferences and StickyPolicy DHPSP; Data Handling
Policy/Pref Sticky Policy-->

 <xs:complexType name="CommonDHPSPType">

 <xs:sequence>

 <xs:element ref="AuthorizationsSet" minOccurs="0"/>

 <xs:element ref="ob:ObligationsSet" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <!-- DataHandlingPolicy -->

 <xs:element name="DataHandlingPolicy" type="ppl:DataHandlingPolicyType"/>

 <xs:complexType name="DataHandlingPolicyType">

 <xs:complexContent>

 <xs:extension base="ppl:CommonDHPSPType">

 <xs:attribute name="PolicyId" type="xs:anyURI"
use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- -->

 <xs:element name="DataHandlingPreferences"
type="ppl:DataHandlingPreferencesType"/>

 <xs:complexType name="DataHandlingPreferencesType">

 <xs:complexContent>

 <xs:extension base="ppl:CommonDHPSPType"/>

 </xs:complexContent>

 </xs:complexType>

61

 <!-- -->

 <xs:element name="StickyPolicy" type="ppl:StickyPolicyType"/>

 <xs:complexType name="StickyPolicyType">

 <xs:complexContent>

 <xs:extension base="ppl:CommonDHPSPType"/>

 </xs:complexContent>

 </xs:complexType>

 <!-- -->

 <!-- List of Authorization -->

 <xs:element name="AuthorizationsSet" type="ppl:AuthorizationsSetType"/>

 <xs:complexType name="AuthorizationsSetType">

 <xs:sequence>

 <xs:element ref="Authorization" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="matching" type="xs:boolean" default="true"
use="optional"/>

 <xs:attribute name="mismatchId" type="xs:IDREF" use="optional"/>

 </xs:complexType>

 <!-- -->

 <!-- Authorization -->

 <xs:element name="Authorization" type="AuthorizationType" abstract="true"/>

 <xs:complexType name="AuthorizationType">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:any namespace="##any" processContents="lax"/>

 </xs:sequence>

 <xs:attribute name="matching" type="xs:boolean" default="true"
use="optional"/>

 <xs:attribute name="mismatchId" type="xs:IDREF" use="optional"/>

 <xs:anyAttribute/>

 </xs:complexType>

 <!-- -->

 <!-- Purposes -->

 <xs:element name="Purpose" type="xs:anyURI"/>

 <!-- -->

 <!-- Authorization: Use for purpose -->

 <xs:element name="AuthzUseForPurpose" substitutionGroup="Authorization">

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="AuthorizationType">

 <xs:sequence maxOccurs="unbounded">

 <xs:element ref="ppl:Purpose"/>

 </xs:sequence>

 </xs:restriction>

62

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- -->

 <!-- Authorization: Downstream usage -->

 <xs:element name="AuthzDownstreamUsage" substitutionGroup="Authorization">

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="AuthorizationType">

 <xs:sequence minOccurs="0">

 <xs:element ref="ppl:Policy"/>

 </xs:sequence>

 <xs:attribute name="allowed" type="xs:boolean"
use="optional"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- -->

 <!-- ProvisionalAction extension -->

 <!-- ProvisionalActions -->

 <xs:element name="ProvisionalActions" type="ppl:ProvisionalActionsType"/>

 <xs:complexType name="ProvisionalActionsType">

 <xs:sequence>

 <xs:element ref="ppl:ProvisionalAction" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- -->

 <!-- ProvisionalAction -->

 <xs:element name="ProvisionalAction" type="ppl:ProvisionalActionType"/>

 <xs:complexType name="ProvisionalActionType">

 <xs:sequence>

 <xs:element ref="xacml:AttributeValue" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ActionId" type="xs:anyURI" use="required"/>

 </xs:complexType>

 <!-- -->

</xs:schema>

PPL authorization schema

<?xml version="1.0" encoding="utf-8"?>

<xs:schema
 xmlns="http://www.primelife.eu/ppl/authorization/mismatch"

63

 xmlns:aumm="http://www.primelife.eu/ppl/authorization/mismatch"

 xmlns:ppl="http://www.primelife.eu/ppl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.primelife.eu/ppl/authorization/mismatch"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:import namespace="http://www.primelife.eu/ppl"
schemaLocation="PrimeLifeSchema.xsd" />

 <!-- Authorization Mismatch -->
 <xs:element name="AuthorizationsMismatch" type="aumm:AuthorizationsMismatchType"/>
 <xs:complexType name="AuthorizationsMismatchType">
 <xs:sequence>
 <xs:element ref="aumm:AuthorizationsSet" minOccurs="0" maxOccurs="1" />
 <xs:element ref="aumm:AuthzUseForPurpose" minOccurs="0" maxOccurs="1" />
 <xs:element ref="aumm:AuthzDownstreamUsage" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="mismatchId" type="xs:ID" use="optional"/>
 </xs:complexType>
 <!-- -->

 <xs:element name="AuthorizationsSet" type="aumm:AuthorizationsSetMismatchType"/>
 <xs:complexType name="AuthorizationsSetMismatchType">
 <xs:sequence>
 <xs:element name="Policy" type="ppl:AuthorizationsSetType" />
 <xs:element name="Preference" type="ppl:AuthorizationsSetType" />
 </xs:sequence>
 <xs:attribute name="mismatchId" type="xs:ID" />
 </xs:complexType>

 <xs:element name="AuthzUseForPurpose" type="aumm:AuthzUseForPurposeMismatchType"/>
 <xs:complexType name="AuthzUseForPurposeMismatchType">
 <xs:sequence>
 <xs:element name="Policy" type="aumm:PurposeListType" />
 <xs:element name="Preference" type="aumm:PurposeListType" />
 </xs:sequence>
 <xs:attribute name="mismatchId" type="xs:ID" />
 </xs:complexType>

 <xs:complexType name="PurposeListType">
 <xs:sequence>
 <xs:element ref="ppl:Purpose" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!-- -->

 <xs:element name="AuthzDownstreamUsage"
type="aumm:AuthzDownstreamUsageMismatchType"/>
 <xs:complexType name="AuthzDownstreamUsageMismatchType">
 <xs:sequence>
 <xs:element name="Policy" type="ppl:AuthorizationType"/>
 <xs:element name="Preference" type="ppl:AuthorizationType" />
 </xs:sequence>
 <xs:attribute name="mismatchId" type="xs:ID" />
 </xs:complexType>

</xs:schema>

PPL Obligation Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://www.primelife.eu/ppl/obligation"
elementFormDefault="qualified" attributeFormDefault="unqualified"
 xmlns="http://www.primelife.eu/ppl/obligation"

64

 xmlns:ob="http://www.primelife.eu/ppl/obligation"
 xmlns:ppl="http://www.primelife.eu/ppl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://www.primelife.eu/ppl"
schemaLocation="PrimeLifeSchema.xsd" />

 <xs:attribute name="match" type="xs:boolean" default="true"/>

 <!-- List of Obligations -->
 <xs:element name="ObligationsSet" type="ob:ObligationsSet"/>
 <xs:complexType name="ObligationsSet">
 <xs:sequence>
 <xs:element ref="ob:Obligation" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
 <xs:attribute name="infinit" type="xs:boolean" default="false" use="optional"/>
 <xs:attribute name="mismatchId" type="xs:string" use="optional"/>
 <xs:attribute name="elementId" type="xs:string" use="optional" />
 </xs:complexType>

 <!-- Obligation -->
 <xs:element name="Obligation" type="ob:Obligation" />
 <xs:complexType name="Obligation">
 <xs:sequence>
 <xs:element ref="ob:TriggersSet" minOccurs="1" maxOccurs="1" />
 <xs:element ref="ob:Action" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
 <xs:attribute name="mismatchId" type="xs:string" use="optional"/>
 <xs:attribute name="elementId" type="xs:string" use="optional" />
 </xs:complexType>

 <!-- List of Triggers -->
 <xs:element name="TriggersSet" type="ob:TriggersSet" />
 <xs:complexType name="TriggersSet">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element ref="ob:Trigger" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
 <xs:attribute name="mismatchId" type="xs:string" use="optional"/>
 <xs:attribute name="elementId" type="xs:string" use="optional" />
 </xs:complexType>

 <!-- Trigger (abstract) -->
 <xs:element name="Trigger" abstract="true" type="ob:Trigger" />
 <xs:complexType name="Trigger">
 <xs:sequence/>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
 <xs:attribute name="mismatchId" type="xs:string" use="optional"/>
 <xs:attribute name="elementId" type="xs:string" use="optional" />
 </xs:complexType>

 <!-- Action (abstract) -->
 <xs:element name="Action" abstract="true" type="ob:Action"/>
 <xs:complexType name="Action">
 <xs:sequence/>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
 <xs:attribute name="mismatchId" type="xs:string" use="optional"/>
 <xs:attribute name="elementId" type="xs:string" use="optional" />
 </xs:complexType>

 <!-- TriggerAtTime -->
 <xs:element name="TriggerAtTime" type="ob:TriggerAtTime"
substitutionGroup="ob:Trigger"/>
 <xs:complexType name="TriggerAtTime">

65

 <xs:complexContent>
 <xs:extension base="ob:Trigger">
 <xs:sequence>
 <xs:element name="Start" type="ob:DateAndTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- DateAndTime -->
 <xs:element name="DateAndTime" type="DateAndTime" />
 <xs:element name="Duration" type="Duration" />

 <xs:complexType name="DateAndTime">
 <xs:choice>
 <xs:element name="DateAndTime" type="xs:dateTime" minOccurs="1" maxOccurs="1" />
 <xs:element name="StartNow" />
 </xs:choice>
 <xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
 <xs:attribute name="mismatchId" type="xs:string" use="optional"/>
 <xs:attribute name="elementId" type="xs:string" use="optional" />
 </xs:complexType>

 <!-- Duration -->
 <xs:complexType name="Duration">
 <xs:sequence>
 <xs:element name="Duration" type="xs:duration" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
 <xs:attribute name="mismatchId" type="xs:string" use="optional"/>
 <xs:attribute name="elementId" type="xs:string" use="optional" />
 </xs:complexType>

 <!-- TriggerPeriodic -->
 <xs:element name="TriggerPeriodic" type="ob:TriggerPeriodic"
substitutionGroup="ob:Trigger"/>
 <xs:complexType name="TriggerPeriodic">
 <xs:complexContent>
 <xs:extension base="ob:Trigger">
 <xs:sequence>
 <xs:element name="Start" type="ob:DateAndTime" minOccurs="1" maxOccurs="1" />
 <xs:element name="End" type="ob:DateAndTime" minOccurs="1" maxOccurs="1" />
 <xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
 <xs:element name="Period" type="ob:Duration" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- TriggerPersonalDataAccessedForPurpose -->
 <xs:element name="TriggerPersonalDataAccessedForPurpose"
type="ob:TriggerPersonalDataAccessedForPurpose" substitutionGroup="ob:Trigger"/>
 <xs:complexType name="TriggerPersonalDataAccessedForPurpose">
 <xs:complexContent>
 <xs:extension base="ob:Trigger">
 <xs:sequence>
 <xs:element ref="ppl:Purpose" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- TriggerPersonalDataDeleted -->

66

 <xs:element name="TriggerPersonalDataDeleted" type="ob:TriggerPersonalDataDeleted"
substitutionGroup="ob:Trigger"/>
 <xs:complexType name="TriggerPersonalDataDeleted">
 <xs:complexContent>
 <xs:extension base="ob:Trigger">
 <xs:sequence>
 <xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- TriggerPersonalDataSent -->
 <xs:element name="TriggerPersonalDataSent" type="ob:TriggerPersonalDataSent"
substitutionGroup="ob:Trigger"/>
 <xs:complexType name="TriggerPersonalDataSent">
 <xs:complexContent>
 <xs:extension base="ob:Trigger">
 <xs:sequence>
 <xs:element name="Id" type="xs:anyURI" minOccurs="1" maxOccurs="1" />
 <xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- TriggerDataSubjectAccess -->
 <xs:element name="TriggerDataSubjectAccess" type="ob:TriggerDataSubjectAccess"
substitutionGroup="ob:Trigger"/>
 <xs:complexType name="TriggerDataSubjectAccess">
 <xs:complexContent>
 <xs:extension base="ob:Trigger">
 <xs:sequence>
 <xs:element name="url" type="xs:anyURI" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- TriggerDataLost -->
 <xs:element name="TriggerDataLost" type="ob:TriggerDataLost"
substitutionGroup="ob:Trigger"/>
 <xs:complexType name="TriggerDataLost">
 <xs:complexContent>
 <xs:extension base="ob:Trigger">
 <xs:sequence>
 <xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- TriggerOnViolation -->
 <xs:element name="TriggerOnViolation" type="ob:TriggerOnViolation"
substitutionGroup="ob:Trigger"/>
 <xs:complexType name="TriggerOnViolation">
 <xs:complexContent>
 <xs:extension base="ob:Trigger">
 <xs:sequence>
 <xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
 <xs:element ref="ob:Obligation" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

67

 <!-- ActionDeletePersonalData -->
 <xs:element name="ActionDeletePersonalData" type="ob:ActionDeletePersonalData"
substitutionGroup="ob:Action"/>
 <xs:complexType name="ActionDeletePersonalData">
 <xs:complexContent>
 <xs:extension base="ob:Action">
 <xs:sequence>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- ActionAnonymizePersonalData -->
 <xs:element name="ActionAnonymizePersonalData" type="ob:ActionAnonymizePersonalData"
substitutionGroup="ob:Action"/>
 <xs:complexType name="ActionAnonymizePersonalData">
 <xs:complexContent>
 <xs:extension base="ob:Action">
 <xs:sequence>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- ActionNotifyDataSubject -->
 <xs:element name="ActionNotifyDataSubject" type="ob:ActionNotifyDataSubject"
substitutionGroup="ob:Action"/>
 <xs:complexType name="ActionNotifyDataSubject">
 <xs:complexContent>
 <xs:extension base="ob:Action">
 <xs:sequence>
 <xs:element name="Media" type="xs:string" minOccurs="1" maxOccurs="1" />
 <xs:element name="Address" type="xs:string" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- ActionLog -->
 <xs:element name="ActionLog" type="ob:ActionLog" substitutionGroup="ob:Action"/>
 <xs:complexType name="ActionLog">
 <xs:complexContent>
 <xs:extension base="ob:Action">
 <xs:sequence>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- ActionSecureLog -->
 <xs:element name="ActionSecureLog" type="ob:ActionSecureLog"
substitutionGroup="ob:Action"/>
 <xs:complexType name="ActionSecureLog">
 <xs:complexContent>
 <xs:extension base="ob:Action">
 <xs:sequence>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

68

PPL Credential Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:cr="http://www.primelife.eu/ppl/credential"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.primelife.eu/ppl/credential" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemaLocation="access_control-xacml-2.0-policy-schema-os.xsd"/>
 <!-- CredentialRequirements extension (note: MatchValueType is modeled on
xacml:AttributeValueType) -->
 <xs:complexType name="MatchValueType" mixed="true">
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="MatchId" type="xs:anyURI" use="required"/>
 <xs:attribute name="DataType" type="xs:anyURI" use="required"/>
 <xs:attribute name="Disclose" type="cr:DiscloseType" use="optional"
default="yes"/>
 </xs:complexType>
 <xs:complexType name="AttributeMatchAnyOfType">
 <xs:sequence maxOccurs="unbounded">
 <xs:choice>
 <xs:element ref="cr:MatchValue" minOccurs="0"/>
 <xs:element ref="cr:UndisclosedExpression" minOccurs="0"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>
 <xs:attribute name="Disclose" type="cr:DiscloseType" use="optional"/>
 </xs:complexType>
 <xs:complexType name="CredentialType">
 <xs:sequence maxOccurs="unbounded">
 <xs:choice>
 <xs:element ref="cr:AttributeMatchAnyOf" minOccurs="0"/>
 <xs:element ref="cr:UndisclosedExpression" minOccurs="0"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="CredentialId" type="xs:anyURI" use="required"/>
 </xs:complexType>
 <xs:complexType name="CredentialRequirementsType">
 <xs:sequence>
 <xs:element ref="cr:Credential" maxOccurs="unbounded"/>
 <xs:element ref="cr:Condition" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ConditionType">
 <xs:sequence>
 <xs:element ref="xacml:Expression"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="MatchValue" type="cr:MatchValueType"/>
 <xs:element name="AttributeMatchAnyOf" type="cr:AttributeMatchAnyOfType"/>
 <xs:element name="Credential" type="cr:CredentialType"/>
 <xs:element name="CredentialRequirements" type="cr:CredentialRequirementsType"/>
 <xs:element name="Condition" type="cr:ConditionType"/>

 <xs:simpleType name="DiscloseType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 <xs:enumeration value="attributes-only"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="UndisclosedExpressionType" mixed="false">
 <xs:complexContent mixed="false">
 <xs:extension base="xacml:ExpressionType">

69

 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="AttributeId" type="xs:anyURI"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="CredentialAttributeDesignatorType" mixed="false">
 <xs:complexContent mixed="false">
 <xs:extension base="xacml:ExpressionType">
 <xs:attribute name="CredentialId" type="xs:anyURI"
use="required"/>
 <xs:attribute name="AttributeId" type="xs:anyURI"
use="required"/>
 <xs:attribute name="DataType" type="xs:anyURI"
use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="UndisclosedExpression" type="cr:UndisclosedExpressionType"
substitutionGroup="xacml:Expression"/>
 <xs:element name="CredentialAttributeDesignator"
type="cr:CredentialAttributeDesignatorType" substitutionGroup="xacml:Expression"/>
 <!-- Redefined XACML elements -->
 <xs:complexType name="PrimelifeApplyType" mixed="false">
 <xs:complexContent mixed="false">
 <xs:extension base="xacml:ApplyType">
 <xs:attribute name="Disclose" type="cr:DiscloseType"
use="optional" default="yes"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="Apply" type="cr:PrimelifeApplyType"
substitutionGroup="xacml:Apply"/>
</xs:schema>

PPL Sticky Policy Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.primelife.eu/ppl/stickypolicy"

 xmlns="http://www.primelife.eu/ppl/stickypolicy"

 xmlns:sp="http://www.primelife.eu/ppl/stickypolicy"

 xmlns:ppl="http://www.primelife.eu/ppl"

 xmlns:ob="http://www.primelife.eu/ppl/obligation"

 xmlns:obmm="http://www.primelife.eu/ppl/obligation/mismatch"

 xmlns:aumm="http://www.primelife.eu/ppl/authorization/mismatch"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemaLocation="access_control-xacml-2.0-policy-schema-os.xsd"/>

 <xs:import namespace="http://www.primelife.eu/ppl"
schemaLocation="PrimeLifeSchema.xsd"/>

 <xs:import namespace="http://www.primelife.eu/ppl/obligation"
schemaLocation="PrimeLifeObligation.xsd"/>

 <xs:import namespace="http://www.primelife.eu/ppl/obligation/mismatch"
schemaLocation="PrimeLifeObligationMismatch.xsd"/>

70

 <xs:import namespace="http://www.primelife.eu/ppl/authorization/mismatch"
schemaLocation="PrimeLifeAuthorizationMismatch.xsd"/>

 <xs:element name="StickyPolicy" type="sp:StickyPolicy"/>

 <xs:complexType name="StickyPolicy">

 <xs:sequence>

 <xs:element ref="sp:Attribute" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="matching" type="xs:boolean" default="true"
use="optional"/>

 </xs:complexType>

 <xs:element name="Attribute" type="sp:AttributeType"/>

 <xs:complexType name="AttributeType">

 <xs:sequence>

 <xs:element ref="ppl:AuthorizationsSet"/>

 <xs:element ref="ob:ObligationsSet"/>

 <xs:element ref="sp:Mismatches" minOccurs="0" maxOccurs="1" />

 <!-- <xs:element ref="obmm:ObligationsSet" minOccurs="0"/> -->

 </xs:sequence>

 <xs:attribute name="AttributeURI" type="xs:anyURI" use="optional"/>

 <xs:attribute name="matching" type="xs:boolean" default="true"
use="optional"/>

 <xs:attribute name="ID" type="xs:anyURI" use="optional"/>

 </xs:complexType>

 <xs:element name="Mismatches" type="sp:MismatchesType"/>

 <xs:complexType name="MismatchesType">

 <xs:sequence>

 <xs:element ref="aumm:AuthorizationsMismatch" minOccurs="0"/>

 <xs:element name="ObligationsMismatch" type="obmm:Mismatches"
minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

71

References

[1] H5.3.2 Draft 2nd Design for Policy Languages and Protocols. PrimeLife internal
deliverable. http://www.primelife.eu/images/stories/deliverables/h5.3.2-seconddesign.pdf

[2] eXtensible Access Control Markup Language (XACML) Version 3.0, April 2009. See
http://www.oasis-open.org/committees/document.php?document_id=32425

[3] Heras – XACML – engine http://www.herasaf.org/heras-af-xacml.html
[4] Article 10 of Regulation (EC) 45/2001). (From the European Directive on the

protection of personal data, Regulation (EC) 45/2001, article 2
[5] P. Mishra et al., Differences between OASIS Security Assertion Markup Language

(SAML) V1.1 and V1.0. OASIS Draft, May 2003

