gPrimeLife

Privacy and Identity Management in Europe for Life

Report on design and
Implementation

Editors:

Reviewers:

Identifier:
Type:
Class:
Date:

Slim Trabelsi (SAP)

Gregory Neven (IBM)
Dave Raggett (W3C)
Stuart Short

Uli Pinsdorf

D5.3.4
Deliverable
Public

May 20, 2011

Abstract

This Delivrable is a final specification documergsdribing the PrimeLife Privacy Policy Langauge
(PPL) and engine. The PPL language is defined poess Access and usage control rules. The PPL
final engine is designed to handle and enforcettieies written in PPL

Conventions of this Document

All sections in this specification are normativalass otherwise indicated. The informative parts of
this specification are identified by "Informativielbels within sections.

The research leading to these results has recdivading from the European Community’s
Seventh Framework Programme (FP7/2007-2013) undantgagreement 216483 for

the project PrimeLife.

U ——
SEVENTH FRAMEWORK
PROGRAMME

Members of the PrimeLife Consortium

1. IBM Research GmbH IBM Switzerland
2. Unabhéangiges Landeszentrum fir Datenschutz ULD ermany

3. Technische Universitat Dresden TUD Germany
4. Karlstads Universitet KAU Sweden

5. Universita degli Studi di Milano UNIMI Italy

6. Johann Wolfgang Goethe — Universitat FrankfartMain GUF Germany
7. Stichting Katholieke Universiteit Brabant TILT tierlands
8. GEIE ERCIM W3C France

9. Katholieke Universiteit Leuven K.U.Leuven Belgium
10. Universita degli Studi di Bergamo UNIBG Italy

11. Giesecke & Devrient GmbH GD Germany
12. Center for Usability Research & Engineering CURE stAa

13. Europaisches Microsoft Innovations Center GmbH MIE Germany
14. SAP AG SAP Germany
15. Brown University UBR USA

Disclaimer: The information in this document is provided "sl§ and no guarantee or warranty is given that the
information is fit for any particular purpose. Thbove referenced consortium members shall haveahiitly for
damages of any kind including without limitation edit, special, indirect, or consequential damagex thay
result from the use of these materials subjecnipl@bility which is mandatory due to applicableMaCopyright
2011 by EMIC, IBM, SAP, UNIMI, UNIBG, ULD, W3C. .

List of Contributors

Contributions from several PrimeLife partners amntained in this document. Individual
participants in the Activity 5 are (at the timevafiting):

Claudio Ardagna (UNIMI), Carine Bournez (W3C), Lent Bussard (EMIC), Michele Bezzi
(SAP), Jan Camenisch (IBM), Sabrina de CapitaMIMERCATI (UNIMI), Fatih Gey (EMIC),
Aleksandra Kuczerawy (KUL), Sebastian Meissner (JJLGregory Neven (IBM), Akram Njeh
(SAP), Stefano Paraboschi (UNIBG), Eros Pedrini (MY, Sara Foresti (UNIMI), Ulrich
Pinsdorf (EMIC), Franz-Stefan Preiss (IBM),Jakum@&® (SAP), Slim Trabelsi (SAP), Christina
Tziviskou (UNIBG), Dave Raggett (W3C), Thomas RdémsqW3C), Pierangela Samarati
(UNIMI), Jan Schallaboeck (ULD), Stuart Short (SAB)eter Sommer (IBM), Mario Verdicchio
(UNIBG), Rigo Wenning (W3C).

Executive Summary

This Deliverable describes the final specificatitotument of the PrimeLife Policy language and
engine. This document results is addressing mosthefrequirements raised in the D5.1.1
delivrable [Fin09]. It also materializes and conizes the huge research work done in the
Research Delivrable D5.2.3 [D5.2.3]. The resultespnted in this document demonstrate the
transition from a theoretical research work inteeal implementation of the innovative concepts
braught in this poroject. It also reflects thelanbration between 3 different activities of the
project: Activity 1 that is using the engine to Hendelegation and access control in the secure
backup demonstrator, Activity4 that contributedady in the implementation of the Ul elements
of the engine (PolicyUl browser plug-in and thevBey Tuner) and Activity 6 that is using the
PrimeLife policy language and engine in their e3¢ gase.

The specification presented in this deliverable wastially initiated in the H5.3.2 internal
heartbeat. Most of the concepts presented in flasiication are implemented in the Final release
of the policy engine [D5.3.3], except some option@chanisms (due to the limitation of the
integration resources).

The main sections describing the innovative corégtoduced in PrimeLife are Chapters 2, 3
and 5.

Chapters 6 and 7 describing the implementationgdesi the prototype are more technical. They
cannot be considered as a specification, becausg define one possible implementation
approach.

Contents

1. Introduction 14
I R 1Y 01 T1 T] (oo 2SS 15
1.2 High Level Architecture Componentscccccceeeieiieeeeeeeeee, 7.1

1.2.1 Data SUDJECE.......co i 18
1.2.2 Data COoNtroller ... 18
1.2.3 Third Party or Downstream Data Controllercccooevvvvvriennnen. 18
1.3 Detailed arChiteCtUIeuuiiiiiiiie e 18
1.3.1 Presentation LAYErcoooiviiiiiiii i 19,
1.3.2 BUSINESS LAYEIcciiiiiiiiiieieeeee ettt a e 20
1.3.3 PErSIStENCE LAYEN .ccovveeiiiiiieieiiiiiiitseeeeeeeeeeeeeeeesvaeeeeeaveessaeesnnennnennne 20.
1.4 Relationship to Existing Work (State of the AL)............evvvviiiiiiiiiiviiiiiiiiiniinnn, 21
1.4.1 Policy MatChing.........ccoooeiiiiei e 21
1.4.2 Credential Based ACCESS CONMIOL.......cc.ciievvreeeieeeii e 22
1.4.3 Credential-Based Policy LanQUAQJESummmeeeeremmnnmnnnnnniniaansnnns 22
1.4.4 Credential-Based Identity Managementcccccccooeeiiiiiiiieiieenceeeenn, 24
1.45 ODblgatioNS......cccooiiiiieee e —- 26

1.5 Contributions of the Proposed Language.... . .ceeeeeeeeeeeiieeiieeiiiniinnnnnn 8.2

2. Usage Control : Obligations 30
P2 T 1 1 {0 To [8 [1o o FO PP UPPP R PPTPPPRTRRN 30
2.2 Key Aspects of ObligationsScoovvvmmmmmmevvreriiiiiiiiieie e 31
2.3 ODbligation LANQUAGE..........ccceveiiiiiiieeeieeeeiiiiiiiiinnneenss e e snennnees 32
2.4 Obligation Matching Engine (OME) ..., 23
2. 4.1 OVEIVIEW. .uuuiiiieiieeeiie et ettt seee e e e e e e e ettt e e e e e e e e e st e e e eeeseeessrnnnns 32
2.4.2 Implementation of OME ... 38
3. Usage Control: Authorizations 45
3.1 Generic Definition and SChemao e 45
3.2 Usage Purposes AUuthONZationcooueeveeeeeeiiiieieeee e 46
3.3 Downstream Usage AUtNOMZALION oo s eeiiieeeeiee e e e esssinnneeeeeee 48
3.4 Authorization Matching EXCEPLIONS o 49,
4. Access Control: Introduction to XACML 51
4.1 BasiC XACML CONCEPLS ..ceeeeieeeie e 53
4.2 XACML 3.0: Privacy Profile ..., 55
5. The PrimeLife Policy Language 56
5.1 Policy Language MOdelooooriiiiiii e, 56
5.1.1 Rules, Policies, and POliCy SetS...........cooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinees 57
5.1.2 Authorization Element..............oooiiiiiiieeoeeeeeeeeeeeeees 57
5.1.3 Credential REQUIrEMENTS..........uuiiiiiieimmmme e 58
5.1.4 Data Handling POIICIESuuiiiiiiiiceeeeeiiiieieeeeeeeeeee 58
5.1.5 Data Handling Prefer@ncesueeeeeieeiiiiiiiiiiiiiiiiiiiiiiiiieineiieeaens 59
5.1.6 SHICKY POHCIES. ...t 60

B5.1.7 ProvisSional ACHONS ooe ettt e e eeee s 60.

5.1.8 Relation to XACML ObIligations...............uueemmeeeeeiiiiiiiiieeeeee e 61
5.2 Extending XACML for Credential-Based Access Contral............................ 61
5.2.1 ThE SCENANIO ...uuuuiiiiiieeeeee e emcce e e e eeeeeeeeeeeeeeeeeeeeeeeeneee 61
5.2.2 Definition of Credentialsccoooiiiieeomeiiiiiieees 62
5.2.3 Example Credential Technologiesccomueeieiiiiiiiiiiiiiieee 62
5.2.4 Credential Functionalityoooo it 63
5.3 PoliCy SAnitiZatiONcooiiiiiiiiie e 65
5.4 Attribute Types and Credential TYPESoummeeaeiieaaaaaaaaae e 6.7.
0 N R C T g =T = 1IN o] o] 0= T o 1.6
5.4.2 Defining Credential Type Ontologies in OWL...ccccecciiiiiiiieeeeeenennn. 68
5.4.3 An Example OWL ONtologyccvvviviiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 69
5.4.4 Example CredentialSccuuuiuuiiiemiimmmmmmicecisseeeees e s ses e e e e e e aa e e e 72
5,45 EXAMPIE POCY ..uuuiueiiiiiiieee e s e e n e e e a e 73
5.4.6 Syntax and DeSCriPLiONuuuuuuuuueeieeeeneeeeeeeereeeeeeererrrrrrerer—.. 76
Protocols and Message Flows 84
20 R 1= o 1T ol = o]3P 84
6.2 Data Subject and Data Controller Protocol.............ccccooeeiiiiii 6.8
6.3 Data Subject and Data Controller Protocol Includimg Ul dialog box 89
Implementation 92
7.1 Marshalling and PErSIiSIENCEuvvvvvuiiiuiiiiiiiiiiiiiiii s 92
7.1.1 Marshalling Java objects With JAXB..........cummm oo 92
7.1.2 Persistence With JPA..........oooiiiiiiiit e 39
7.1.3 Hyperjaxb3 ... 93
7.2 POlicy DECISION POINT........cvviiiiiiiiiiiiiireeen e e aean e e 94
][0T o] LIRS To =] o= T L PP 94
Batch downstream Usage SCENANiO...........ceeeeeeeeeeeeieeeiieicieeceeeeeeeeeeeeeeee) 94.
Downstream Usage for Specific Pll SCENAriO...........uvvvvviviviiiiiiiiiiiiiiiinans 95
7.2.1 PDP REQUESTcciiiiiieie et ot e e e eaann e 97
7.2.2 Provisional ACHONSeuiiiiiiiiiieeeees e 98
7.2.3 Access Control ENGINE.......cooooiii i i 99
A2 S \V = 1 (o o 11 o T =t o 1 =P 10
7.3 Obligation Enforcement Engine (OEE)vveeeviiiiii, 102
0 T R O 1 =TV 1= 102
7.3.2 Implementation of OEEuuiiiiiiiitcmmcemccceeeeeeeeeeeeeee e 104
7.4 ACHON HANAIET ... 107
7.5 Policy enforcement POINT........ccooooiiiiiiieie e 109
7.6 PreferenCe GrOUPS....ccoooo oot eeee e 110
A - = SRR 110
7.7.1 Data SUDJECT APooeeiiiiieiii e a1
7.7.2 Data Controller APl ... 112
Appendix 114
8.1 Privacy Policy SChemaccoooii i 114
8.1.1 PrimeLife root SChemMa...........ooviiiiiiiiiiiiiiiiiie e 114
8.1.2 PrimeLife Claim Schema............coooiiiiiiiii e 117
8.1.3 PrimeLife Credenatial Handling Schemaccccccevvvviiiiiiiiiiiiie. 119
8.1.4 PrimeLife Obligation SChemMaooiieeeeeeiieee e 121

8.1.5 MisSmatChing SCNEMA...........ocuiiiiiiiiit st 125

8.1.6 Sticky Policy SChemacccuviiiiiiiiiieeeee e 127
8.2 EXaMPIE POHCIES. ...cciiiiiiiiiiee ettt 128
8.2.1 XACML i 128

8.2.2 Data Controller to Data Subject Claimccccccvviiiiiieeeiiiiiie, 129
8.2.3 ODBlgatioNS......ccoiiiiiiee e 133
References 139

List of Tables

Table 1: Policy matching Strategiescoeeeceeeeeeeiee e 22
Table 2: THYQEr At TIME ...uuuuiiiiiieieeees s ee bbb b breaaaeesaeeaaaeaaeeaaaeeaeaeeeesees 35
Table 3: Trigger Personal Data AcCesses for PULPOSE...........oovvvvvveiiiiiiicceceeee e, 35

Table 4: Trigger Personal Data Deleted.....cccoooeeo oo 35
Table 5: Trigger Personal Data SEN........ccccccemirruiiimiiiiiiiiiiiiiriiieriereeeeeeeereeeeeeessesssessssssssennans 36
Table 6: Trigger Data SUDJECE ACCESS.....uuuuiiiiiiiiiiiiieiieeeeeeeeee et e e e 36
Table 7: Action Deleted Personal data........cccccooiiiiiiiiiiiiiiiiiee e 37
Table 8: Action Anonymize Pesonal data......cccceeeveieeiiiiii e 37

Table 9: Action Notify Data SUDJECL.........ccccce e 37
LI o (=0 K0 Lo 1 o o T 1 Yo I PSPPI 37
Table 11: ACHON SECUIMNE LOJccoiieiiee oo e et e e e e e e e e e e e aaeeaeas 38
Table 12: Authorization to use the data for purpoSse.........ccceeeeeiei s 46

Table 13: Authorization t0 TOrWard Data..... e .eeeeiierriiiiieeiiiiiie e seee e e 49
Table 14: Authorization matching exception Strad8gi.............oooevvvveeiiiiiii e 50

10

List of Figures

Figure 1. High Level Architecture COMPONENtS e 17
Figure 3. DOWNSITEAIM USBQEcieeeiieesimmmmmme s e e e st bb bbbt br e e e eeeeeaeeaaeeaaaaaaaaaeeneens 28
Figure 4. Overview of XACML dataflow [€Xt09] ..cceeoooiiiii i 52
Figure 5. Model of our policy [angQUAGE ... 56
Figure 6 PrimeLife PPL collaboration SCENAIiQ. cccc....oooieeei i 86
Figure 7 Message flow between data subject andodati@ollerccooeeeeiiiiinnenn, 89
Figure 8 Interaction between Data Subject, datarGlher and the Browser plug-in............... a0
Figure 9 JAXB class generation and marshalling/ush@lling process.ccccccvvvvvvieiiiennns 93
Figure 10 JPA/JAXB MaPPINGS. .ieeiiieiieeii e eeeeeeeiceee bbb s st reeeeeeaaaaaaaaeaaeaaaeeaeens 94
Figure 11 HyperJaxb3 Class geNEratioN.ccccceereeiiieiiiiii e 94
Figure 12 ProCeSSiNg SIrAtEQIES.uuuitcaaaaaeteeeiteeeeeeeeee e e e e e e e e e e e e e e e st e e et ssssseeebbe b e reeeeeeeeeeeeees 95
Figure 13 Pl QUETY SIrAtEUIESoeees s vvvtevvtvevttaesasessssaasseeseesssennaaeeaaaeeasseessanssseanssnnans 96
Figure 14 MisSiNg Pl SIrAt@OIESccevviiiiiiieiiiiieeieciiib bbb rrr e e e e e e e e aeeeaaaeaeeaeeeeeens 96
Figure 15 POIICY QUETIY SIAtEOIESuu.ccmmmmm e e rrreeee e e e e e e aaeeaeaeaeeeaeaeeens 96
Figure 16 response handling StrategieScccceeeeiuuuurumiiiiiiiiiiiiiiiieiirrrrrerrrrrrreeeeeeeeaaeeaeaaaeeaeens 97
Figure 17 PDP request Class NerarChy.........eiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeneee e e e e e e e e e eeae e e 98
Figure 18 Provisional action factory class diagram..............euueeeeiiiiiiiiiiiiiieiiiieeesen e 98
Figure 19 Access CONtrol reqUESE STTUCTUI . e e eee oo 99
Figure 20 Provisional action sequence diagral...........cooviiiriiiiinirnnieeeeeree e eeeee e 99
Figure 21 Pll access control SequeNCe diagrail. e ... eeeeeeeieiiiiieiiiiiiirireierrrirerreeeeeeeeaeeeaens 100
Figure 22 Policy matching sequence diagram.....cccc.eceeveeeiieiiieiiiiiieeeeeeeeee e ee e e e 102
Figure 23:. ArChiteCture Qiagramuuuuureeiiiiieiiieiiieeieerree e eeereeeaasessseesssesaaaassaanaas 102
Figure 24 - Obligation Engine: Loading ObligatiQn..............ccooviiiiiiiiiieeeeee e 104
Figure 25 - Obligation Engine: External EVeNt............ccccooooviiii s 105

11

Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32

Figure 33

— Obligation Engine: Internal EVENL.........cooiiiiiiiiiiiierreer e 105
ST 11T To J @ o] [T - e T 107
: ObligationsEnforcementAdapter CIaSS. .ccc.vvvvriiiiiiiiiiiiiiiiiieeieeerer e reeee e 107
FEVENITIQUEr ClaSS ..o 108
s EXECULING the VENL ...ttt e e e e e e e e e e e e e e e e e s e e e s aeaaeeas 108
D ACHION haNdIEr SEIVICE ... 108
: Data SubjJeCt PEP INTEITACEccmeeeeiieeiiieeieeeeieet et 109
: Data Controller PEP INtEIfaCe ...t 109

12

13

Chapter

Introduction

WEB 2.0 takes now major place in terms of Inteursars, the biggest social network FaceBook
For example, counts more than 500 million activersisBlogging, or publishing on the Web 2.0
media not only impacts our virtual life, but hagpntant consequences on our daily life; starting
from a successful business media to a powerfutigalitool. In another hand web 2.0 relies
essentially on the personal information input, #md lead to a non controlled leek of personal
data. Users are asked to provide various kinderdgmal information, starting from basic contact
information (addresses, phone, email) to more cermplata as preferences, friends' list, and
photos. Service providers describe how users' dagahandled using privacy policy, which is,
more or less explicitly, presented to users dutivgydata collection phase. Privacy policies are
typically composed by a long text written in letgms, and they rarely fully understood, or even
read, by the users. As a result, most of the ugeeting account on web 2.0 applications are not
aware about the conditions under their data ardlbdn

Therefore there is a need to support the useiisrptiocess, providing an as-automatic-as-possible
mean to process privacy policy and compare therh user privacy preferences. In this context
we propose in this report the specification docuat@mm for the PrimeLife Privacy Policy
Language (PPL) designed for handling access coatrdlprivacy. The design is independent of
the underlying transport protocol and bindings thatild be possible for HTTP and SOAP (Web
Services), although such bindings are left to fuitnork.. This includes the completion of a formal
definition of the language as an XML schema. Thedecredentials, triggers and actions is
deliberately left open ended, and further work isticpated on refining a core set for
implementation purposes. This document also desstie technical specification of the proof of
concept policy engine in charge of handling ancoemifig the access and usage control rules
described using the PPL language. This technigedciBcation gives some hints and
recommendation about the implementation design ibushould not be a constraint for
implementing the PPL engine.

The work addresses the scenario where a userng asiVeb browser to access a website over
HTTP. The website may wish to restrict access &rupresenting the appropriate information and
credentials. The website needs to comply with ggaiirements of European data protection laws
when it comes to the handling of personal data.ifiroduction and definitions relating to the

! http:/vww.facebook.com

14

protection of personal data can be found onwiebsite of the Data Protection Office of the
European CommissiénFurther information can be found on tHeropean Commission's Data
Protection websife With the PPL language and engine we propose &mated solution to
define, declare and enforce such privacy requirésnen

This deliverable consists of 8 Chapters. The teoiogy and the recommended architecture is
described in this chapter. Chapter 2 and 3 prakermew concepts related to data usage policies
introduced in the PPL language. These new concamsObligation and the Authorization.
Chapter 4 is a reminder to the XAML access cortmfjuage that is extended by PPL. Chapter 5
details the language specification. The differemttqrols and message flows recommended for
PPL are described in chapter 6. The implementatiodel is explained in chapter 7. Finally the
chapter 8 or the appendix of the document contalinthe schemas related to the PPL language
and some examples written in XML.

1.1 Terminology

Access Control

This means to control access to resources suchebspages. This may be on the basis of the
identity of the entity requesting access, or maraegally the presentation of a set of credentials,
and possibly some representation of the purposeadoessing the resource, as well as other
contextual information, such as the time of day praperties of the resource itself.

Credentials

A credential is an attestation of qualificationyrqmetence, or authority issued to an individual by a
third party with a relevant de jure or de factohawity or assumed competence to do so. In this
document, we define digital credentials to be lstsattribute-value statements certified by an
Issuer. Here we abstract from the concrete meadmafasyptographic or other) by which the
authenticity of the attribute values can be vetdlifidVe do not impose any restrictions on which
attributes can be contained in a credential, bpicafly these either describe the identity of the
credential's owner or the authority assigned to her

Personal Data

Personal data means any information relating tadantified or identifiable natural person or
"Data Subject".

An identifiable person is someone who can be ifiedti directly or indirectly, in particular by
reference to an identification number or to onermre factors specific to his or her physical,
physiological, mental, economic, cultural or sociantity.

The processing of special categories of data, deéfes personal data revealing racial or ethnic
origin, political opinions, religious or philosomlail beliefs, trade-union membership, and of data
concerning health or sex life, is prohibited, sobje certain exceptions (see Article 10 of
Regulation (EC) 45/2001)From the European Directive on the protection efgonal data,
Regulation (EC) 45/2001, article 2.)

Regulation (EC) 45/2001
http://ec.europa.eu/dataprotectionofficer/indexZfrargetURL=D_INTRO%20EUROPA
% EU Data Protection http://ec.europa.euljustickjEs/privacy/index_en.htm

15

Data Controller

The Data Controller means the entity which alongomtly with others determines the purposes
and means of the processing of personal data. idwegsing of personal data may be carried out
by a Data Processor acting on behalf of the Dat#rGlter.

This document describes the means for a User Agetimig on behalf of a user to reach an
agreement with a Data Controller over the obligegilncurred by the controller for any personal
data collected about that user.

Downstream Data Controller

When a Data Controller passes personal data tocaparty, that third party incurs obligations in
respect to the Data Subject, and is referred thisndocument as a "downstream data controller".

Data Subject

The Data Subject is the person whose personaladateollected, held or processed by the Data
Controller.

The following strictly speaking refers to EC ingiibns not generally to EU companies etc.

The controller must give the Data Subject the feiligy information about the data being
processed:

1. confirmation as to whether or not data relatedito dr her are being processed,;

2. information about the purposes of the processingraifn, the categories of data
concerned, and the recipients or categories gpietis to whom the data are disclosed;

3. communication of the data undergoing processing airahy available information as to
their source;

4. Knowledge of the logic involved in any automatedigien process concerning him or her.

The Data Subject has the right to access his datdarequire the Controller to rectify without
delay any inaccurate or incomplete personal date. Data Subject has the right to require the
Controller to erase data if the processing is uhdaw

Data Subject’s privacy preferences
The expectations of a Data Subject in terms of hiswor her personal data should be handled.
Authorization and Obligations

The Data Subject authorizes the Data Controllepriicess her personal Data Subject to the
obligations on the Data Controller as agreed with Data Subject. This document defines a
means for Data Controllers to define policies thegcribe proposed obligations and to pass these
to the Data Subject for matching against her peefegs. If the Data Subject is satisfied with the
match, she will then authorize the Data Contratgproceed. The Data Controller is then required
to implement the agreed obligations in respedhéoData Subject's personal data.

In a variant of this approach, the Data Subjecidtc@uopose obligations to the Data Controller,
who would then match them against his policies, iafarm the Data Subject if the proposal is
acceptable. The end result is the same — a binadgrgement on the obligations on the Data
Controller for handling the Data Subject's persalad.

Sticky privacy policy

An agreement between Data Subject and Data Caartrolh the handling of personal data
collected from the Data Subject. Sticky policies (@ell as privacy preferences and privacy
policies) define how data can be handled. Diffeemptects are defined:

* Authorizations:

16

o Usage: what the Data Controller can do with codldadata (e.g. use them for a
specific purpose).

o Downstream sharing: under which conditions data lmarshared with another
Data Controller.

» Obligations: what the Data Controller must do.

Tracking what obligations apply to which items dftal is a significant challenge, and further
involves the need to track the binding to the D&tdject involved. A complication is that
information on the identity of the Data Subjedinsited to the credentials provided in the request.
The implications have yet to be fully worked thrbug

Software that needs to access personal data slloukb through APIs that enable the Data
Controller to identify the entity that is requesgtinccess as well as the purpose involved. This
report does not provide such an API, which isfleftfuture work.

User Agent

A software system (such as a web browser) actinigetvalf of a user. The user agent acts on user
preferences when dealing with a server acting dralbef a Data Controller.

DHP

This term refers to an acronym of Data HandlingidyPreference. We define it as a policy
configuration file stating the usage condition &addling of a targeted data. In the case of Policy
it refers to the description of how the Data Coligrawvill handle the data collected. In the case of
Preference, the Data Subject specifies how hisstatald be handled after being collected.

1.2 High Level Architecture Components

The high level architecture present an abstractrvimxe of the PPL architecture and the
interaction between the different entities; DS, &l third party.

Policy Engine

1

Repository
R
Third party

a Y

Repository

Data Controller

B Interface + communication

Figure 1. High Level Architecture Components

17

1.2.1 Data Subject

Policy engine This component is in charge of parsing and imtnpg the privacy preferences of

the Data Subject. This policy engine supports tméiree PrimeLife Language capabilities

(Preferences, Access control, DHP, Obligationsdeméal, etc). For this reason this module is
replicated on the Data Controller side and theltharty side.

Repository. represent the Data and policy repositories.dttfatabase containing data owned by
the Data Subject. This data could be composed Kopal data, credentials, certifications, and
other information that should be used during theraction with the Data Controller application.
It contains also the policy files representinggrivacy preferences.

Interface & communication: This interface represents a communication interfaith the Data
Controller implementing the message exchange pobtoc

1.2.2 Data Controller

Policy engine this component is the same as the one describthe iData Subject section.

Repository: this repository represents a database that eengdi the information collected from
the Data Subject during an interaction sessions Haita represents personal data, credentials,
certificates, and other information provided by tiser. Also, this database contains the privacy
policies related to the different resources andices that the Data controller held. This repogitor
does not contain any information about the nawgahiistory of a Data Subject (like IP addresses,
page visited, etc.)

Interface & communication: This interface represents a communication interfaith the data
subject implementing the message exchange protdd¢os interface plays the role of user
interface described in the data subject sectionage of downstream interaction between the data
controller and a third party.

1.2.3 Third Party or Downstream Data Controller

All the components supported by these actors agestime as those described in the Data
Controller section. This is due to the fact that third party plays the role of a Data Controlter i
case of downstream usage of the data.

1.3 Detailed architecture

The entire architecture can be represented asee-thyer design. The first layer is thser
interface layemwhich informs a user about the policy matchingile§ he second business layer

- represents the main processing unit of the PPgirten which is Composed of different
subcomponents that will be described in more ddéteibw. The last layer represented by the
persistence layeis the personal data (Pll) and policies repository

18

________________________ —

3 |

% Ul |

|

g Matching handler |

N Interface o 7

= o o e o e omm B m— e e Ew e E— E— o e o = e =) \

|

Web server Obligation I

Handler [

|

|

|

@ I

£ PDP ,

=
: '
|
Credential Handler

|

|

|

|

Persistence Handler l

ol EE——— — - ———

y 1

= |
& Pll store - g —

2 | licy/pref. st w Credential store e, [

g policy/pref. storen""1 U’—J I

S e o o o o o o o o e e e e e e e e e e o o ==

Figure 2: Detailed Architecture

1.3.1 Presentation Layer

The presentation layer is responsible for the disgb the end user. The presentation layer
contains two types of components:

» Policy editor: displays and provides a way to manath the information related to the
Data Subject, Data Controller and the third pafiyis information can be the personal
data (PllIs, the credentials, etc), the privacyqydtireference, the information involved
during a transaction between the different entities

« Matching handler: display to the user the matchesylt, by notifying a mismatch in case
it occurs, and provide a set of tools that allomhb manage this mismatching (e.g.,
accepting a mismatch, updating local preferences).

The Ul layer should be independent from the busirager. For that, an interface component
might be present between these two layers to peaidabstraction level.

19

1.3.2 Business Layer

The business layer is composed of four main compsnéhat are implementing the concepts
introduced within the PrimeLife project. These caments are:

Policy Enforcement Point (PEP) which formats and then dispatches the messagdhs to
associated components according to the state @xieution process. The decision made
by the PDP is enforced in the PEP, meaning thtiteifPDP decided to provide data or
enforce the access of a resource, this data/resaillected, formatted and sent to the
receiver through the PEP.

Policy Decision Point (PDP)is the core of the PPL engine. All the decisioegarding
processing of policies are taken in this componéhias two functionalities:

- Matching enging which performs comparison and matching between th
preferences of the data subject and the data Ingnpidilicy of the data controller.
The matching is done to verify if the intentionstioé data controller in terms of
the data usage and obligations are compliant Wéhdhata subject preferences.

- Access control enginewhich is in charge of the application of the asceontrol
rules related to the local resources. It analysessaurce query, checks the
access control policy of the requested resourcedacities whether or not the
requestor satisfies the rule.

Event handler is a kind of monitoringcomponent that tracks all the events that are
related to the PlIs in the database. Such eveatthan reported to the obligation handler
in order to check if there are triggers that ardateel to it. The event handler is also

essential for the logging feature of the obligati@amdler.

Obligation handler, which is responsible for handling the obligatichat should be
satisfied by the data controller/third party. Teigjine executes two main tasks:

- Set up the triggers related to the actions requinedhe privacy preferences of
the data subject.

- Executes the actions specified by the data subjeenever it is required.

1.3.3 Persistence Layer

The other components displayed in Figure 2 plagcasdary role in the concept introduced by the
PPL engine:

Web server, which is an embedded HTTP server that repregbet&ntry point to the
PPL engine. It can be seen as an interface fdiititaccess to the PEP.

Persistence handler which can be described as an interface betwesbukiness layer
and persistence layer. It encapsulates acceseg tstdhage intermediate business objects.
It creates a transparent way in which the busidagsr could access persisted data
regardless of the location and storage model ofddta it manipulates. In general, this
layer is supported by a persistence framework. défmed object in this layer is generic
DAO (Data Access Object). The persistence handieviges management functions to
handle the DAO calls, which are basic CRUD (crestad, update, delete) operations
performed on objects stored in the database.

20

1.4 Relationship to Existing Work (State of the Art)

Below we discuss existing related work and giveoeerview of the state of the art in the field of
privacy policy languages.

1.4.1 Policy Matching

In this section we discuss the different privacyigyomatching mechanisms proposed in the
literature. We focus on the technical and implemgon aspects of the matching without entering
in the formalization details.

We can distinguish two implementation architecturas user-centric and a server-centric
architecture. In the user-centric architecture ppsed for the P3P [P3P], the administrator of a
server creates and publishes the privacy policyhef service. Then when the user wants to
connect to the server, he will ask first for thadigy in order to recover it locally and match iithv

his privacy preferences. Simple implementations pamposed in Netscape 7 [Netscape 7] and
Microsoft Internet Explorer 6 [IE6] allowing the ersto specify their privacy preferences for
handling cookies. This approach is quite simple¢ssiit is based on a kind of check list filled by
the user and compared with compact policies puldigby the servers. The AT&T privacy bird
[Privacy Bird] extends the matching scope, limitedcookies, into a more general application
field. The user specifies his preferences throughezk list related to the usage of different kinds
of personal data. The server expresses its polityaxsummarized version of P3P. This summary
includes a bulleted list of each statement in tbécp, as well as information from the P3P
ACCESS, DISPUTES, and ENTITY elements, includingg®s of any privacy seals referenced.
Rather than using the full definitions of each PWME, CATEGORY, RECIPIENT and
ACCESS element from the P3P specification. Thibad@&aibadeau] proposed a more complex
implementation of a matching mechanism called thgapy server protocol. The matching
algorithm is iterative; for each rule specifiedancustomized version of APPEL [P3P Prefs] it
compares line by line the rules specified in a FRPsent by the server. A strong constraint
related to the rule writing makes this approachitéchin terms of expressiveness and matching
scope.

In the server-centric approach, the user agentssimeduser's preferences to the server. The server
will match locally the preferences with the websitprivacy policy. Agrawal et al. [Agrawal]
proposed an efficient solution where the serveplaéng P3P, installs its privacy policies in a
database system. Then database querying is usadhfohing user’s preferences against privacy
policies. They proposed three technical approadbesvert privacy policies into relational tables
and transform an APPEL preference into an SQL gf@rynatching. Store privacy policies in
relational tables, define an XML view over themdamse an XQuery [Boag] derived from an
APPEL preference for matching. Or, store privacyigis in a native XML store and use an
XQuery derived from an APPEL preference for matghifhhis approach seems to be the most
powerful in terms of expressivity and dynamicityor@pared to the other approaches relying on
abstracted representation of policies (e.g. chistk dr simple rules), Agrawal proposed a solution
that can be adapted to any XML based privacy laggugthout any expressivity restriction.

Kojima and Itakura [Kojima] proposed a registry é@dsolution relying on an independent privacy
matching engine that intermediates between theagents and the servers. This approach offers a
better privacy protection compared to the previapproaches, but it suffers from a lack of
expressivity, since it is based on a check listapdttern based policy structure.

21

Solutions User- Server- | Pros Cons
Centric | Centric

One of the first
Netscape 7 [4] yes no deployable solution
implementing P3P

| Limited to cookies
" handling. Naive approach

One of the first
Internet Explorer 6 [5] Yes no deployable solution
implementing P3P

| Limited to cookies
" handling. Naive approach

Implementing P3P
Good exploitation of Failed to conquer a market

AT&T privacy bird [6] | yes no P3P capabilities and never been supported
Compatible enabled by service providers.
browsers

Thibadeau [2] Yves No Advanced P3R Lack of expressiveness for

matching algorithm | the matching rules

One of the most
efficient solutions in| Heavy deployment
Agrawal et al [7] No Yes terms of expressivity infrastructure.

and matching Performance issues.
algorithm

Naive approach with &
serious lack of
expressivity

High performance

Kojima et al [9] No Yes for matching

Table 1: Policy matching strategies

1.4.2 Credential Based Access Control

Technical improvements of Web technologies havetefed the development of online
applications that use identity information of us@soffer enhanced services. There is a large
variety of mechanisms to authenticate and trandgdentity information, including X.509
certificates, anonymous credentials, and Openlbd,amly few of these have provisions in place
to protect the privacy of the information that troeyntain.

In this document we propose an extension to XACML privacy-enhanced credential-based
access control. The credential-based aspect ofaoguage introduces credentials as a common
abstraction for the various authentication mechmasisThe privacy enhancements allow to attach
two-sided data handling policies to privacy-seusitiesources, specified by means of a concrete
set of obligations. Moreover, we change the typictdraction sequence so that the Data Subject
is informed about the applicable policies befoamsmitting his personal information.

1.4.3 Credential-Based Policy Languages

Credential-based access control can be seen asemaligation of a variety of access control
models. In (hierarchical) role-based access co(RBIAC) [FK92, SCFY96] the decision to grant
or deny access to a user is based on the roles/#inatassigned to her. Clearly, one could encode

22

the roles of a user in a credential, so that RB&Coimes a special case of credential-based access
control.

Attribute-based access control (ABAC) [BS02, eXt@@ANR05] comes closer to our concept of
credential-based access control, since it grardesacbased on the attributes of a user. The de
facto ABAC standard XACML [eXt05] allows to specithie issuer of an attribute, but does not
see them as grouped together in atomic credenhfdseover, the architecture paradigm is far
from privacy-friendly: the user is assumed to pdevihe policy decision point (PDP) with all her
attributes, and lets the PDP decide on basis ofid¢igess control policy. The policy that needs to
be satisfied is not known to the user, leaving ppastunity for data minimization.

The first proposals that investigate the applicatd credential-based access control regulating
access to a server are done by Winslett et al. [SWWVCJS97]. Access control rules are
expressed in a logic language, and rules applidabée service access can be communicated by
the server to the clients. A first attempt to pdavia uniform framework for attribute-based and
credential-based access control is presented bwatBand Samarati [BS02]. The language is
based on logic expressions and focuses on crebemtizership. It does not allow for more
advanced requirements such as revealing of agsbat signing statements, however. Besides
credentials, this proposal also permits to reasmutadeclarations (i.e., unsigned statements) and
profiles of the users that a server can make use relach an access decision. The same is true for
the language proposed in [ACDS08].

Although the works do not address data and crealetypping explicitly, credentials may be
organized into a partial order. Several works [W5J¥05, YWSO03] describe how trust can be
established through the exchange of credentialsjamguage reuses the same idea by allowing
the Data Subject to protect his personal data wifbredential-based) access control policy. The
language allows for requiring credentials with agrtattribute properties, but does not provide a
full syntax. The work of Ni et al. [NLWO5] takesdlidea of [WSJO0O0] to cryptographic credentials
and defines a grammar for a revised version ofpiiey language, but does not do so for the
conditions imposed on attributes.

Trust-management systems such as Keynote [BFIKB@]cyMaker [BFL96], REFEREE [CFL
97], DL [LGFO00], and others [LMWO05, YWSO03] use ceatiials to describe specific delegation of
trust among keys and to bind public keys to ausfabions. They therefore depart from the
traditional separation between authentication amthagizations by granting authorizations
directly to keys (bypassing identities).

The languages mentioned above are not targetedrisaictions with anonymous credentials and
thus lack the ability for expressing conditions diottikable yet accountable transactions, which we
do achieve through the capability of disclosurehiod parties. The first work covering such use
cases is due to Backes et al. [BCS05]. The authidiSDO06] extend P3P to allow for describing
necessary credential properties for accessingvacegbut no precise syntax is specified. The only
language featuring a credential typing mechanismd advanced features such as spending
restrictions and signing requirements was recemthposed by Ardagna et al. [ACK 09]. This
language was focused mainly around anonymous dialleand therefore models concepts that
cannot be implemented with other credential teatmiek. Nevertheless, it served as an important
source of inspiration for the work presented here.

In general, the above solutions provide accessraol@nguages and solutions that are logic-
based, powerful, highly expressive, and permit pecfy complex conditions involving

credentials and relations between parties in alsippt effective way. However, in real world

scenarios, like the one considered in PrimeLifeydamental requirements for access control
solutions are simplicity and easiness of use, rdtien the presence of a complete and highly
expressive access control language. Also, althdlgbenefits of all these works (e.g., credential
integration), none provides functionalities for feating privacy of users and regulates the use of

23

their personal information in secondary applicagiohhe work in the PrimeLife WP5.3, instead, is

aimed at providing a XACML-based language integgaind supporting credential definition and

trust negotiation in the context of a privacy-awaceess control system, that protects privacy of
users and manages secondary use of data.

The research community has also devoted huge effdtie study and specification of policy
languages for regulating access in distributed amten Some works have focused on the
definition of privacy-aware languages [eXt05, Web08HKS02, W3CO02] that support
preliminary solutions to the privacy protectionussas for instance, by providing functionalities
for controlling secondary use of data (i.e., howspeal information could be managed once
collected).

The works closest to the one in PrimeLife and iis theartbeat are represented by PRIME
languages [Pri, ACDS08], XACML [eXt05], and P3P &2, W3C02]. PRIME languages
represent a good starting point and an inspirdtorthe work to be done in PrimeLife. XACML
represents the most accepted, complete, and fiesdltion in terms of access control languages,
which could be adapted and integrated with priyar@ference-based solutions. P3P represents the
most important work done in the context of privgogtection and secondary use management.
For the sake of conciseness, we refer the readienested in more details about these proposals,
their pro and cons, to the PrimeLife Deliverable D5 [Fin09].

1.4.4 Credential-Based ldentity Management

We refer to Section 5.2.3 for an overview of thifedént technologies that are covered under our
abstract notion of credentials.

The Simple Public Key Infrastructure (SPKI) [ElI9®Rs born as a joint effort to overcome the
complication and scalability problems of the tramfial X.509 public key infrastructure [AT02].
SPKI has then been merged with Simple Distributedu8ty Infrastructure (SDSI) that bounds
local names to public keys. The combined SPKI/SalBlws the naming of principals, creation of
named groups of principals, and the delegationighits or other attributes from one principal to
another. SPKI is mainly used in access controlanghasizes decentralization using keys instead
of names. Different permissions can be freely aefim SPKI certificates, which can be used as
name certificates that provide a mechanism to gbklipkeys according to names or attributes.

Much like an SPKI certificate, an anonymous cre@¢fCha85, CL0O1] can be seen as a signed
list of attribute-value pairs issued by a trustesiier. Unlike SPKI certificates, however, they have
the advantage that the owner can reveal only aesufshe attributes, or even merely prove that
they satisfy some condition, without revealing angre information about the other attributes.
Also, they provide additional privacy guaranted® lunlinkability, meaning that even with the
help of the issuer a server cannot link multipkgtsiby the same user to each other, or link & visi
to the issuing of a credential.

There are two main anonymous credential systemséntoday, namely Idemix [CLO1, CV02]
and UProve [U-PQ7]. IDEntity MIXer (Idemix) [IDE]sia privacy-enhancing pseudonym-based
public key infrastructure. It provides an anonymauwsdential system that has a number of
interesting associated cryptographic tools, suckeafiable encryption [CDO0O0] that allows for the
proof of properties about encrypted values, andteanspending [BCCO05] that allows for putting
restrictions on how often the same credential cenused to access a service, without
compromising anonymity.

Besides research on privacy languages, severagisdpave focused on developing frameworks
and architectures that preserve security and priehdistributed parties communicating among
them. These works may be taken as a referenceh®ordéevelopment of the infrastructure
responsible for evaluating and enforcing the Priligelanguage. International Security, Trust, and

24

Privacy Alliance (ISTPA) [Int] is an open, policywefigurable model including privacy services
and capabilities that can be exploited for desigsiolutions that cover security, trust, and privacy
requirements. The goal of the framework is to pevihe base for developing products and
services that support current and evolving privagulations and business policies.

Reasoning on the Web (REWERSE) [Rea] is a projdctse objective is to strengthen Europe in
the area of reasoning languages for Web systemsapplitations. One of its main goals is to

enrich the Web with advanced functionalities fotadand service retrieval, composition, and

processing. REWERSE's research activities are devtotseveral objectives, a part of those might
be overlapped with PrimeLife work: rule mark-updaages aiming at unified mark-up and tools
for reasoning Web languages, policy specificatamposition, and conformance aiming at user-
friendly high-level specifications for complex Welystems, Web-based decision support for
event, temporal, and geographical data aiming dtamecing event, temporal, and location

reasoning on the Web.

Enterprise Privacy Architecture (EPA) [KSWO02] is #M project that wants to improve
enterprises e-business trust. The main goal of ER& guide organizations in understanding how
privacy impacts business processes. To this aim, @¥ines privacy parties, rules, and data for
new and existing business processes and provideacprmanagement controls based on the
preferences of the consumer, privacy best practmed business requirements. TRUSTe [Tru]
enables trust, based on privacy protection of petsimformation on the Internet. It certifies and
monitors Web site privacy practices.

Many other projects are focused on providing enbdridentity management system protecting
privacy and security of identity information andvigg to the users much more power in
controlling their private sphere [Lib, Pri, Win].iderty Alliance [Lib] project is aimed at
providing a networked world based on open standamiiere consumers, citizens, and
governments are able to manage online transacsihgrotecting the privacy and security of
their identity information. In Liberty Alliance, @htities are linked by federation and protected by
strong authentication. Also Liberty Alliance prdjeties to address end user privacy and
confidentiality concerns, allowing them to storeainmtain, and categorize online relationships.
Users can manage all of their information usinggmy controls built into the system based on
Liberty platform.

Windows CardSpace [Win] is an identity managememmonent or identity selector that enables
users to provide their digital identity to onlinergices in a simple, secure, and trusted way.
Windows CardSpace is based on visual "cards" thee lseveral associated identity information
(e.g., name, phone number, e-mail address). Thasis @re released to the users by identity
providers, such as public administration or ushesmselves, and are used to fulfil the request
stated in the Web forms of the service providetseréfore the users maintain control over the
information flow, and are responsible for choostogrelease or not information to the online
services.

The Higgins Trust Framework [Hig09] intends to aedr four challenges: the lack of common
interfaces to identity/networking systems, the néed interoperability, the need to manage
multiple contexts, and the need to respond to eggry, public or customer requests to implement
solutions based on a trusted infrastructure th&trefsecurity and privacy. This project is
developing an extensible, platform-independent, ntithe protocol-independent, software
framework to support existing and new applicatithrzg give users more convenience, privacy and
control over their identity information.

25

1.4.5 Obligations

The following uses obligation terminology where ‘thabject” is the subject of the obligation, i.e.
the service or Data Controller. Do not confuse witie “Data Subject”, which is the user in
privacy terminology.

Most of the available policy languages, like XACNRissanen ,Moses], EPAL [EPAL], Ponder
[Damianou], Rei [Kagal] and PRIME-DHP [Ardagna]opide either only a placeholder or very
limited obligation capability. Moreover these laages do not provide any concrete model for
obligation specification. XACML and EPAL supportsségm obligations only, i.e. obligation
defined and enforced within a single trust domano other subject can be expressed in their
proposed language.

Ponder and Rei on the other hand do allow usegatins, however they do not provide a
placeholder explicitly for the specification of tparal constraints and they do not support pre-
obligations, conditional obligations, and repeatijgations.

PRIME-DHP proposed a new type of policy languagéchviexpresses policies as a collection of
data handling rules which are defined through &etoprecipient, action, purpose and conditions.
Each rule specifies who can use data, for whatqae®and which action can be performed on the
data. The language structure limits its expressisenPRIME-DHP itself also does not provide
any concrete obligation model.

Besides the policy languages, we observed puldication expression, enforcement and
formalization of obligations. In the next paragrapive collected prior art which is directly related
to our approach and point out the key differenoasutr work.

Mont Casassa et al. [Casassa] proposed the ideavrig parametric obligation policies with
actions and events having variable parameters. Woik was done in conjunction with the
PRIME-DHP to support obligations. It is by far tbkesest work to ours. They propose a formal
obligation model and provide the framework to eoéoobligations. However, they do not offer
the notion of preventive obligations (negative gations) and multiple subjects. As opposed to
their policy expressions, we propose a schema wisichot modified when domain specific
obligations, including new actions, events andgerg, are added. Unlike [Casassa], we also do
not allow multiple actions per rule because ofgkigtem integrity problem which arises from the
fact that we cannot map fulfilment of a subsetastions in any policy rule as complete
fulfillment and we achieve the same behavior thtouge cascading without ambiguity.

Irwin et al. [Irwin] proposed a formal model forlgations and define secure states of a system in
the presence of obligations. Furthermore, theydeduwn evaluating the complexity of checking
whether a state is secure. However, the proposkghtbn model is very restricted and neither
support pre-obligations (provisions) nor repeatingl conditional obligations, which are required
in different domains and scenarios. They addressedproblem of verification of obligation
enforcement while we focus on the expression ofdewange of scenarios, supporting all of the
above types of obligations. In other words, the tiegearch efforts are targeting different
problems.

Pretschner et al. [Hilty, Pretschner, Schiitz] wdrke the area of distributed usage control. In
[Hilty], they used distributed temporal logics tefithe a formal model for data protection policies.
They differentiated provisional and obligation fardas using temporal operators. Provisions are
expressed as formulas which do not contain anyduime temporal operators and obligation are
formulas having no past time temporal operatorseyTlalso addressed the problem of
observability of obligations which implies the drisce of evidence/proof that the reference
monitor is informed about the fulfilment of obligans. Possible ways of transforming non-
observable obligations into observable countergaamige also been discussed. We also consider
temporal constraints as an important part of obibgestatement. However, we deem observability

26

as an attribute of the reference monitor and naatiibute of the obligation rule. It depends on
the scope of the monitor.

The scope could be within the system, within theesarust domain but outside the system, or
even sitting outside the trust domain, to obsem@liment and violations. We currently have not
addressed this problem of observability. In [Phetse] they have proposed an obligation
specification language (OSL) for usage control aneksented the translation schemes between
OSL and rights expressions languages, e.g. XrMIithe@®SL expression could be enforced using
DRM enforcement mechanisms. We have tried to Hiittgap by implementing the enforcement
platform for enforcing obligation policies withodtanslation. In [Schitz], the authors have
addressed the scenario of policy evolution whernudes data crosses multiple trust domains and
the sticky policy evolves.

Currently, we are not focusing on evolution of ghtion policy, but it could likely be one of the
future extensions of our work where we plan to addrthe interaction of obligation frameworks
at multiple services which is complementary to wikatiscussed in [Schutz].

Katt et al. [Katt] proposed an extended usage ob(tfCON) model with obligations and gave
prototype architecture. They have classified obilige in two dimensions a) system or subject
performed and b) controllable or non-controllableeve the objects in the obligation would be
either controllable or not. Controllable objects #1ose that are within a target systems domain,
while non-controllable objects are outside the @yst domain. The enforcement check would not
be applied for system-controllable obligations veh#drey assume that since system is a trusted
entity so there is no need to check for the fulf@ht.

The model does not address the conditional obtigati Rakaiby et al. [Rakaiby] as well as
Cholvy et al. [Cholvy] studied the relationship Wween collective and individual obligations. As
opposed to individual obligations which are rathienple as the whole responsibility lies on the
subject, collective obligations are targeted towardroup of entities and each member may or
may not be responsible to fulfill those obligatioMge also consider that the subject of any
obligation rule is a complex entity in itself likedividual or group, self directed or third party.
Our current implementation does not support thiscbuld be extended to include such scenarios.

Ni et al. [Ni] proposed a concrete obligation modklich is an extension of PRBAC [Trombetta].
They investigated a different problem of the unddde interactions between permissions and
obligations. The subject is required to perfornoatigation but does not have the permissions to
do so, or permission conditions are inconsisterih Wie obligation conditions. They have also
proposed two algorithms, one for minimizing invatidrmissions and another for comparing the
dominance of two obligations. Dominance relatiorthe relationship between two obligations
which implies that fulfilment of one obligation wtil cover the fulfillment of other which is
analogous to set containment.

Gama et al. [Gama] presented an obligation polleyfgrm named Heimdall, which supports the

definition and enforcement as a middleware platfeesiding below the runtime system layer

(JVM, .NET CLR) and enforcing obligations independef application. Opposed to that, we

present an obligation framework as an applicatayed platform in a distributed service-oriented
environment which could be used as a standalonimdsssapplication to cater for user privacy
needs. We believe that it is not necessary to lia@eobligation engine, which is an important

infrastructure component to ensure compliant bssingrocesses, as part of the middleware.
Moreover our service-oriented approach supporteraperability in a heterogeneous system
environment.

The work present in this paper incorporates soméhefprior art and extends it toward more
expressiveness, extensibility, and interoperabilitywever, we think that some authors addressed
different problems, and it would be worthwhile tother combine their results with our approach.

27

1.5 Contributions of the Proposed Language

Parsonal Data (PD)

< Resources
Nan-certified Data Subject request EsOUTS Data Controller T R Downstream
’|','=- e ot AR Veb pages, Data Controller
e IEE auest porsacsl dats e = request personal data A
L i —
Certified: credentials = —
Palicy L‘Wﬁh JRglicy Collected personal data personal data Palicy
e ¥ TESOUIE S 2 4 "H‘;E #.‘. E"-‘?“u
o bl — Ll

Figure 3. Downstream usage

The policy language proposed here considers theagoedepicted in Figure 3, where the Data
Subject wants to access a resource hosted by ttaeTomtroller, but has to reveal some personal
data in order to access the resource. Furtherrtfd)ata Controller may want to further forward

the Data Subject's personal data to a Downstreaam @antroller. Our policy language allows the

Data Controller to express which personal datadexis from the Data Subject and how he will
treat this data, and allows the Data Subject taesgpto whom she is willing to release her
personal data and how she wants her data to lhedrea

Our policy language supports the following featutres we see as its main contributions over the
current state-of-the-art:

* Two-sided data handling policies/preferences witliomated matching: Both the Data
Controller and the Data Subject can specify in rthddita handling policies (resp.
preferences) how collected personal data will leatéd (resp. should be treated). An
automated matching procedure detects whether ahrmoatc be found between the policies
of both sides. Policies and preferences can béfigoefor explicitly revealed personal data
(e.g., name, birth data) as well as data that giaitly revealed by setting up a connection
(e.g., IP address).

» Credential-based access control: The access caatnditions can be specified in terms of
the credentials that need to be presented. Theeporaf credentials acts as a useful
abstraction for many authenticating technologiegluding in particular anonymous
credentials.

» Language symmetry: By considering personal data ssecial type of resource in its own
right, the same language can be used on the Ddljec®a side to express to whom and
under what conditions she is willing to reveal Hata, as on the Data Controller's side to
specify which personal data needs to be revealedder to access a service and how that
data will be treated.

* Downstream usage: By exploiting the above symmeilry, Data Subject's personal data
can itself become a resource offered by the DatatrGlter to further Downstream Data
Controllers. Our policy language allows the DatdjSct to specify to whom and under
which such forwarding can take place.

 Event based obligations: Obligation actions arenmare defined statically. With the
combination Trigger/Action events can be attacloetthé¢ execution of an obligation. These
events can be enabled through any contextual irdtom captured in the system like for
example: time, actions on date, system modificatimn

We define extensions to XACML to support all of thbove features in the local policies
expressed by each of the entities. Moreover, wmel@xtensions to SAML so that it can be used
as a wire format to carry resource requests, galicind credential proof statements from one
entity to the other.

28

29

Chapter

Usage Control : Obligations

We define an obligation as: “A promise made by &DZontroller to a Data Subject in relation to
the handling of his/her personal data. The Datati©Gber is expected to fulfil the promise by
executing and/or preventing a specific action afigoarticular event, e.g. time, and optionally
under certain conditions".

This chapter presents the implementation of ohbtgatin PrimeLife Policy Language (PPL).
Two main components are presented: the Obligatiattiing Engine (OME), which is in charge
of comparing obligations, and the Obligation Enéonent Engine (OEE), which is in charge of
enforcing obligations.

2.1 Introduction

Obligations play an important role in daily businedost companies have a process to collect
personally identifiable information (personal dada)customers and ad-hoc mechanisms to keep
track of associated authorizations and obligati@tate of the art mechanisms to handle collected
personal data accordingly to a privacy policy aeking expressiveness and/or support for cross-
domain definition of obligations. Please refer &ct®n 1.4.5 for a complete evaluation of the
state of the art.

We identify four main challenges related to obligas.

1. Service providers must avoid committing to obliga that cannot be enforced. For
instance, it is not straightforward to delete detteen backup copies do exist. Tools to detect
inconsistencies are necessary.

2. Services should offer a way to take user's pre@@®nnto account. Preferences may be
expressed by ticking check boxes, be a full polaygven be provided by a trusted third
party. Mechanisms to match user's privacy prefererand service's privacy policies are
necessary.

3. Services need a way to communicate acceptableatioiig to users, to link obligations and
personal data, and to enforce obligations.

4. Finally, users need a way to evaluate the trushimess of service providers, i.e. know
whether the obligation will indeed be enforced.sTbould be achieved by assuming that

30

misbehaviour impacts reputation, by audit and fiestion mechanisms, and/or by relying
on trusted computing.

This report mainly focuses on the first challengeloviding a mechanism to enforce obligations
and the second aspect by providing mechanisms tchnebligations (see Section 2.4). The third
aspect is also covered in Section 2.4. The fourtilenge is addressed by assuming a simple trust
model: audit and reputation mechanisms.

2.2 Key Aspects of Obligations

It is close to impossible to develop an exhaudisteof obligation statements existing in the real
world. We could encounter many complex forms of ogtments made between individuals,
organizations and logical entities. Additionallgetsemantics of these commitment and promises
may be different in different domains like healtlezdinancial services etc. This section identifies
and classifies promise and obligation statemen@nyaspects have been discussed in existing
literature:

Positive versus Negative Statement#\ key aspect of obligations is the tone of statetmeé/e
could have positive obligations where the commithigistated in a positive tone. For instance, in
“Hospital X commits to delete patient's historylinmonth” and in “Hospital X commits to notify
patient whenever his information is shared”, théaD@ontroller (Hospital X) commits to positive
obligation statements. Obligations like “Hospital cémmits not to share patient's history to
anyone” or “Hospital X commits not to use patiertistory for any statistical purposes” are
negative statements.

Enforcement of negative statements, i.e. preventbnan action, is quite different than
enforcement of positive statements, i.e. execudicam action.

Conditionality: It is very usual to have some form of constramh$ined with the obligation
statements. If the conditions are not fulfillede tBata Controller is not held liable for not
fulfilling its promises. For instance, “Hospital Xommits to notify patient whenever his
information is shared if patient is registeredhat hospital”.

Iteration: The third aspect is the iterative nature of olilgyastatements. The simplest forms of
positive obligations are fulfilled once. Howevergeweould encounter statements which are
required to be fulfilled multiple times iterativelyvhen the fulfilment of an obligation is required
multiple times during its life then we consider hes iterative or repeating obligations. For
instance, “Bank X commits to send account statenterustomer C every 3 months” will be
triggered every 3 months.

Stateful Obligations: Another important aspect of obligation statemertheir stateful nature. In
existing literature, we mostly found that obligaisoare either fulfilled or violated which are two
atomic states. However, more complex states coeldrdguired. For instance, “Hospital Y
commits to share patient data only 3 times” requireounter to keep track of disclosure.

Time Boundary: The life cycle of obligations may be complex. Wengrally assume that
obligations end when they are fulfilled, when d&intion ends, or at specific date.

Observability: Pretschner et al [Hilty, Pretschner] discussed pghablem of observability of
obligations and suggested methods to translateobearvable obligations into observable ones.
However, we perceive that observability is not aidypendent on the rule itself but highly related
to the authority and scope of the evaluator anditmorAn external evaluator can only monitor
the communication channels external to the DatatrGlber trust domain. Internal evaluator can
also monitor the internal communication betweenigaltlon enforcement platform and other
infrastructure of the Data Controller. Lastly theniior inside the framework is the one which
could log audit trail and monitor the actual praieg of the enforcement framework.

31

Delegation: Delegation of obligations could be another intengsarea for extension. The basic
idea is to allow constructs in the language whictabde the policy issuers to commit
promises/obligations on behalf of other Data Cdlere. Complementary to the problem of
delegation of obligations is the proportion of m@sgibility in the cases of collective controllers.

2.3 Obligation Language

Based on the different aspects of obligations, his section we define the structure of an
obligation. An obligation is often defined as Ev&undition-Action:

On Event If Condition Do Action

For facilitating the comparison of obligations, veensider triggers as events filtered by
conditions. In other words, we replace the notioiavents and conditions by trigger. The triggers
are events that are considered by an obligationcandbe seen as the set of events that result in
actions:

Do Action whenTrigger

For instance, we can define “Do {Notify User} whfidser's personal data is read}”. Obligations
are thus defined as a set of triggers and an action

The language and schema for defining obligationg beaslightly different to express obligations
in Data Controller’s privacy policy, in Data Sulfjsgrivacy preferences, and in sticky policies.

» Data Subject’s privacy preferences specify “reglimbligations”, i.e. what the Data
Subject requires in terms of obligation to provadgiven piece of personal data to a given
Data Controller.

» Data Controller's privacy policy specifies “propdsebligations”, i.e. what the Data
Controller is willing (and able) to enforce in tesrof obligation for a given collected data.

» Sticky policy specifies “committed obligations"ei.the obligations Data Subject and Data
Controller agreed upon and that must be enforcatidoypata Controller.

Further work is necessary to decide whether meltiphlects are required to specify obligations
embedded in policies, preferences, and sticky jeslic

2.4 Obligation Matching Engine (OME)

This section describes how Data Controller’s pregaosbligations (part of its policy) are matched
with Data Subject’s required obligations (part & preferences). Matching is generally done by
the Data Subject but, depending on the trust maoaday, occur at Data Controller-side.

Note that the same mechanism is used by Data Clentio order to decide whether a collected
piece of data can be shared with a third party (ddream data controller). In this case, the Data
Controller matches the proposed obligation of thertstream Data Controller (part of its policy)
with committed obligations (part of sticky policgdtached to a piece of personal data.

2.4.1 Overview

The obligation matching engine is in charge of diegj whether an obligation is less permissive
than another one. In other words, it checks whethéosrcing the first will ensure that the second
one is not violated. For instance we could defim&t deleting a piece of personal data is less
permissive than anonymizing this same piece of.datieed, a data controller not having access

32

to a given personal data is more privacy-friendigrnt a data controller having access to an
anonymized version of this data. Similarly, we cbdkfine that notifying the data subject each
month is less permissive than notifying the usethegear. Notifying the user once a month
instead of once a year may be considered as spancdfisider this as a valid enforcement
because, for the moment, we do not specify theosatition of enforcing obligations. The
obligation engine requires the following inputs:

* Obligation policy: the language to specify obligas in policies (XML schema and/or
Domain Specific Language), the required extensitadditional schema and/or DSL
extension), an instance of those languages, eeoliligation itself.

» Obligation preference: the language to specifygations in preferences (XML schema
and/or DSL), the required extensions (additionalesea and/or DSL extension), an
instance of those languages, i.e. the obligate®ifit

The output is a Boolean response, i.e. “True” wtienobligation policy is less permissive than

the obligation preference or “False” when the ddtiign policy is not less permissive than the

obligation preference (this does not mean thabtiigation preference is less permissive than the
obligation policy). In addition, the obligation nohtng engine supports a second procedure call
that also requires both obligations as in the dated provides the full obligations part of the

sticky policy. It will return a sticky policy in mehing and not matching cases. Optionally, when
the policy does not match the preferences, morailsain the mismatch are provided. For the

schema of the sticky policy and other details aladaligation mismatches, please refere to section
1.1.

2.4.1.1 Matching Rules

Comparing service's privacy policy PS with userlsgey preference PU is necessary to decide
whether users can provide personally identifiabfermation to service. We express the fact that
policy PS is less (or equally) permissive than gnexfice PU as PSPU. This intuitively means
that PS provides less (or equal) authorizations tAb and that PS defines more (or equal)
obligations than PU. Note that PSPU does not imply PUY PS . We define a service data
handling policy as the set of authorizations andet of obligations. We define PSPU as
following:

L:Policy 2 RPolicy & ((L.authorizations @ R authorizations) A
(L.obligations 2@ R obligations))

NB: This can be read as left-side policy (L) isslésr equally) permissive than right-side policy
(R) if and only if the set of authorizations spiifin the left-side policy (L.authorizations) esé
(or equally) permissive as the set of authorizatiospecified in the right-side policy
(R.authorizations) and the set of obligations djetin the left-side policy (L.obligations) is ks
(or equally) permissive as the set of obligatiopscied in the right-side policy (R.obligations).
The meaning of less permissive for a set of authtidns and obligations is defined below.

Where “authorizations” is a list of authorizatioasd “obligations” is a list of obligations. This

means that a policy (e.g. service policy PS) is lesstrictive than another policy (e.g. user
preferences PU) when the list of rights and thiedfsobligation are more restrictive. Matching

function for lists of rights is:

L: Li st Authorizations € R ListAuthorizations & Vv (i e L) : 3 (] € R
where (i =2 j)

This means that for each authorization in the gplicere exists a more permissive authorization
in the preferences.

Matching function for obligations is quite diffeten

33

L:ListCbligations @ RListCbligations & V (j € R : 3 (i € L) where (i 2]j)

This means that for each obligation in the prefegeithere exists a less permissive obligation in
the policy. Obligations are compared as following:

L:bligation @ R Ooligation & ((L.action 2@ R action) A
(L.triggers 2@ R triggers))

Where “action” is the action resulting from the ightion, and “triggers” is the list of triggers
resulting in the execution of the action.

Matching function for a list of triggers is:
L:ListTriggers @ RListTriggers © V (b e R : 3 (a € L) where (a 2 bh)

In other words, for a given obligation, all triggen the preferences must be in the policy, but the
policy can specify other triggers. The matchingctions for actions and for triggers are not yet

define and must remain open to future extensiossai example, we can define the following

rules to match triggers:

L: TriggerAtTime @ RTriggerAtTine & ((L.start > R start) A
(L.start + L.nmaxDelay < R start + R nmaxDel ay))

L: Tri gger Dat aAccessedFor Pur pose = R Tri gger Dat aAccessedFor Pur pose &
((L.dataRef == R dataRef) A (L.purpose 2 R purpose))

And the following rules to match actions:

L: Acti onDel et ePersonal Data 2 R Acti onDel et ePersonal Data <
(L. personal Data == R. personal Dat a)

L: Acti onNoti fyDat aSubj ect 2 R ActionNotifyDataSubject &
(L. Address == R Address)

We are working on a small set of generic actiord generic triggers that can be combined and
parameterized to cover most cases. It is howewvesir dhat supporting an exhaustive list of
obligations is not realistic. We propose to entioh framework with domain-specific obligations

based on domain-specific actions and/or triggess.iistance, a healthcare-specific action could
be “notify user’s doctor”. When specifying a nevwgg¢rer or a new action, it is also necessary to
define the corresponding matching rules. Dependimghe implementation, those rules could be
directly interpreted by the matching engine or dolle pre-defined, e.g. using a plug-in

mechanism.

2.4.1.2 Usual Obligation Triggers

This section briefly describes usual triggers. Efeome aspects are underspecified, we hope that
providing this draft specification helps with unsanding what we are aiming at.

Name TriggerAtTime
Parameters dateTime Start Start time
duration MaxDelay | Maximum delay before execution

Description Time-based trigger that occurs onlyeobetween start and start + maxDelay

Within x — TriggerAtTime(Now, X)

Within x hours— TriggerAtTime(Now, x hours)
Within x days— TriggerAtTime(Now, x days)

Within x months— TriggerAtTime(Now, 30 * x days)
Within x days from y— TriggerAtTime(y, x days)
Between x and y- TriggerAtTime(X, y-X)

Examples

Matching L:TriggerAtTime= R:TriggerAtTimee

34

((L.Start > R.Start) A (L.Start + L.MaxDelay< R.Start + R.MaxDelay)

i.e. such a trigger is less permissive when itréefievents within a shorter time

window.

Table 2: Trigger at Time

Name

TriggerPersonalDataAccessedForPurpose

Parameters

personal Reference to the personal data concerned by

DataRef data obligation

Set of purposes that trigger the obligation. A

Purpose ;
urposef] represents all possible purposes.

Purposes

Duration MaxDelay | Maximum response time.

Description

the

ny

Event-based trigger. This trigger occurs each tihee personal data associated

with the obligation is accessed for one of the #igecpurposes.

Examples

When reading x> TriggerPersonalDataAccessedForPurpose(x, anyultlefa
Within x hours after readingy» TriggerPersonalDataAccessedForPurpose(y,
any, x hours)

When reading x for purpose-z TriggerPersonalDataAccessedForPurpose(X,
default)

When reading x for purposes a, b, ané-c
TriggerPersonalDataAccessedForPurpose(x, {a,bafhudt)

Matching

L:TriggerPersonalDataAccessedForPurpose
R:TriggerPersonalDataAccessedForPurpesg(L.personalData2
R.personalData) (L.MaxDelay< R.MaxDelay)A (L.Purposes= R.Purposes)

N

i.e. such a trigger is less permissive if it redatder and on at least as much types

of access.

Table 3: Trigger Personal Data Accesses for Purpose

Name

TriggerPersonalDataDeleted

Parameters

personal Reference to the personal data concerned by

DataRef data obligation

Duration MaxDelay | Maximum response time.

Description

Event-based trigger. This trigger occurs when thesgnal data associated w
the obligation is deleted.

Examples

When deleting x- TriggerPersonalDataDeleted(x, default)
Within x hours after deleting y TriggerPersonaDataDeleted(y, x hours)

Matching

L:TriggerPersonalDataDeletetR: TriggerPersonalDataDeletéd (
(L.personalData = R.personalData) A (L.maxDelay < R.maxDelay))

i.e. such a trigger is less permissive if it redefster and on at least as my

deletions

Table 4: Trigger Personal Data Deleted

35

the

th

Name TriggerPersonalDataSent
DataRef personal Refere_nce to the personal data concerned by the
data obligation
Parameters . Third party the PersonalData is sent to. Any
anyUri Id . . .
represents all possible third parties.
Duration MaxDelay | Maximum response time.
Descriotion Event-based trigger. This trigger occurs when theséhalData associated with
P the obligation is shared with a third party (doweatn Data Controller).
When sending x> TriggerPersonalDataSent(x, any, default)
Examples When sending x to y» TriggerPersonalDataSent(x, y, default)
Within x hours after sendingy TriggerPersonalDataSent(y, any, x hours)
L:TriggerPersonalDataSerntR: TriggerPersonalDataSest (
(L.personalData= R.personalDataj) (L.targets= R.targets)\ (L.MaxDelay <
Matching R.MaxDelay))
i.e. such a trigger is less permissive if it redager and on at least as much data
sharing.
Table 5: Trigger Personal Data Sent
Name TriggerDataSubjectAccess
DataRef personal data Refere.nce to the personal data concerned by the
Parameters obligation
anyUri url Endpoint to access data.
Description Event-based trigger. This trigger occurs when tlagalBubject tries to access |its
P own personal data that has been collected by tie Cantroller.
Examples When accessing » TriggerDataSubjectAccess(x, any)
P When accessing x aty TriggerDataSubjectAccess(X, V)
Matching L:TriggerDataSubjectAccessR:TriggerDataSubjectAccess (

(L.personalData == R.personalData]l_.url = R.url))

Table 6: Trigger Data Subject Access

The set of triggers is extensible amd more willdedined in future together with the rules to

match them.

2.4.1.3 Usual Obligation Actions

This section briefly describes usual actions. Th first draft that requires further refinementla
validation. Even if some aspects are underspecifiechope that providing this draft specification
helps with understanding what we are aiming at.

36

Name

ActionDeletePersonalData

=

Parameters DataRef | personal da|ta Reference tethenal data to delete.

o This action deletes a specific piece of informatiand is intended for handling

Description .
data retention.

Examples Delete x> ActionDeletePersonalData(x)
L:ActionDeletePersonalDataR:ActionDeletePersonalData

Matching (L.personalData2 R.personalData)

i.e. such an action is less permissive if it resinitdeleting at least as much data.
Table 7: Action Deleted Personal data
Name ActionAnonymizePersonalData

Parameters DataRef | personal dalta Reference tethenal data to anonymize.

Description This action anonymizes a specific pieceformation.

Examples Anonymize %> ActionAnonymizePersonalData(x)
L:ActionAnonymizePersonalDataR:ActionAnonymizePersonalData (
L.personalData2 R.personalData)

Matching And relationship between delete personal data amahyemize personal data
L: ActionDeletePersonalDataR:ActionAnonymizePersonalDaga (
L.personalData2 R.personalData)

Table 8: Action Anonymize Pesonal data
Name ActionNotifyDataSubject
Media Media The media used to notify the user (d;18MS, etc.)

Parameters Address Address The corresponding address (e-mail address, phone

number, etc.)

Describtion This action notifies the Data Subject when trigderée. send the trigge

P information to the Data Subject.

Examples Notify by e-mail— ActionNotifyDataSubject(e-mail, any)

P Notify by e-mail at x— ActionNotifyDataSubject (e-mail, x)

Matchin L:ActionNotifyDataSubject R:ActionNotifyDataSubject (

g (L.Media == R.Media)\ (L.Address == R.Address))
Table 9: Action Notify Data Subject
Name ActionLog

Parameters | |

Description This information logs an event, e.gtevin a trace file the trigger information.

Examples Log— ActionLog()

Matching L: ActionLog = R: ActionLog< True

Table 10: Action Log

37

Name ActionSecurelLog

Parameters | |

=]

This information logs an event and ensures intggunitd authentication of origi

Description of the event.

Examples Log Securely ActionSecurelLog()

L: ActionSecureLo@ R: ActionSecureLog> True

Matchin
g And relationship between Log and Secure Log

L: ActionSecureLo@ R: ActionLog< True

Table 11: Action secure Log

2.4.1.4 Normalisation of Obligations

In the obligation language, one can express the sdtigations in multiple ways. In order to be
able to provide the same matching-result on theesalligations, the obligation matching engine
(OME) does a normalization of obligations beforammg the matching process. OME provides a
configurable flag to normalize a given obligationdplitting it up into multiple obligations, if thi

is needed. That is, if there is an obligation withltiple triggers, then it is transformed in mulip
obligations with one trigger and the same action.

2.4.2 Implementation of OME

The obligation matching engine is implemented &#/adows service”. It starts a Web Service
with an address specified in the config file.

2.4.2.1 Web Service API

The web service provides these methods:

e Boolean Match(ObligationsSet preferenceObligationSet,
ObligationsSet policyObligationSet);

This method takes a preference an a policy obtigedind returns a single boolean value,
indicating whether the provided obligations do omebt match.

* Boolean MatchAsString(string preferenceObligationSetAsString,
string policyObligationSetAsString);

Same as above, but parameters are XML-serializgesentations of the objects above.
This function is deprecated and should no longeardsel.

* PrimelLifeObligationMismatch.0ObligationsSetMm
GetStickyPolicy(ObligationsSet preferenceObligationSet,
ObligationsSet policyObligationSet);

This method takes a preference and a policy olitigand will provide the full
obligations part of the sticky policy. It is suppdgso return a sticky policy in matching
and not matching cases. Please have a look akémepées provided in Chapter 8 for
more details on how sticky policies will look lilke different cases.

38

* string GetStickyPolicyAsString(string preferenceObligationSetAsString,
string policyObligationSetAsString);

Same as above, but parameters are XML-serializgesentations of the objects above.
This function is deprecated and should no longerdsel.

2.4.2.2 Configuration

Starting and Stopping the ServiceAs OME is a Windows service, it is registered aseevice
during installation process and then listed in ¢kevices section at the Windows management
console. You will find OME listed as “PrimeLife OM&ervice”.

Traces and Debug Outputs:OME is a Windows service and no console or graphitarface
can be used to output some information. Some hagicmation about the start and about
received events as well as warnings and errorsareto the Windows application event log. The
easiest way to access those traces is by usingiahiemenu named “Obligation Matching Engine
Outputs (Event Viewer)”. Moreover, there is alsdedoug log which is far more informative. It is
a text file which is located on \LocalAppData\EMRZmelifeOEE of the LocalService User.

Configuration File: The configuration file of OME can be found in tmstallation directory of
OEE. It is named “OMEWindowsService.exe.config”.efér are several configurable parameters
and flags that influence the behaviour of OME. Ehean be found in the “applicationSetting”
element of the configuration file and are describexit:

» Parameter ServiceAddress: This parameter sets e Where OME should provide its
web service. It is mandatory as there is no hareldatkfault value given for it.

» Parameter RawMismatchMode: The raw mismatch modebeaturned on and off with
the equal-named parameter. It is designed to hamdlertain mismatch edge case in a
non-ordinary way in order to provide a useful ottfiuch an edge cases is if a pair of
comparable obligations (that is, a preference apdliay obligation have at least some
similarities) do have at least one not comparalidger or action (that is, the triggers or
actions do not have any similarities).

In such a situation, the regular handling, whichc@mparing every pair of triggers and
actions separately and summing up the resultinglasity score, usually do not make
sense. It is then better to give up comparing ekl properties separately, stating that
these obligations do not match entirely. The r@smisticky policy would be as follows.
The policy obligation is listed under obligationghwthe matching attribute to false at the
top obligation level and the preference and pobbligation are given, as a whole, as
mismatch details. This is the default value, whiklaw mismatch mode in on. Setting
this parameter to false would let OME behave ratyia these edge cases.

o Parameter ProcessObligationsNormalized: This pasmés a switch for the
normalization of obligations before they are preees Please see section 2.4.2.3 for
details on normalized processing of obligations.

Sample Client Application: The client application (‘OMECIient.exe”) calls thWeb Service.
The address of the WS can be changed in its caatiga file, i.e. “OMECIient.exe.config”. The
Client calls Match() and GetStickyPolicy() with feeence-side and policy-side obligation sets
from files preferenceObligationSet.xml and policyi@ationSet.xml respectively.

2.4.2.3 Normalized Processing of Obligations

In PPL, one can express the same obligations itipteulvays. In order to be able to provide the
same matching-result on the same obligations, thave to be some kind of normalization. OME

39

provides a configurable flag “ProcessObligationsiNalized* in its configuration file to normalize
a given obligation by splitting it up into multiptebligations, if this is needed. That is, if thége
an obligation with multiple triggers, then it imtisformed in multiple obligations with one trigger
and the same action.

2.4.2.4 Mismatch Description with Respect to Similarity

A sticky policy contains, in addition to a set difligations, one or more mismatch elements which
are nested in the mismatches element. A mismatchegit is designed to carry information about
a particular mismatch, pointing at the accordingmednt in the preference and at the policy
obligation, which are supposed to be the origithefmismatch. This is the regular behaviour.

However, there are also some special cases:

» Comparing two trigger or action elements, one mayfrom preference and the other
from policy, assume they have no similarity withtspect to the similarity estimation
algorithm, then both obligations, each as a wherle taken as the origin of mismatch and
are shown in a mismatch element accordingly.

 Assume two different obligations have no similarityth respect to the similarity
estimation algorithm, then

o0 no mismatch element will appear referring to thematch,
o the obligation will not be listed in the obligatiset of the sticky policy and

o the overall obligation set element of the stickyliggowill have the attribute
matching set to false and the attribute infinitetedrue.

The mismatch element provides two kinds of refeclmaisms. First, the mismatching elements
of the obligations and the according mismatch etgnagee labelled with a mismatchld attribute,
which have the same sticky-policy-wide, unique i, Second, if two elements, e.g.
obligation elements or some child elements, thammaiches against each other provide the
elementld attribute, which should be unique ingiqeeference or policy, then these attributes are
used inside the mismatch element for pointing ®rnfismatch originating elements. Please also
have a look the examples in the following sectianget better understanding of this mechanism.

2.4.2.5 Examples

1. Matching Example

[oX

» use of PII for purpose contact and pseudo-anahgssls be to logge
within 5 minutes
« collected PIl has to be deleted within 7 days

Obligations in user’s
preferences

» will log any use of PII for purpose ...

0 ... contact within 5 minutes

0 ... delivery within 15 minutes

0 ... pseudo-analysis within 30 seconds
» will delete collected PII within 5 days

Obligations in
service’s policy

Obviously, these obligations do match. The resglsticky policy will

Result include all obligations which are part of the prefece and of the policy.

40

2. Mismatching Example: Deletion of collected PIl will be done in a longer period than
expected by user

[oX

« use of Pll for purpose contact and pseudo-anahgssls be to logge
within 5 minutes
« collected PIl has to be deleted within 7 days

Obligations in user’s
preferences

» will log any use of PII for purpose ...

0 ... contact within 5 minutes

0 ... delivery within 15 minutes

0 ... pseudo-analysis within 30 seconds
» will delete collected PII withii0 days

Obligations in
service’s policy

This example will lead to a mismatch.

Result

The corresponding sticky policy will (still) listsvo obligations, labelling the latter as a mismatch
with attributematchingset tofalseon all elements down the path from the mismatahiroto the
obligation element. Furthermore a mismatchld aitelwill be added to the mismatch origin. This
mismatchld, which is unique for a sticky policy,used to refer to within a second part of the
sticky policy, the mismatches element.

The mismatches element will list all mismatchestlie document as long as the pairs of
mismatching content has at least some kind of amtyl In this example, there is a mismatch at
the delay before deleting a collected PII, whictsli@wn next as listings of the TriggerAtTime
elements.

Preference-side: Policy-side:
<ob:TriggerAtTime> <ob:TriggersSet>
<ob:Start> <ob:TriggerAtTime>
<ob:StartNow/> <ob:Start>
</ob:Start> <ob:StartNow/>
<ob:MaxDelay elementId="myIdA"> </ob:Start>
<ob:Duration> <ob:MaxDelay elementId="myIdl">
POYOM7DTOHOMOS <ob:Duration>
</ob:Duration> POYOM10DTOHOMOS
</ob:MaxDelay> </ob:Duration>
</ob:TriggerAtTime> </ob:MaxDelay>

</ob:TriggerAtTime>

This mismatch would result in a mismatch elemerthatsticky policy, which points at the two
MaxDelay properties of the TriggerAtTime elemending their elementlds.

<Mismatch mismatchId="mismatchId_4">
<Similarity>@.5714285714285714</Similarity>
<Preference elementId="myIdA">
<Duration xmlns="http://www.primelife.eu/ppl/obligation”>
<Duration>POYOM7DTOHOMOS< /Duration>
</Duration>
</Preference>
<Policy elementId="myId1">
<Duration xmlns="http://www.primelife.eu/ppl/obligation”>
<Duration>POYOM10DTOHOMOS< /Duration>
</Duration>
</Policy>
</Mismatch>

41

3. Mismatching Example: The User provides two obligations to delete Pll within 7 days and
within 10 days, whereas the service offers to delete within 13 days

» use of PII for purpose contact and pseudo-anadysisild be logged

Obligations in user’s . .
within 5 minutes

preferences o
» collected PIl should be deleted within 10 days
» collected Pl should be deleted within 7 days
NB:Such preferences are not expected but well fdedaand thug
handled.
Obligations in » will log any use of PII for purpose ...

0 ... contact within 5 minutes

0 ... delivery within 15 minutes

0 ... pseudo-analysis within 30 seconds
» will delete collected PII withii3 days

service’s policy

As one can see, the second obligation will leaal taismatch. But having

Result X) .
two preferences not fulfilled, there need to be mismatches listed.

This means, two obligations are shown in the obbgaset-part of the sticky policy, differing
only in mismatch labels.

<Obligation matching="false">
<TriggersSet matching="false">
<TriggerAtTime matching="false">
<Start>
<DateAndTime>2010-08-19T11:50:37.1130248+02:00</DateAndTime>
</Start>
<MaxDelay mismatchId="mismatchId_5" matching="false">
<Duration>P@YOM13DTOHOMOS< /Duration>
</MaxDelay>
</TriggerAtTime>
</TriggersSet>
<ActionDeletePersonalData />
</Obligation>

<Obligation matching="false">
<TriggersSet matching="false">
<TriggerAtTime matching="false">
<Start>
<DateAndTime>2010-08-19T11:50:37.1130248+02:00</DateAndTime>
</Start>
<MaxDelay mismatchId="mismatchId_9" matching="false">
<Duration>P@YOM13DTOHOMOS< /Duration>
</MaxDelay>
</TriggerAtTime>
</TriggersSet>
<ActionDeletePersonalData />
</Obligation>

Also there are two mismatch elements pointing ® tiwo different policy obligations and the
same policy obligation.

<Mismatch mismatchId="mismatchId_5">
<Similarity>@.7</Similarity>
<Preference elementId="myIdA">
<Duration xmlns="http://www.primelife.eu/ppl/obligation">
<Duration>P@YOM1ODTOHOMOS< /Duration>
</Duration>
</Preference>
<Policy elementId="myId1">
<Duration xmlns="http://www.primelife.eu/ppl/obligation">
<Duration>P@YOM13DTOHOMOS</Duration>
</Duration>
</Policy>
</Mismatch>
<Mismatch mismatchId="mismatchId_9">

42

<Similarity>0.14285714285714291</Similarity>
<Preference elementId="myIdB">
<Duration xmlns="http://www.primelife.eu/ppl/obligation">
<Duration>POYOM7DTOHOMOS< /Duration>
</Duration>
</Preference>
<Policy elementId="myId1">
<Duration xmlns="http://www.primelife.eu/ppl/obligation">
<Duration>P@YOM13DTOHOMOS</Duration>
</Duration>
</Policy>
</Mismatch>

4. Mismatching Example: Policy does not log usage of Pll for all purposes

» use of PII for purpose contact and pseudo-anadysisild be loggeq
within 5 minutes
» collected Pl should be deleted within 7 days

Obligations in user’s
preferences

|

» will log any use of PII for purpose ...
0 ... contact within 5 minutes
0 ... delivery within 15 minutes

» will delete collected PII within 5 days

Obligations in
service’s policy

Result The mismatching part of these obligations is thatgolicy is not willing

to log the use of PII for purpose delivery.

As this detalil level is not handled by the obligatimatching engine by now, the mismatch
description of the sticky policy would list bothlgations as a whole. This behavior might change

in the next version, depicting the difference itadle

<Mismatch mismatchId="mismatchId_17">
<Similarity>@.5</Similarity>
<Preference>
<Obligation xmlns="http://www.primelife.eu/ppl/obligation™>
<TriggersSet>
<TriggerPersonalDataAccessedForPurpose>
<Purpose xmlns="http://www.primelife.eu/ppl">
http://www.w3.0rg/2002/01/P3Pvl/pseudo-analysis</Purpose>
<MaxDelay>
<Duration>P@YOMODTOH5MOS</Duration>
</MaxDelay>
</TriggerPersonalDataAccessedForPurpose>
</TriggersSet>
<ActionlLog />
</Obligation>
</Preference>
<Policy>
<Obligation xmlns="http://www.primelife.eu/ppl/obligation">
<TriggersSet>
<TriggerPersonalDataAccessedForPurpose>
<Purpose xmlns="http://www.primelife.eu/ppl">
http://www.w3.0rg/2006/01/P3Pv1l/delivery</Purpose>
<MaxDelay>
<Duration>P@YOMODTOH15MOS</Duration>
</MaxDelay>
</TriggerPersonalDataAccessedForPurpose>
</TriggersSet>
<ActionLog />
</Obligation>
</Policy>
</Mismatch>

43

5. Mismatching Example: Preference and Policy did not match on a Single Obligation

» use of PIll for purpose contact and pseudo-anadjsisild be logged

Obligations in user’s " .
within 5 minutes

preferences

Obligations in « will delete collected PII within 5 days

service’s policy

As these obligations have nothing in common, thiggations matching

Result . . . LT
algorithm will neither match exactly nor match &milarity.

The resulting sticky policy would consist of an dynpbligation set and no mismatch detail
descriptions, as shown below.

<?xml version="1.0"?>

<ObligationsSet xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema” matching="false"

xmlns="http://www.primelife.eu/ppl/obligation/mismatch">
<ObligationsSet matching="false" infinit="true"

xmlns="http://www.primelife.eu/ppl/obligation" />

6. Matching Example: Preference has several separated Obligations which will be met by a

single Policy
Obligations in user's » use of PIl for purpose cor?tact should be Ioggediwi§ minL_Jtes
preferences » use of Pll for purpose delivery should be loggethini1l5 minutes
» use of PIl for purpose pseudo-analysis should bgdd within 30
seconds
Obligations in « will log any use (?f EII for.purpose
service’s policy 0 ... contact within 5 minutes
0 ... delivery within 15 minutes
0 ... pseudo-analysis within 30 seconds
Result Obviously the policy matches each preference. Bgcgssing the
obligations in a normalized way, OME is able toedéthese as a match.

44

Chapter

Usage Control: Authorizations

Data handling policies, preferences, and stickycpd contain, apart from the set of obligations
described above, also a set of authorizations. &\Vdliligations specify actions that the Data
Controller is required to perform on the transnditieformation, authorizations specify actions
that it is allowed to perform. Similarly to what ved for obligations, we recognize that it is
impossible to define an exhaustive list of authatrans that covers all needs that may ever arise in
the real world. Rather, we define a generic, ugersible structure for authorizations so that
new, possibly industry-specific authorization vodialies can be added later on. We do provide
however a basic authorization vocabulary for uslata for certain purposes and for downstream
access control, and we describe how these auttiorizacan be efficiently matched via the
general strategy described in Section 3.3.

3.1 Generic Definition and Schema

The set of authorizations in the Data Controlleldsa handling policy, in the Data Subject’'s data
handling preferences, or in the agreed-upon sticiticy are specified in an <AuthorizationsSet>
element containing a list of <Authorization> elet®erThe <Authorization> element is abstract,
however: it is up to the authorization vocabulat@sxtend the schema with new elements of type
AuthorizationType. The schema of the elementsvsrmgbelow.

<xs:schema xm ns="http://ww. prinmnelife.eu"
t ar get Nanespace="http: //ww. pri nelife. eu"
xm ns: xacm ="ur n: oasi s: nanmes: t c: xacmnl : 3. 0: core: schema: cd- 1"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" >
<xs:inport schemalLocati on="xacm -core-v3-schenma-cd-1. xsd"
nanespace="urn: oasi s: nanes: tc: xacnl : 3. 0: core: schema: cd-1"/ >

<I-- List of Authorizations -->
<xs: el ement name="Aut hori zati onsSet" type="AuthorizationsSet Type"/>
<xs: conpl exType nane="Aut hori zati onsSet Type" >
<Xs:sequence>
<xs:el ement ref="Authorization" m nCccurs="0" maxCccurs="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>

45

<l-- Authorization -->
<xs: el ement nane="Aut hori zati on" t ype="Aut hori zati onType"
abstract="true"/>
<xs: conpl exType nane="Aut hori zati onType" >
<xs:sequence m nCccurs="0" maxCccur s="unbounded" >
<XS:any nanespace="##any" processContents="|ax" />
</ xs: sequence>
<xs:anyAttribute />
</ xs: conpl exType>
</ xs: schema>

3.2 Usage Purposes Authorization

The first concrete authorization type that we defis the authorization to use information for a
particular set of purposes. Purposes are refeoduy tstandard URIs specified in agreed-upon
vocabularies of usage purposes. These vocabulsfrigRls may be organized as flat lists or as
hierarchical OWL ontologies. The <UseForPurposeement contains a list of <Purpose>
elements, each containing one URI describing aqaérfor which the data can be used.

<l-- Authorization: Use for purpose -->
<xs: el ement nanme="Purpose" type="xs:anyURl"/>
<xs: el ement name=" Aut hzUseFor Pur pose" substituti onG oup="Authori zation">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:restriction base="Authori zati onType">
<xs: sequence m nCccurs="1" maxCccur s="unbounded" >
<xs: el ement ref="Purpose"/>
</ xs: sequence>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >

Name AuthzUseForPurpose

Parameters {anyURI}

Description Authorization to use the data for thedfied list of purposes.

Use for admin and telemarketing purposes as defme@P 1.0>
Examples AuthzUseForPurpose({http://www.w3.0rg/2002/01/P 3Rdmin,
http://www.w3.0rg/2002/01/P3Pvl/telemarketing})

L:AuthzUseForPurpose R:AuthzUseForPurpose> V p € L.purposes
Matching 3 q € R.purposes : (&= g i.e. the list of purposes match when for eaaipqse
in L there is a purpose in g that is an ancestar equal to p.

Table 12: Authorization to use the data for purpose

As the URIs are organized as a flat list, matclihgurposes is simply done by testing equality of
the URIs. If purposes occur in a hierarchical OWitotogy, we use the notation purposel
purpose2 to denote that purpose-1 is equal to pear a sub-purpose of purpose2 (i.e., a
descendant of purpose2 in the hierarchy definedthey OWL ontology). In the matching
procedure described below we employ the hierarthigatching operator £”, but it is

46

understood to be replaced with a URI equality ojpertor purposes that are organized in a flat

list.

As a basic purpose ontology, one can use the follpWat list of purposes and primary purposes
as defined in P3P 1.1. We refer to the specificaibP3P 1.1 for a description of the purposes
associated to the URIs below.

http://www.w3.0rg/2002/01/P3Pv1/current
http://www.w3.0rg/2002/01/P3Pv1/admin
http://www.w3.0rg/2002/01/P3Pv1/develop
http://www.w3.0rg/2002/01/P3Pv1l/tailoring
http://www.w3.0rg/2002/01/P3Pv1/pseudo-analysis
http://www.w3.0rg/2002/01/P3Pv1/pseudo-decision
http://www.w3.0rg/2002/01/P3Pvl/individual-analysis
http://www.w3.0rg/2002/01/P3Pv1/individual-decision
http://www.w3.0rg/2002/01/P3Pv1/contact
http://www.w3.0rg/2002/01/P3Pvl/historical
http://www.w3.0rg/2002/01/P3Pvl/telemarketing
http://www.w3.0rg/2006/01/P3Pv11/account
http://www.w3.0rg/2006/01/P3Pv11/arts
http://www.w3.0rg/2006/01/P3Pv11/browsing
http://www.w3.0rg/2006/01/P3Pv11/charity
http://www.w3.0rg/2006/01/P3Pv11l/communicate
http://www.w3.0rg/2006/01/P3Pv11/custom
http://www.w3.0rg/2006/01/P3Pv11/delivery
http://www.w3.0rg/2006/01/P3Pv11/downloads
http://www.w3.0rg/2006/01/P3Pv11/education
http://www.w3.0rg/2006/01/P3Pv11/feedback
http://www.w3.0rg/2006/01/P3Pv11/finmgt
http://www.w3.0rg/2006/01/P3Pv11/gambling
http://www.w3.0rg/2006/01/P3Pv11/gaming
http://www.w3.0rg/2006/01/P3Pv11/government
http://www.w3.0rg/2006/01/P3Pv11/health
http://www.w3.0rg/2006/01/P3Pv11/login
http://www.w3.0rg/2006/01/P3Pv11/marketing
http://www.w3.0rg/2006/01/P3Pv11/news
http://www.w3.0rg/2006/01/P3Pv11/payment

47

* http://mww.w3.0rg/2006/01/P3Pv11l/sales

e http://www.w3.0rg/2006/01/P3Pv1l/search

* http://www.w3.0rg/2006/01/P3Pv11/state

e http://www.w3.0rg/2006/01/P3Pv11/surveys
Additionally we define one purpose

« http://www.primelife.eu/purposes/unspecified

to indicate that the data can or will be used forppses that are not specified at the time of
transmission.

3.3 Downstream Usage Authorization

The second concrete authorization type that wendefs the authorization to forward the
information to third parties, so-called downstreBata Controllers. In addition to merely stating
the fact that forwarding the information to dowesim data controllers is allowed, this
authorization type allows to specify the policy andwvhich this information will be made

available to the downstream data controllers. Tgoticy states the minimal policy that the

(primary) data controller has to enforce when sttathe information with downstream data
controllers. In case the downstream usage authiorizallows sharing the information with third

parties (i.e. the attribute 'allowed' as specifiethe below schema is 'true’) but does not specify
specific policy, no sharing restrictions are imgbsm the (primary) data controller and he can
share the data with downstream data controlledésatetion.

The authorization to share the personal data irstgqpre with downstream Data Controllers is
indicated by a <AuthzDownstreamUsage> element,lo¢kwvthe schema is given below.

<l-- Authorization: Use for purpose -->
<xs: el ement nanme="Purpose" type="xs:anyURl"/>
<xs: el ement name=" Aut hzUseFor Pur pose" substituti onG oup="Authorization">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:restriction base="Authori zati onType" >
<xs: sequence m nCccurs="1" maxCOccur s="unbounded" >
<xs: el ement ref="Purpose"/>
</ xs: sequence>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >

The <AuthzDownstreamUsage> element has an attradldeed indicating whether downstream
usage is allowed or not, and an optional <xacmicl®l child element specifying the access
control policy that has to be enforced by the detatroller when it forwards the data to
downstream data controllers. The <AuthzDownstreaeggs should NOT contain an
<xacml:Policy> child element when it occurs in theAuthorizationsSet> of a
<DataHandlingPolicy> element (This is because aurent approach on handling downstream
requirements when generating sticky policies im&yely copy the downstream usage preferences
directly into the sticky policy. A more sophistiedtbut also more complex approach would be to
match the downstream usage policy with the dowastrasage preferences and copy the result of
this matching into the sticky policy. For details @ur current approach see Section 5.1.6).

48

When occurring in the <AuthorizationsSet> of a <dbndlingPrefrences> or <StickyPolicy>
element, the optional <xacml:Policy> child elementist contain an empty <xacml:Target/>
element. The Data Controller will replace the emptyacml:Target/> element with an
<xacml:Target> element specifying a unique refeeeiocthe transmitted information as stored on
the Data Controller's system; this is to avoid thabalicious Data Subject can modify the access
control policy for other resources than the perkalada that is being transmitted. We refer to
Section 5.1.2.2 for more details on downstreamszccentrol.

Intuitively, a match occurs whenever the data hagdpolicy forbids downstream usage, or
whenever the data handling policy and the data lmngreferences both allow it. In the
description below, we assume that the authorizations included in the data subject's
<DataHandlingPreferences>, and that R is included ihe Data Controller's

<DataHandlingPolicy>.

Name AuthzDownstreamUsage

boolean allowed Downstream usage is allowed or not

Parameters . . -
<xacml:Policy> | Policy | Policy to enforce for doviregsam usage.

Description Authorization to forward the data towhstream Data Controllers.

No downstream usage allowed or intene®d\uthzDownstreamUsage(false)

Examples .
Downstream usage allowed under policyPAuthzDownstreamUsage(true, P)
L:AuthzDownstreamUsage R:AuthzDownstreamUsage> R.allowed=false OR
Matching (L.allowed=true AND R.allowed=true)

i.e. R does not allow downstream usage, or bothn® la allow downstreanr
usage.

Table 13: Authorization to forward Data

When a match occurs, the resulting sticky policgagved according to the following procedure:

* The matching fails if allowed="true” in the datantmller's data handling policy but
allowed="false” in the Data Subject’s preferenagberwise, the matching succeeds.

» If allowed="false” in the Data Controller's datarfiiing policy, then the resulting sticky
policy contains a <AuthzDownstreamUsage> elemetit allowed="false”.

» If allowed="true” in the Data Controller's data tiiimg policy, then the resulting sticky
policy contains a <AuthzDownstreamUsage> elemerth vaillowed="true” and the
<xacml:Policy> element specified in the Data Sutggareferences.

3.4 Authorization Matching Exceptions

In some particular cases the matching between amthions become unclear, especially when
some elements are set to empty or null. We dedmledvers these situations using exceptions in
the result of the matching. The 5.1.2.2 defines timavauthorization matching should result when
some elements are missing or empty.

49

Table 14: Authorization matching exception stragegi

Policy Preferences Matching Result Content of Sticky
AuthzSet AuthzSet Policy
no AuthzSet no AuthzSet x empty AuthSet
nothing is defined no MM
=> could be any value emptyAuthzSet x empty AuthSet
no MM
empty AuthzSet no AuthzSet v empty AuthSet
nothing is allowed => alway$ no MM
match empty AuthzSet v empty AuthSet
no MM
no AuthPurp no AuthPurp x no Auth for SP
no MM
AuthPurp no AuthPurp x policy AuthPurp
MM: empty pref
no AuthPurp AuthPurp v[x preference AuthPurp
MM: empty policy
AuthPurp AuthPurp v[x policy AuthPurp
pref.containsAll(polPur MM: pref, pol
p)
no AuthDSU no AuthDSU X no Auth for SP
no MM
authDSU no AuthDSU v[x policy AuthDSU
match if policy does MM: empty pref
not allow DSU
no AuthzDSU AuthDSU v[x preference AuthDSU
match if pref allow MM: empty policy
DSU

50

Chapter

Access Control: Introduction to
XACML

The eXtensible Access Control Markup Language (XAGH&Xt09] is an XML-based language
for expressing and interchanging access contratipsl The language offers the functionalities of
most security policy languages and has standashsixin points for defining new functions, data
types, policy combination logic, and so on. In &ddito the language, XACML defines both an
architecture for the evaluation of policies andbenmunication protocol for message interchange.
Some of the main functionalities offered by XACMarcbe summarized as follows.

Policy combination. XACML provides a method for doiming policies independently
specified. Different entities can then define thmticies on the same resource. When an
access request on that resource is submitted,ytens takes into consideration all the
applicable policies.

Combining algorithms. Since XACML supports the difon of positive and negative
authorizations, there is the need for a methodréopnciling independently specified
policies when their evaluation is contradictory. &ML supports different combining
algorithms, each representing a way of combinindtiple decisions into a single
decision.

Attribute-based restrictions. XACML supports thdinidon of policies based on generic
properties (attributes) associated with subjectg.,(exame, address, occupation) and
resources (e.g., creation date, type). XACML inelsidsome built-in operators for
comparing attribute values and provides a methoddding non-standard functions.

Policy distribution. Policies can be defined byfetiént parties and enforced at different
enforcement points. Also, XACML allows one polioydontain, or refer to, another.

Implementation independence. XACML provides an ralotibn layer that isolates the
policy-writer from the implementation details. Thiayer guarantees that different
implementations operate in a consistent way, régssaf the specific implementation.

Obligations. XACML provides a method for specifyiagtions, called obligations, which
must be fulfilled in conjunction with the policy femcement, after the access decision has
been taken.

51

XACML also supports multiple subjects specificationa single policy, multi-valued attributes,
conditions on metadata of the resources, and pwligxing.

As one of the main requirements of the PPL language express Access control beside the
usage control, we decided to adopt the XACML lamguas the basis for expressing access
control in stead of specifying a new one. This sieci was done after a comparative study done
with other access control languages. The argunexqiiained previously were strong enough to
rely on this language. In the section 5.1.1 we a@rpinore in details how the XACML elements

are extended in PPL.

Access 2. Access PEP 13.0Obligations Obligations
2 3 .
Requester Request ‘ Service
3.Request 12.Response

4.Request

Notification

5.Attribute

PDP — QI ; —=1 Context 9.Resource Resource
ueries —
Handler Content

re—10.Attributes

11.Response

Context ;
6. Attribut
B.Attribute
Query Tc.Resource
Attributes
PIP
1.Policy
Tbh.Environment
Ta.Subject Attributes
Attributes
PAP Subjects Environment

Figure 4. Overview of XACML dataflow [eXt09]

Figure 4 illustrates the XACML working and the ddlaw in the access control evaluation.
Access control works as follows. The requester s@mdaccess request to the Policy Enforcement
Point (PEP) module (step 2) which in turn sena ithe Context Handler. The Context Handler
translates the original request into a canonicah&t, called XACML request context (step 3) and
sends it to the Policy Decision Point (PDP) (st¢pThe PDP identifies the applicable policies

52

among the ones stored at the Policy Administratmint (PAP) and retrieves the attributes
required for the evaluation through the Context dian (steps 5-10). If some attributes are
missing, the context handler queries the Policyrimiation Point (PIP) module for collecting
them. The PIP provides attribute values about thgest, resource, and environment. To this
purpose, the PIP interacts with the subjects, regpand environment modules. The environment
module provides a set of attributes that are releta take an authorization decision and are
independent of a particular subject, resource,atibn. The PDP evaluates the policies against
the retrieved attributes, and returns the XACMLpmsse context to the Context Handler (step
11). The Context Handler translates the XACML resgocontext to the native format of the PEP
and returns it to the PEP together with an optigealof obligations (step 12). The PEP fulfills the
obligations (step 13), and grants or denies theagigaccording to the decision in the response
context.

4.1 Basic XACML Concepts

XACML relies on a model that provides a formal eeg@ntation of access control policies and on
mechanisms for their evaluation. An XACML policyrtains one <Policy> or <PolicySet> root
element, which is a container for other <Policy><®olicySet> elements. Element <Policy>
consists of a Target, a set of Rule, an optionabk®bligation, an optional set of Advice, and a
rule combining algorithm. A Target element includeset of requests in the form of a logical
expression on subjects, resources, and actioastdfiuest satisfies the requirements specified in
the Target, the corresponding policy applies to rbguest. A Rule corresponds to a positive
(permit) or negative (deny) authorization, depegdin its effect, and may additionally include an
element Condition specifying further restrictions subjects, resources, and actions. As for
element Policy, element Rule may contain a Tar@bétigation, and Advice. Each condition can
be defined through element Apply with attribute €ionID denoting the XACML predicate (e.g.,
string-equal, integer-less-than) and with appraerisub-elements denoting both the attribute
against which the condition is evaluated and theapgarison value. The rule’s effect is then
returned whenever the rule evaluates to true. Tiilg&ion element specifies an action that has to
be performed in conjunction with the enforcementaof authorization decision. The Advice
element specifies supplemental information abodeeision. Each element Policy has attribute
RuleCombiningAlgID specifying how to combine thecidéons of different rules to obtain a final
decision of the policy evaluation (e.g., deny oikas, permit overrides, first applicable, only one
applicable). According to the selected combiningodthm, the authorization decision can be
permit, deny, not applicable (i.e., no applicabddigies or rules can be found), or indeterminate
(i.e., some information is missing for the competdf the evaluation process).

As an example of XACML policy, suppose that a htadpiefines a high-level policy stating that
“any user with role head physician can read theeptatecord for which she is designated as head
physician”. The policy below illustrates the XACMpolicy corresponding to this high-level
policy. The policy applies to requests on the Hhitpvw.example.com/hospital/patient.xsd
resource. The policy has one rule with a targetrguires a read action, a subject with role head
physician and a condition that applies only if subject is the head physician of the requested
patient.

<Pol i cy Policyld="Pol 1" Rul eConmbi ni ngAl gl d="urn: oasi s: nanes: tc: xacm : 1. 0:
rul e- conbi ni ng-al gorithmperm t-overrides" . . . >
<Tar get >
<AnyCf >
<A | O >
<Mat ch Mat chl d="ur n: oasi s: nanes: tc: xacnl : 1. 0: functi on: stri ngmat ch" >
<AttributeVal ue DataType="http://ww. w3. or g/ 2001/ XM_Schema#st ri ng" >
ur n: exanpl e: med: schenmas: record

53

</ AttributeVal ue>
<Attri but eDesi gnat or
Cat egory="ur n: oasi s: nanes: tc: xacm : 3. 0: attri but e-
cat egory: resour ce"
Dat aType="htt p://wwv. w3. or g/ 2001/ XM_Schema#st ri ng"
Attributel d="urn: oasi s: nanes: tc: xacm : 1. 0: resource: t ar get -
nanespace"/ >
</ Mat ch>
</AlO>
<AnyCf >
</ Tar get >
<Rul e Rul el d="ReadRul e" Effect="Permt">
<Tar get >
<AnyCf >
<Al OF >
<Mat ch Mat chl d="ur n: oasi s: nanes: tc: xacm : 1. 0: functi on: stri ng-
equal ">
<AttributeVal ue
Dat aType="htt p: // ww. w3. or g/ 2001/ XM_Schema#st ri ng" >
head physi ci an
</ AttributeVal ue>
<Attri but eDesi gnat or
Cat egor y="ur n: oasi s: names: tc: xacml : 1. 0: subj ect - cat egory: access-
subj ect"
Attributel d=
"urn: oasi s: nanes:tc: xacnl : 2. 0: exanpl e: attri bute: rol e"
Dat aType="htt p://wwv. w3. or g/ 2001/ XM_Schema#stri ng"/ >
</ Mat ch>
</AIO>
</ AnyCf >
<AnyCf >
<Al | OF >
<Mat ch Mat chl d="ur n: oasi s: nanes: tc: xacml : 1. 0: functi on: stri ng-
equal ">
<Attri buteVal ue
Dat aType="htt p: // ww. w3. or g/ 2001/ XM_Schema#st ri ng" >
read
</ AttributeVal ue>
<Attri but eDesi gnat or
Dat aType="htt p: // ww. w3. or g/ 2001/ XM_Schema#st ri ng"
Cat egory="ur n: oasi s: nanmes: tc: xacm : 3. 0: attri but e-
cat egory: acti on"
Attributel d="urn: oasi s: nanmes: tc: xacni : 1. 0: acti on: action-id"/>
</ Mat ch>
</AlO>
</ AnyCF >
</ Tar get >
<Condi ti on>
<Appl y Functionl d="urn: oasi s: nanes:tc: xacm : 1. 0: functi on: stri ng-equal ">
<Attri but eDesi gnat or
Dat aType="htt p: // ww. w3. or g/ 2001/ XM_Schema#st ri ng"
Cat egor y="ur n: oasi s: names: tc: xacml : 1. 0: subj ect - cat egory: access-
subj ect"
Attributel d="urn: oasi s: nanes: tc: xacnl : 1. 0: subj ect : head-
physi ci anl D'/ >
<AttributeSel ect or Request Cont ext Pat h="/ct x: Request/ ct x: Resour ce/ ct x:
Resour ceCont ent / hospi tal : record/ hospital : pati ent/hospital:
pati ent - head- physi ci anl D/ text ()"
Dat aType="htt p: //ww. w3. or g/ 2001/ XM_Schena#stri ng"
Cat egory="ur n: oasi s: names: tc: xacm : 3. 0: attri but e-
cat egory: resource"/ >
</ Condi ti on>

54

</ Rul e>
</ Poli cy>

4.2 XACML 3.0: Privacy Profile

The XACML v3.0 Privacy Policy Profile Version 1.8 a standard issued by the OASIS group
describing “a profile of XACML for expressing priew policies” [OASQ09]. This profile uses the
following two attributes:

e urn:oasis:names:tc:xacml:2.0:resource:purpose, hMnidicates the purpose for which a
data resource was collected, and

* urn:oasis:names:tc:xacml:2.0:action:purpose, wharnesponds to the purpose for which
access to a data resource was requested.

A standard rule is defined, according to which asc® the requested resource is to be denied
unless the two above-mentioned purposes matchgoyareexpression match, as shown below.

<Rul e xm ns="ur n: oasi s: names: tc: xacnl : 3. 0: cor e: schenma: wd- 06"
Rul el d="ur n: oasi s: nanes: tc: xacml : 2. 0: nat chi ng- pur pose" Effect="Permt">
<Condi tion
Functi onl d="ur n: oasi s: nanes: tc: xacm : 2. 0: functi on: stri ng-regexp- mat ch" >
<Attri but eDesi gnat or
cat egory="urn: oasi s: nanes: tc: xacnm : 3. 0: attri but e-cat egory: resour ce"
Attributel d="urn: oasi s: nanes: tc: xacm : 2. 0: resour ce: pur pose"/ >
Dat aType="htt p: //wwv. w3. or g/ 2001/ XM_Schema#st ri ng"
<Attri but eDesi gnat or
cat egory="urn: oasi s: nanes: tc: xacnm : 3. 0: attri but e-cat egory: acti on"
Attributel d="urn: oasi s: nanes: tc: xacrl : 2. 0: acti on: pur pose"/ >
Dat aType="htt p: //ww. w3. or g/ 2001/ XM_Schena#stri ng"
</ Condi ti on>
</ Rul e>

Such rule must be used in the scope of rule-comypini algorithm
urn:oasis:names:tc:xacml:2.0:rule-combining-aldponitdeny-overrides. To conform to such
specification, any implementation should, as an KACrequest producer, make use of the
attributes above, and, as an XACML policy processoforce the proposed rule, respectively.
The profile deals with an important aspect that barfound also in the research context of the
PrimeLife project, namely, purposes of data praogs$Nevertheless, purposes are a very specific
facet of Data Handling, and we consider the scopé¢his standard proposal too narrow if
compared to the much more general concepts its ,H@rieacy Policy Profile”, refers to.

55

Chapter

The PrimeLife Policy Language

5.1 Policy Language Model

o 0.1 AuthU sef orPurpose
[ON]
PolicySet
PolioyCombining Al gy, 0.¢ ingPolicy
B > AuthorizationsSet Authoz) ownStreambsage
o ’ -Palicyld > ol PR
o
o4
- A
3.+ DataHandingPreferences 1 .
-Policyld bt 8
0.1 " = = 0.1
p.a S ’
Poltey e - Palicyld b —
-RuleC ombiningAlgld <
budh o
’ 2 i irements Credential
-+ - -
0.1 1
5|
p = ProvisionalActions ProvisionalAction
3 -
o=t fige) [phitiond
.4
Rule xacmi: Condition

_Effect L

Figure 5. Model of our policy language

In this deliverable we extend XACML 3.0 [Rissanavith a number of privacy-enhancing and
credential-based features. Our language is intetalbd used

* by the Data Controller to specify the access mgiris to the resources that he offers;

* by the Data Subject to specify access restricttonser personal information, and how
she wants her information to be treated by the Catatroller afterwards;

56

» by the Data Controller to specify how “implicitlyollected personal information (i.e.,
information that is revealed by the mere act of gmmicating, such as IP address,
connection time, etc.) will be treated,;

* and by the Data Subject to specify how it wants ifmplicit information to be treated.

5.1.1 Rules, Policies, and Policy Sets

We maintain the overall structure of the XACML laragie, but we introduce a number of new
elements to support the advanced features thdanguage has to offer, and we also modify the
schema of a number of existing elements.

As in XACML, the main components of our language exles, policies, and policy sets. Each
rule has an effect, either “Permit” or “Deny”, thaticates the consequence when all conditions
stated in the rule have been satisfied. Rules svapgd together in policies. When a policy is
evaluated, the rule combining algorithm of the pplias stated in an XML attribute of the policy)
defines how the effects of the applicable rulescarabined to determine the effect of the policy.
Policies, are also grouped together in policy siis;effect of a policy set is determined by the
effects of the contained policies and the statelicypa@ombining algorithm. Finally, different
policy sets can be further grouped together inrggpelicy sets.

The main components of a rule are:

* atarget, describing the resource, the subjectftamenvironment variables for which this
rule is applicable;

» credential requirements, describing the credenti@sneed to be presented in order to be
granted access to the resource;

e provisional actions, describing which actions (e.gvealing attributes or signing
statements) have to be performed by the requestoder to be granted access;

» a condition, specifying further restrictions on thgplicability of the rule beyond those
specified in the target and the credential requeanmeis)

« data handling policies, describing how the infoliotathat needs to be revealed to satisfy
this rule will be treated afterwards;

« and data handling preferences, describing howrtfegmation contained in the resource
that is protected by this rule has to be treated.

The target is described by a <xacml:Target> elenmmttaining a number of nested
<xacml:AnyOf> and <xacml:AllOf> elements. The sclemf the <xacml:Condition>
element is also left intact, in the sense thapiittains an element of type <xacml:Expression>
that evaluates to a Boolean, but we do introduce rew element
<CredentialAttributeDesignator> of type <xacml:Eegsion> that can be used inside a
<xacml:Condition> to retrieve an attribute valuenr a presented credential. The other
elements are new; we briefly describe their funliy below.

5.1.2 Authorization Element

Data handling policy, preferences policy and stipklicy contain a set of authorization elements.
Authorizations specify actions that data contrabesillowed to perform on the collected data. PPL
language creators found it impossible to defineeaghaustive list of authorizations that could
cover all the needs that may ever arise in the weald. Rather than that, a generic, user-
extensible structure for authorizations was definsd that new, possibly industry-specific

57

terminology can be added later on. Current spetifio provides a basic authorization vocabulary
that covers usage of the data for certain purpasdsfor downstream access control (forwarding
the information to third parties).

5.1.2.1 Authorization use for purpose

Authorization use for purpose is defined as théa@ization to use the information for a particular
set of purposes. They are referred to by stand&1 Upecified in agreed-upon vocabulary. That
vocabulary of URIs may be organized as a flatdisa hierarchical ontology. PPL specification
proposes to use the list of primary purposes définé>3P 1.1 (see section 3.2)

5.1.2.2 Authorization for downstream usage

Element <AuthzDownstreamUsage> gives possibility peermit forwarding the information
protected by this policy to the third party, soledldownstream data controller. Optionally, this
authorization enables the data subject to speb#ypblicy under which the information will be
made available, i.e., the minimal access contrdéicpdhat the (primary) data controller has to
enforce when sharing the information with downstredata controllers. This is the reason why
there is a possibility to nest <Policy> elementidasthe <AuthzDownstreamUsage> element.
That indicates that the third party access to tita &ill be ongoing by the rules specified inside
this nested policy, which allows putting additionalktrictions and obligations that were not
imposed on the primary data controller.

5.1.3 Credential Requirements

Each rule can contain a <CredentialRequirementsmeht to specify the credentials that have to
be presented in order to satisfy the rule. The d@mdalRequirements> element contains a
separate <Credential> element for each credehtilrteeds to be presented, plus a <Condition>
element describing the conditions that the attebudf these credentials have to satisfy. Each
<Credential> element contains a unique identifisxzd@ntialld of type URI that is used to refer to
the credential from elsewhere in the rule. No twedentials required by a rule must have the
same identifier.

The <Credential> element can contain restrictidrag apply to the credential. These restrictions
can be expressed two ways: by means of a list dfrib&teMatchAnyOf> elements within the
<Credential> element, allowing matching attributésthe credential against a list of candidate
values, or by means of the generic <xacml:Conditielement that is a sibling of the list of
<Credential> elements, and that contains all othveditions related to the credential attributes,
including conditions that affect attributes fromltiple credentials. The <AttributeMatchAnyOf>
element is less expressive than the <xacml:Comditielement, but allows for more efficient
matching of credentials for a very common claseesfrictions, typically restricting the credential
type or the issuer to a list of specified values.

5.1.4 Data Handling Policies

Each rule, policy, or policy set can contain a nembf data handling policies, each of which is
expressed within a <DataHandlingPolicy> elemendafa handling policy can be referred to from
anywhere in the rule by its unique Policyld idaetif The main purpose of the data handling
policies is for the Data Controller to express wivdt happen to the information about the Data
Subject that is collected during an access reqd. provisional action to reveal an attribute

58

value (see previous subsection) therefore con@mms®ptional reference to the applicable data
handling policy. The data handling policies for gea information (i.e., IP address, connection
information, etc.) are specified in <DataHandlini®cs with dedicated Policyld identifiers in
the root <PolicySet>.

A data handling policy consists of a set of authations, contained in an <AuthorizationsSet>
element, that the Data Controller wants to obtaintloe collected information, and a set of
obligations, expressed in a <ObligationsSet> eléntbat he promises to adhere to. Before the
Data Subject reveals her information, these authtians and obligations are matched against the
Data Subject’s data handling preferences (see subdection) to see whether a matching sticky
policy can be agreed upon.

Our language supports an extensible authorizatmralwlary, but we predefine two concrete
authorization types here. The first is the auttaii@n to use the information for a list of purpgses
enumerated inside an <AuthzUseForPurpose> eleridéatenvisage purposes to be defined in
hierarchical and user-extensible ontologies; a gfiedd list of purposes is given in Section
reference X.2 Usage purposes authorization in audtmns.doc. The second predefined
authorization type is the authorization to forwdhd information to third parties, also called
downstream usage. The <AuthzDownstreamUsage> etarnatains a Boolean attribute allowed
indicating whether downstream usage is allowed. dgienal <Policy> child element can only be
used in the data handling preferences, as desdrilied next subsection.

Obligations are specified inside <Obligation> elatse which on their turn contain a

<TriggersSet> element describing the events thgyedr the obligation, an <Action> element
describing the action to be performed, and a <\fgfdelement describing the validity time frame

of the obligation. In this document we provide aibasocabulary of authorizations, triggers, and
actions that can be used to describe a data hgnpélicy, but the schema is left intentionally
open so that new authorizations, triggers, andasttan be added in the future.

5.1.5 Data Handling Preferences

The data handling preferences of a rule, embedddllel <DataHandlingPreferences> element,
specify how the information obtained from the raseiprotected by this rule is to be treated after
access is granted. The preferences are expressadebgms of a set of authorizations and
obligations, just like data handling policies. Whatcess to the resource is requested, the data
handling preferences have to be matched againsb@oged data handling policy to derive the
applicable sticky policy — if a match can be found.

An important difference between data handling pesfees and data handling policies is the
resource that they pertain to: data handling peefes always describe how the resource
protected by the rule itself has to be treatedemtiata handling policies pertain to information

that a requester will have to reveal in order t@izted access to the resource.

The main use of data handling preferences thatrwisage is for a Data Subject to specify how
she wants her personal data to be treated by aQattoller, i.e., which authorizations she grants
to the Data Controller with respect to her persatah, and which obligations he will have to
adhere to.

Optionally, if the data handling preferences cantai downstream usage authorization, the
<AuthzDownstreamUsage> element can optionally ohela <Policy> element specifying the

downstream access control policy, i.e., the accesgrol policy that has to be enforced on the
downstream data controllers.

59

5.1.6 Sticky Policies

The sticky policy associated to a resource, meathmeggreed-upon sets of granted authorizations
and promised obligations with respect to a resquscexpressed in the <StickyPolicy> element.
The sticky policy is usually the result of an autted matching procedure between the Data
Subject’s data handling preferences and the Datdr@lier's data handling policy.

The main difference between the <StickyPolicy> #mel <DataHandlingPreferences> is that the
former contains the authorizations and obligatitmst the policy-hosting entity itself has to
adhere to, while the latter contains authorizati@ang obligations that an eventual recipient has to
adhere to. Typically a Data Subject will not impase his or her self any authorizations or
obligations concerning her own personal data, gopbécy will not contain a <StickyPolicy>
element. The Data Controller, on the other hand| describe in the <StickyPolicy> the
authorizations and obligations that he himself has adhere to, while the
<DataHandlingPreferences> contain those that a Btveeim Data Controller has to adhere to.
Usually, the Downstream Data Controller will be jgabto the same or stronger restrictions than
the Data Controller himself, meaning that the poBpecified in the <DataHandlingPreferences>
will usually be at most as permissive as the pdjgcified in the <StickyPolicy>.

5.1.7 Provisional Actions

This element describes a set of provisional actibas needs to be fulfilled in order to satisfy an
access control rule for certain server-side resouithe schema of the <ProvisionalAction>
element is consciously kept independent of theiquaar provisional action that needs to be
fulfilled, in order to allow the possibility for éhfuture extensions with the new provisional action
types.

In the current version of PPL specification the kg possible provisional actions includes
revealing of users' (requestor) attributes, sigrangtatement, "spending” the credential which is
understood as a mean of restricting number of timaisthe same credential can be used.

The vocabulary for those terms was defined as arggquie identifiers in the form of URI:

« http://ww. primelife.eu/ Reveal requires access requestor to reveal one of his
attributes (piece of personal information) likeeamail address or a name

e http://ww. prinelife.eu/ Reveal Under DHP requires revealing the attribute
with the promise that it will be treated under agrtdata handling policy

e http://ww. primelife.eu/Reveal To requires revealing the attribute to the
third party (entity which is external to the resoaiowner)

e http://ww. primelife.eu/ Reveal ToUnder DHP requires revealing the
attribute to the third party with the promise thiawill be treated under certain data
handling policy

* http://www.primelife.eu/Sign signing a statememgiiires a mechanisms that will allow
verification of the signature)

* http://Iwww.primelife.eu/Spend spending a credentigkrpreted as a way to limit use of
this credential to a specific number of times

List of the possible provisional actions could beaeaded in the future to facilitate the new
requirements.

60

5.1.8 Relation to XACML Obligations

As an alternative to adding new elements to the KIAGschema, we considered to use the
standard <xacml:Obligations> element to specify tidigations that we embed in the data
handling policies or preferences. The reason that didn’t pursue this option is that
<xacml:Obligations> can only be used to specifygailons that the local PEP and to the resource
being protected. It cannot be used for our datallivanpreferences either, since the latter specify
obligations that the recipient of the resourcetbaadhere to, rather than the PEP that is proggctin
access to the resource. Meaning, by populatingxaeml:Obligations> element that protects her
personal data, a Data Subject would impose obtigatihat she herself has to adhere to each time
a Data Controller requests access to the persatal cather than imposing obligations on the
Data Controller.

The only use that we could have had for the <xd@hbiigations> element is to store and enforce
those obligations that the Data Controller comrditte in an agreed-upon sticky policy that are
triggered by access requests. Since obligatioggdred by access requests are only a small
subclass of the obligations that we consider heeegchose to leave the storage and enforcement
of obligations entirely up to the Obligation Engiraad let the PEP simply signal the Obligation
Engine each time an access request occurs.

5.2 Extending XACML for Credential-Based Access
Control

This section describes an extension to XACML 3r0cfedential-based access control.

In the following we explain the setting of credeithased access control, as it is the basis for the
language extensions that we propose, as well ag exectly is meant by a "credential".
Afterwards, we list a number of technologies tret be seen as instantiations of credentials, and
hence can be modelled by our (technology-indepeahastensions, and describe a number of
functionalities that are supported by existing tesdbgies and therefore have influenced the
design of our language.

5.2.1 The Scenario

We consider a setting with three types of entitieanely Data Subjects, Data Controllers, and
Issuers. Data Subjects hold trusted credentialstiiesy have obtained from Issuers and want to
access protected resources (e.g., Web pages, siasaldeb services, etc.) hosted by the Data
Controllers.

We do not make assumptions on how the Data Sulpbtéén their credentials; this could be on-
line by visiting the Issuer’s website, or off-lity physically going to an issuing desk (e.g. the
local town hall).

Servers restrict access to their resources by me&naccess control policies containing
requirements in terms of the credentials that thea[Bubject needs to own (and present) in order
to be granted access.

In the interaction sketched here, we only consttier part that is relevant to credential-based
access control, and not the full picture of ouriggolanguage sketched in (add reference to full
interaction sketch). Typically, a Data Subject eatd a Data Controller to request access to a
resource that she is interested in. The Data Cistr@sponds with the applicable access control
policy, containing the credential requirements esping which conditions on which credential
attributes have to hold, which attributes from whacedentials have to be revealed, and whom the

61

Data Controller trusts as issuers for these crémeniThe policy that is transmitted to the Data
Subject is derived from the policy that the Datanttaller attached to the resource, but is not
necessarily exactly equal to it. First, the polegnt to the Data Subject may be a partially
evaluated version of the Data Controller's policlyere for instance environment variables (e.qg.,
current time) or previously revealed attributes enalready been replaced by their respective
values. Second, the Data Controller may not bengilto reveal all details of its access control
policy, in which case a sanitized version of thégyds transmitted.

Upon receiving the policy, the Data Subject evasatvhether she is able to fulfil the given

requirements with her credentials. If so, she pcedua token that proves her fulfilment of the
requirements and sends it, together with the ate® to reveal and a description of the claims
about the credentials to the Data Controller. Thteceformat and content of this token depend on
the underlying authentication technology. Finaifythe Data Controller successfully verifies the

validity of the proof token, he grants the Data jSabaccess to the resource.

Depending on the technology, the Data Subject neagildde to derive the proof token herself, or
she may need to interact with the credential issugkewise, the Data Controller may be able to
independently verify the proof token, or may needdntact the issuers to assist in the verification
or simply to confirm that the Data Subject satistiee specified conditions.

5.2.2 Definition of Credentials

The requirements language that we present is geavestds enabling user-centric and privacy-
friendly access control on the basis of certifieddentials. While the language leverages the
advanced privacy and anonymity features offeredrmynymous credential systems, it is designed
to be technology-agnostic in the sense that it esfdis general credential concepts without
targeting one technology in particular. As the @piof a credential is a very abstract one that can
be understood in different ways, we now describe thos concept is used here.

By a credential we mean an authenticated stateatsmit attribute values made by an Issuer,
where the statement is independent from a conenetehanism for ensuring authenticity. The
statement made by the issuer is meant to affirniiftpadion. A credential serves as means for
proving qualification, i.e., it typically serves peoof of identity, proof of authority, or both mb

of identity and authority at the same time. Forregke, national identity cards are proofs of
identity, movie tickets are proofs of authorizatimnwatch a particular movie from a particular
seat, and driver's licenses are proofs of ideiatitg of authorization to drive motor vehicles of a
certain category at the same time.

5.2.3 Example Credential Technologies

While a policy author is allowed to express hisigoin a technology-independent way, a Data
Subject can freely choose the technology to fulié policy — to the extent that the same
technology is supported by the Data ControllersTihcludes the possibility to use credentials of
different technologies to fulfil one particular y. We envision that a multitude of different
credential technologies implements the generic eptscof credential-based access control. The
only assumption that our language makes on therlyirte technology is that credentials are
abstract data structures in the form of certifigdbaute-value pairs. We highlight some candidate
technologies below:

X.509 certificates: While the original purpose obR9 certificates was merely to bind entities to
their public signing and/or encryption keys, thiesa version of X.509 v3 certificates also allows
additional community-specific attributes to be ud#d in the certificate. When used as a
credential mechanism, the issuer essentially acgscertification authority by signing certificates

62

containing the bearer's list of attribute valuesna$l as his public key. The bearer can prove
ownership of the credential by proving knowledgehef underlying private key.

Anonymous credentials: Two main anonymous credential systems have begteinented
today, namely Identity Mixer and UProve. Much lilkem X.509 certificate, an anonymous
credential can be seen as a signed list of at&ritalue pairs issued by an issuer. Unlike X.509
certificates, however, they have the advantage tivatowner can reveal any subset of the
attributes, or merely prove that they satisfy soomndition, without revealing any more
information. Also, they provide additional privaggarantees like unlinkability, meaning that
even with the help of the issuer a Data ContratlEmnot link multiple visits by the same Data
Subject to each other, or link a visit to the iagudf a credential.

OpenID: In OpenID Data Subjects are identified by a URAttls authenticated by the Data
Subject's OpenlID provider. When logging on to a sitebthe Data Subject authenticates with
respect to this provider, rather than the webdgelfi The recent OpenlID Attribute Exchange
extension allows user-defined attributes to be argkd. One could consider the OpenlID provider
to be the issuer of a single credential per Datgiegtithat contains all of her attributes. Thisegiv

a very basic form of credential-based access donperhaps future extensions will allow

grouping attributes into credentials and storing Drata Subject's credentials at different OpenID
providers.

LDAP: One can also imagine credentials to be represeviteoh an LDAP directory tree. A Data
Subject's entire directory entry in an LDAP diregtmaintained by the credential issuer could be
seen as a single credential, or the hierarchioattsire of LDAP trees could be exploited to group
together the attributes of a single credentialefvar can verify a Data Subject's attributes simply
by looking them up in the issuer's directory.

Kerberos: Kerberos tickets could also be seen as digitadlesrials, albeit very limited ones
containing just the Data Subject's identity, theveethat the ticket gives access to, and some
validity information. In principle, one could imag other attributes to be authenticated in the
ticket as well, but this is not part of the currstandard.

5.2.4 Credential Functionality

We now describe a number of credential featuret whealeverage for credential-based access
control, and sketch how these features could beated in the different technologies. The
language that we develop will be able to exprdghalconcepts listed below.

Proof of ownership.An important aspect of credentials is their owhigrsTo bind a credential to
its legitimate owner, authentication informationyniee tied to the credential. This could be, e.g., a
picture of the Data Subject, the hash value of id, Rir the public key of a cryptographic
identification scheme. Proving credential ownersinippur notion means that authentication is
successfully performed with respect to the autkatitn information whenever such information
is present. Depending on the employed authentitatiechanisms, the successful authentication
may further provide some liveness guarantees (zsarelby prevent replay attacks).

The actual implementation of the ownership proof téehnology dependent. For X.509
certificates, Data Subjects can prove ownership®fkredential by signing a random nonce under
the public key that is certified by the certificabe anonymous credentials, Data Subjects execute
a zero-knowledge proof of knowledge of an undegdyimaster secret. OpenIlD and LDAP both
work with a password-based approach. For OpenlDt#ita Subject authenticates to the OpenID
provider directly, for LDAP the Data Subject setids password to the server, who then checks it
with the directory.

63

Selective attribute disclosure.Some technologies allow attributes within a créidério be
revealed selectively, meaning that the server tedyns the value of a subset of the attributes
contained in the credential. Not all technologiegort this feature. For example, verification of
the issuer's signature on X.509 certificates reguall attribute values to be known. In LDAP
directories the Data Subject obviously has no obrtver which values the server looks up.
Anonymous credentials and OpenlID, on the other haaste native support for this feature,
although the mechanisms are quite different. Foer@Ip the provider simply only reveals the
requested attributes, while for anonymous credisnitias the cryptography that ensures that no
information is leaked about non-disclosed attribute

Proving conditions on attributes. Certain credential technologies allow for provicmnditions
over attributes without revealing their actual esuObviously, for technologies such as X.509
certificates and LDAP directory, the only way t@pe that an attribute satisfies a condition is by
revealing its value, so here this distinction ist mery important. Anonymous credentials,
however, do support this feature by using zero-kadge proofs. OpenID supports this too, as the
provider can simply confirm to the server that tuwndition holds, without revealing anything
more.

Attribute disclosure to third parties. Usually attributes are revealed to the server ¢inébrces
the policy, but the policy could also require certattributes to be revealed to an external third
party. For example, the server may require thaD Subject reveals her full name to a trusted
escrow agent, so that she can be de-anonymizessenaf fraud, thereby adding accountability to
otherwise anonymous transactions. As another exanapl online shop could require the Data
Subject to reveal her address to the shipping cognpiarectly, rather than disclosing it to the
shop.

The Idemix anonymous credential system elegantlgpstis this feature using verifiable

encryption. Here, the Data Subject hands to theesear ciphertext containing the relevant attribute
encrypted under the third party's public key, amdves in zero-knowledge that the correct
attribute was encrypted. As an additional featardata handling policy describing, e.g., for what
purpose the ciphertext can be decrypted, can becbda the ciphertext via the so-called
decryption label. The server therefore cannot tieua the intended data handling policy when
forwarding the ciphertext to the third party, ashié policy was tied together inseparably with the
data.

In OpenlID this feature could be supported by Igttine provider reveal the attribute to the third
party directly, rather than to the server. For X.50ertificates one could change the
communication pattern and let the Data Subject dtwedcertificate containing the relevant
attribute directly to the third party, obtain a egxt in exchange, and show this receipt to the
server. A similar approach would work for LDAP diteries: the Data Subject sends her LDAP
password to the third party, who can verify itsreotness, fetch the attribute and send back a
receipt.

Preventing credential mixing. Credentials are atomic collections of attributeghe sense that a
Data Subject cannot “~“mix-and-match" attributesnfrdifferent credentials in order to satisfy a
policy. For example, if the policy requires the ®&ubject to reveal the number and expiration
date of a credit card, then the Data Subject shootde able to satisfy the policy by revealing the
number of one credit card and the expiration détanmther. On the other hand, if the policy
requires the Data Subject to have two credit catds) the language should be able to express
which card is being referred to.

Signing of statements.The server may require the Data Subject's exptioitsent to some
statement, e.g., the terms of service or the pyivaalicy of the site. The signature acts as
transferable evidence that this statement was dgreby a Data Subject fulfilling the policy in
guestion. There are various ways in which the [Zatlaject can express her consent; our language

64

does not impose a particular technology. For exantpk Data Subject could simply click an OK-
button at the bottom of the statement, or the [Zatiject could digitally sign the statement using
her X.509 credential. Anonymous credentials allowgign statements while maintaining maximal
privacy: anyone can verify that the signature wiasqu by a Data Subject satisfying the access
control policy, but only a trusted opening authpdan tell who exactly the Data Subject was.

Limited spending. The server may want to impose limitations on thenber of times that the
same credential can be used (or “spent") to sc@e®source, e.g., to specify that each Data
Subject can only vote once in an online poll. Tidicy language should be able to express the
amount, i.e., the number of units that have togemsto obtain access, and the spending limit, i.e.
the maximum number of units that can be spent antiess is refused. To express more complex
usage limitation rules, e.g., multiple resourceat tban be accessed at most n times total per
month, one can specify the spending scope on whietunits have to be spent. This is a URI
defining the “scope” of the usage limitation; oyeading occurs if more units than the limit are
spent from the same credential on the same sperdope. For example, to prevent two resources
A and B from being accessed more than n times patimthe scope URI could be

append (“urn:scope:AorB:”, currMonth()), “/",currée())

Some anonymous credential systems support this tfpbmited spending natively in the
underlying cryptography. With X.509 certificates IADAP directories, the server could simply
keep track which credential was used how many tifmes/hich spending scope URI, and refuse
access when the spending limit is reached. For [Dptre same principle could be used, but it
would be the OpenID provider who maintains the list

5.3 Policy Sanitization

An important issue is how the server should comeaitnri its access control policy to the
requester. For instance, suppose that an authiorizatposes that attribute nationality should be
equal to “US”. Should the server communicate suchralition to the requester? Or should it just
inform the requester that it has to state the natity? Clearly there is no unique response to
whether one option is better than the other, antttwbne is to be preferred depends on the
specific context and information involved. We cantice that communicating the complete policy
(i.e., the fact that the policy will grant accetshie nationality is US) favors the privacy of the
requester. In fact, a requester can know, befdeasig credentials or information to the server,
whether the release will be sufficient to acquiceess to the service. In particular, a client
associated with a non-US user can avoid disclogiireg nationality of the user. By contrast,
communicating only part of the policy favors thévacy of the server. As a matter of fact, the
access control policy, and the information on whitctvaluates, can be considered sensitive too
and as such needs to be protected. For instancke, the server might not mind disclosing the
fact that access to a service is restricted to Widens, it might not want to disclose other
conditions (or values against which propertieses@uated) as they are considered sensitive. As
an example, consider an authorization allowing s&te a service to those users who work for an
organization that does not appear in a Secret Blask (SBL) kept by the server. The

corresponding subject expression ¢ > type = employment A c.employer & SBL.

Communicating the complete policy to the reque@rd allowing its evaluation by the requester)
would imply releasing the subject expression, togetvith the state of black list SBL. Also,

assuming the context of SBL is not released, thaaster will know, in case it will not be granted
access that its employer is black listed. Thidéanty an information the server does not wish to
disclose; rather the server will want to maintasnfeddential the condition and simply state that the
employment certificate is required. Among the twér@mes of the current XACML approach of

simply returning indeterminate, on one side, andasfipletely disclosing the policy, on the other
side, there are therefore other options offeriritedint degrees of protection to the server policy

65

and of information communicated to the requestachEcondition appearing in the policy can
then be subject to a different disclosure poliegulating the way the presence of such a condition
should be communicated to the requester. We cdimglissh five different disclosure policies,
with each one potentially used independently in aogdition appearing in an expression. In
terms of our formal notation, we denote the diaslespolicy by including the portion of a
condition to not be disclosed in square brackeis.cBncreteness of the discussion, we assume a

condition ¢>M T 1m; the case of a condition on an attribute (i.e thefform c.A7w or A7w)
is analogous. The following disclosure policies bamassociated with the condition.

None. Nothing can be disclosed about the conditlbrcorresponds to the XACML

approach as only the information that the outcorhéhe policy is indeterminate is

communicated, since there are conditions that datweo evaluated. Formally, the
condition will appear in the expression completieigluded in square brackets, that is,
[c>M 1T m|

Credential. Only the information that there is andiion imposed on some metadata
about a credential (or on some attributes of tkdential) can be disclosed. The metadata
(or attributes) on which the conditions are evaddaare not released. Formally, the

condition will appear in the expressiont > M 7 m],

Property. Only the information that a property (atksita or attributes of a credential, or
uncertified statements) needs to be evaluated eareleased; no information can be
released on the control that will be enforced angloperty. Formally, the condition will

appear in the expression ¢~ M 7t m].

Predicate. Only the information that a property tadata or attributes of a credential, or
uncertified statements) needs to be evaluatedrengredicate with which it is evaluated
can be released; no information can be releasedhenvalue/s against which the
evaluation is performed. Formally, the conditionllvappear in the expression as
c>M 1 [m]

Condition. The condition can be fully disclosediass. Formally, the condition will
appear in the expression with no square brackigisaling that no component is subject

to disclosure restriction, that € > M 7t m.

Disclosure | Condition in|Communication
policy expression to the client
none [c-M 7 m] []
[c.Amv []
credential | cr> [.-"rf T Hi] C > []
. [,4 T 1'] . H
property | cM [m m) ce-M []
cA [J‘E 1'] c.A H
predicate | c-M T [m)] coM]
cA T [1] cAT H
condition | c-M T m ceM T m
cAmy cAmv

Table 1 Disclosure policies and their effect ondibans [ACP11]

66

Table 1 summarizes the different disclosure pdiceporting the formal notation with which they
appear in the expression and the consequent coroatiomi to the client in the dialog.

Note that the disclosure policies of the serveediig the information released to the requester
about the conditions appearing in the policy, afepact the way the requester can satisfy the
conditions. In particular, the credential policypims that the requester will not know which
information in the credential is needed and theeefwill have to release the credential in its
entirety (assuming that the credential to whichdbwedition refers is known by other conditions in
the policy, else the requester will have to diselalt its credentials). The property policy implies
that the requester can selectively disclose thequty in the credential (or utter it, in case of a
condition on uncertified properties). The same tloe predicate policy, where the requester
however knows also against what predicate the pippéll be evaluated. Finally, in the case of
the condition policy, the requester can either gl®vhe property (but it can assess, before
submitting, whether such a release will satisfybadition) or provide a proof that the property
is satisfied.

Example 1Consider a policy stating that “a user can aceessrvice if her nationality is Italian,
her city of birth is Milan, and her year of birth earlier than 1981”. Suppose that all attributes
mentioned in the policy must be certified by an0@5dentity card or by a SAML passport both
released by IT Gov. The policy is formally stated a

((c1 > type = identity_card A ¢y > method = X.509) V
(c1 > type = passport A ¢y > method = SAML)) N

¢y > issuer [= IT_Gov] A ¢y.nationality [= Italy] A
cy.city_of_birth = Milan A cy.vear_of_birth < [1981]

Here, the square brackets representing the diselgmlicies implicitly state that: i) conditions on
metadatatype and method and attributgty _of birth can be eventually disclosed as they are;
conditions on metadaiasuerand attributenationality need to be protected by hiding the control
that will be enforced on them; and iii) condition attributeyear _of birthneeds to be protected
by hiding the value against which the evaluatioh e performed. If the above policy applies to
a request submitted by a requester for which thgesenas no information, the following
conditions are communicated to the requester.

((cy > type = identity_card A ¢| > method = X.509) V

(¢ > type = passport A ¢ > method = SAML)) A

cy > issuer || A cy.nationality || A

cr.city_of_birth = Milan A cy.year_of_birth < [].

The requester can satisfy such conditions by riglgasither an identity card or a passport
containing the requested attributes.

Further details can be found in [ACP11].

5.4 Attribute Types and Credential Types
5.4.1 General Approach

For a Data Controller to make access control datssihe needs to distinguish the different kinds
of credentials and attributes that he processet)edis meanings may differ depending on their
type. For example, consider a university issuirgjtdi student IDs and diploma certificates that
have the same basic format (e.g., both containsthdent's name and field of study). These
credentials do of course have different purposestlagrefore must be distinguished. This can be
achieved by giving them different types. Indeedying only on the fact of who issued a
credential may not be sufficient for determinirggpurpose and trustworthiness.

67

Both attributes and credential types are definedntologies and referred to by URIs. For
attributes, an ontology defines the meaning astati® an attribute URI and its basic data type
for credential types, an ontology defines the megmissociated to a credential type URI and the
list of attributes that it contains. For examplee United Nations could design an ontology that
standardizes the attribute http://www.un.org/Nadldyp as specifying the nationality of a
credential bearer, encoded as a two-character 1888 8ountry code, and the credential type
http://www.un.org/Passport as a digital equivalemtreal-world passports, including amongst
others a http://www.un.org/Nationality attribute.

The credential type may include attributes defimedhe same ontology, as in the passport
example above, or may borrow attributes from aed#iit ontology for cross-compatibility. For
example, if a national government defines a cradettpe for its national ID cards, it could
borrow the http://www.un.org/Nationality attribubem the United Nation’s ontology to encode
the nationality of a citizen.

We allow inheritance among credential types. A wobtB of a credential type A contains all the

attributes of A, but possibly restricts the alloweaslues of certain attributes, and possibly adds
new attributes. Multiple inheritances are allowadkganing that the subtype contains all the
attributes of all super types.

All attributes are assumed to refer to the beafdhecredential, unless otherwise specified in the
ontology. For example, if Facebook would issuenilighip credentials, then the first name of the
bearer of the credential could be encoded in aibatie http://facebook.com/FirstName, but the
first name of a friend would have to be a differenattribute, e.g.
http://facebook.com/FriendFirstName, and cannot seeu the same URI
http://facebook.com/FirstName. This is to avoid yfream unintentionally revealing your
http://facebook.com/FirstName by satisfying a ppliequiring to you to reveal your friend’s first
name from a Facebook credentfial.

We do not distinguish between credential meta-datd normal credential attributes. The

credential issuer, the credential type, the auibatidn mechanism, etc. are treated as normal
attributes. Those that are common to all credenti@n be made mandatory attributes of a
credential super type, e.g. http://www.primelifé@edential.

An access control policy can optionally specify thige of a credential that needs to be presented,;
if no type is specified, any credential containihg necessary attributes can be used to satisfy the

policy.
5.4.2 Defining Credential Type Ontologies in OWL

A credential type is modelled as an OWL class (lass URI is used as credential type URI).
This approach gives us full flexibility to defineedential type as we piggyback on the very
expressive OWL class definition mechanism. In paldr, this class definition mechanism allows
for defining unambiguously which attributes a certeredential type class has, the cardinality of
the attributes (e.g., ‘exactly one”), etc. We rafethe OWL documentation (most importantly the
part on owl:Restriction) for more details on this.

* See for example www.axschema.org for an existomgrounity effort to standardize an ontology for
basic identity attributes.

® For the same reason, the axschema.org ontologyedethe home address and business address as
different URIs (http://axschema.org/contact/postilress/home and
http://axschema.org/contact/postalAddress/businasspectively), even though both are street
addresses.

68

For example, a movie ticket credential type coudd hodeled as OWL class with the URI
‘http://movie.org/ticket’. Further, that type dedis instances of that credential must have exactly
one attribute specifying a row number (http://masig/rowNo).

To model inheritance among credential types we madee of OWL'’s subclassing mechanism
(rdfs:subClassOf). To expres that credential typexinds type A, the class representing type B
is modeled as subclass of A.

We define a root credential type with URI http://wwerimelife.eu/Credential. It is the parent of

all other credential types and contains one mamgatribute, namely the credential’s issuer
(http://www.primelife.eul/issuer). We allow inheritze among credential types. A subtype B of
credential type A contains all the attributes ofpfys possibly defines some additional attributes.
Multiple inheritance is allowed, meaning that thibtype contains all the attributes of the super

types.

All credentials have a type. This type is eithex thot credential type or any subtype of that root
type.

Credentials are modeled in OWL as ordinary ‘indivt$’, i.e., as RDF resources. In order to
specify the credential type of a credential instane utilize OWL's standard typing mechanism
(rdf:type). For example, to express that a credeitstance is a movie ticket, then the credential
instance has the rdf-type http://movie.org/ticket.

The attributes of a particular credential are medehs OWL properties of the corresponding
credential instance. For example, to express tisgeaific movie ticket is for seat number 5, then
a specific movie ticket instance has the OWL proplettp://movie.org/row with value 5.

5.4.3 An Example OWL Ontology

We illustrate the above described approach on rmageredentials on the following concrete
example:

The United Nations publishes an ontology for padspedentials (http://www.un.org/Passport)
that extends the root credential type (http://wwimelife.eu/Credential). It contains a citizen’s
first name (http://www.un.org/firstName), last naifétp://www.un.org/lastName), date of birth
(http://www.un.org/dateOfBirth), and nationalityttfit//www.un.org/nationality).

In Italy children do not have their own passportd are therefore registered within their parents
passports, therefore the Italian government pubdisn ontology for passport credentials
(http://www.governo.it/ltalianPassport) that exteride UN passport (http://www.un.org/Passport)
by adding any number of child (http://www.goverti@hild) attributes, which are composed
attributes containing a child’s first name (htipwv.governo.it/childFirstName) and last name
(http://www.governo.it/childLastName). The reason or f distinguishing between
http://www.un.org/firstName and http://www.goveritchildFirstName is to make sure that a
parent can not pretend to have the name of its cwld. Furthermore, to prevent mixing of
children's attributes, we assume a mechanism iteplaat makes sure that only attributes from
within the same child node can be released. Altemegt one would have to consider the ordering
of children and model their attributes as hitp:wgoverno.it/firstChildFirstName,
http://www.governo.it/firstChildLastName, http://wwgoverno.it/secondChildFirstName, etc.'

Finally, the European Union publishes an ontologyor f driving licences
(http://ec.europa.eu/transport/DrivingLicence) thagxtends the root credential type
(http://www.primelife.eu/Credential). It contains het owner’'s first name
(http://www.un.org/firstName), last name (http://wvan.org/lastName) and date of birth
(http://www.un.org/dateOfBirth), borrowed from thénited Nation’s ontology, and any number
of vehicle categories (http://ec.europa.eu/trartdgehicleCategory).

69

Now we show how the credential types are modeleith @WL. We will always give the
screenshot of the Protégé OWL editor as well asutiverlying RDF/ XML syntax (as produced
by the Protégé editor).

The following shows the definition of the PrimeLife@ot credential type as given in the ontology
http://www.primelife.eu/:

<ow : d ass rdf: about="Credential ">
<rdfs: subCl assCf >
<owW : Restriction>
<owl : onProperty rdf:resource="issuer"/>
<ow : qualifiedCardinality rdf:datatype="&xsd; nonNegati vel nt eger">
1
</ow : qualifiedCardinality>
<ow : onDat aRange rdf: resource="&xsd; anyURl "/ >
</ ow : Restriction>
</ rdfs:subd assCOf >
</ ow : d ass>

The passport definition in the ontology http://www.org/ (where &pl; is a macro for the
namespace http://www.primelife.eu/):

<ow : d ass rdf: about ="Passport">
<rdf s: subCl assOf >
<ow : d ass>
<ow :intersectionO rdf:parseType="Col | ection">
<rdf: Description rdf:about="&pl ; Credential "/>
<ow : Restriction>
<ow : onProperty rdf:resource="dateOfBirth"/>
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegat i vel nt eger ">1</ow : qual i fi edCardi nal i ty>
<ow : onDat aRange rdf:resource="&xsd; string"/>
</ow : Restriction>
<ow : Restriction>
<ow : onProperty rdf:resource="firstNane"/>
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegat i vel nt eger " >1</ow : qual i fi edCardi nal i ty>
<owl : onDat aRange rdf:resource="&xsd; string"/>
</ ow : Restriction>
<ow : Restriction>
<ow : onProperty rdf:resource="| ast Name"/ >
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegat i vel nt eger " >1</ow : qual i fi edCardi nal i ty>
<owl : onDat aRange rdf:resource="&xsd; string"/>
</ow : Restriction>
<ow : Restriction>
<ow : onProperty rdf:resource="nationality"/>
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegati vel nt eger ">1</ow : qual i fi edCardi nal i ty>
<ow : onDat aRange rdf:resource="&xsd; string"/>
</ow : Restriction>
</ow :intersecti onCf >
</ ow : O ass>

70

</rdfs: subd assOf >
</ ow : Cl ass>

The definitions of the Italian passport and itslatkEntry in the ontology http://www.governi.it/

(where &un; is a macro for http://www.un.org/):

<ow : Cl ass rdf: about="=Child">
<rdf s: subCl assOf >
<ow : Cl ass>
<ow :intersectionO rdf:parseType="Col | ection">
<ow : Restriction>
<ow : onProperty rdf:resource="chil dFirst Nane"/>
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegati vel nt eger">1</ow : qual i fi edCardi nal i ty>
<owl : onDat aRange rdf:resource="&xsd; string"/>
</ ow : Restriction>
<ow : Restriction>
<ow : onProperty rdf:resource="chil dLast Nane"/>
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegat i vel nt eger " >1</ow : qual i fi edCardi nal i ty>
<ow : onDat aRange rdf:resource="&xsd; string"/>
</ow : Restriction>
</ow :intersectionC >
</ow : d ass>
</rdfs: subC assOf >
</ ow : O ass>

<owl : d ass rdf:about="ItalianPassport">
<rdfs: subCl assCf >
<ow : d ass>
<ow :intersectionO rdf:parseType="Col | ection">
<rdf: Descri ption rdf:about ="&un; Passport"/>
<owW : Restriction>

<owl : onProperty rdf:resource="hasChild"/>
<ow : onCl ass rdf:resource="Child"/>
<ow : mi nQualifiedCardinality

r df : dat at ype="&xsd; nonNegat i vel nt eger " >0</ow : m nQual i fi edCardi nal i ty>
</ ow : Restriction>
</ow :intersectionC>
</ ow : Cl ass>
</rdfs:subd assCOf >
</ow : d ass>

The drivers license definition in the ontology bipww.ec.europa.eu/transport/ (where &pl; is a
macro for http://www.primelife.eu/):

<ow : Thi ng rdf: about="j aneChil d">
<rdf:type rdf:resource="&govit; Child"/>

71

<govi t:chil dLast Name rdf: dat at ype="&xsd; stri ng">Doe</ govi t: chi | dLast Nane>
<govi t: chi |l dFi r st Nane

r df : dat at ype="&xsd; stri ng">Jane</ govi t: chil dFi r st Nanme>

</ oW : Thi ng>

<ow : Thi ng rdf: about ="j ohnJr Chi | d" >
<rdf:type rdf:resource="&govit; Child"/>
<govi t:chil dLast Name rdf: dat at ype="&xsd; stri ng">Doe</ govi t: chi | dLast Nane>

<govi t: chi |l dFi r st Nane r df : dat at ype="&xsd; stri ng">John
Jr.</govit:childFirstNane>
</ oW : Thi ng>

<ect p: Dri vi ngLi cense rdf: about ="mnydri verslicense">
<rdf:type rdf:resource="&ow ; Thi ng"/ >
<un: dateC Birth rdf: datatype="&xsd; string">1953-01-01</un: dateCf Birt h>
<ect p: vehi cl eCat egory rdf: dat at ype="&xsd; string">A</ ect p: vehi cl eCat egor y>
<ect p: vehi cl eCat egory rdf: dat at ype="&xsd; st ri ng" >B</ ect p: vehi cl eCat egor y>
<un: | ast Nane rdf: dat at ype="&xsd; stri ng">Doe</ un: | ast Nane>
<un: firstNanme rdf:datatype="8&xsd; string">John</un:firstNane>
<plife:issuer
r df : dat at ype="&xsd; anyURI ">ht t p: / / ww. npt ori zzazi onerona. i t</plife:issuer>
</ ectp: Drivi ngLi cense>

<ow : Thi ng rdf: about="nyital i anpassport">
<rdf:type rdf:resource="&govit;ltalianPassport"/>
<un: dateO Birth rdf: datatype="&xsd; string">1953-01-01</un: dateCf Birt h>
<un: | ast Name rdf: dat at ype="&xsd; stri ng" >Doe</ un: | ast Name>
<un: nationality rdf:datatype="&xsd;string">lT</un:nationality>
<un: firstNanme rdf: dat at ype="&xsd; string">John</un: firstNanme>
<plife:issuer

r df : dat at ype="&xsd; anyURl ">ht t p: / / ww. governo.it</plife:issuer>
<govit:hasChild rdf:resource="janeChild"/>
<govit:hasChild rdf:resource="johnJdrChild"/>

</ oW : Thi ng>

<ow : Thi ng rdf: about =" myunpassport">

<rdf:type rdf:resource="&un; Passport"/>

<un: dateO Birth rdf:dat at ype="&xsd; string">1953-01-01</un: dateC Bi rt h>

<un: nationality rdf:datatype="&xsd;string">BE</un:nationality>

<un: | ast Nane rdf: dat at ype="&xsd; stri ng">Doe</ un: | ast Nane>

<un: firstNane rdf:datatype="8&xsd; string">John</un:firstNane>

<plife:issuer rdf:datatype="8&xsd; anyURl ">http://ww. fgov. be</plife:issuer>
</ oW : Thi ng>

5.4.4 Example Credentials

The following shows an example wallet that contatnscrete instances of a UN passport, an
Italian passport with two children and a driversefise (where &govit;=http://www.governi.it,
&un;=http://www.un.org/, &plife;=http://lwww.primele.eu/,
&ectp;=http://www.ec.europa.eu/transport/).

<ow : d ass rdf:about="Dri vi ngLi cense" >
<rdf s: subCl assOf >
<ow : Cl ass>
<ow :intersectionOf rdf:parseType="Col | ection">
<rdf: Description rdf:about="&pl ; Credential "/>
<ow : Restriction>
<ow : onProperty rdf:resource="vehi cl eCat egory"/ >
<ow : mi nQualifiedCardinality

72

r df : dat at ype="&xsd; nonNegat i vel nt eger " >0</ow : m nQual i fi edCardi nal i ty>
<ow : onDat aRange rdf: resource="&xsd; string"/>
</ ow : Restriction>
<ow : Restriction>
<ow : onProperty rdf:resource="&ww;, dateOfBirth"/>
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegat i vel nt eger">1</ow : qual i fi edCardi nal i ty>
<owl : onDat aRange rdf: resource="&xsd; string"/>
</ow : Restriction>
<ow : Restriction>
<ow : onProperty rdf:resource="&ww; firstNane"/>
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegat i vel nt eger ">1</ow : qual i fi edCardi nal i ty>
<owl : onDat aRange rdf:resource="&xsd; string"/>
</ ow : Restriction>
<ow : Restriction>
<ow : onProperty rdf:resource="&ww; | ast Nane"/ >
<ow : qualifiedCardinality
r df : dat at ype="&xsd; nonNegat i vel nt eger">1</ow : qual i fi edCardi nal i ty>
<ow : onDat aRange rdf:resource="&xsd; string"/>
</ ow : Restriction>
</ow :intersectionC >
</ow : d ass>
</rdfs: subC assOf >
</ ow : O ass>

5.4.5 Example Policy

We first illustrate our proposed extensions throaghexample XACML policy that uses our
extensions. The following policy requires that teess the resource (that is left unspecified here)
the requestor needs to

e possess a passport or driver’s license issuedeb$whiss or Belgian governments, or any
of their delegates;

e possess a Visa or American Express credit card;
» reveal the first name from the passport or drivicanse;
» reveal the credit card number;

» spend the passport or driver’s license credentiaédo a maximum of 10 on the domain
http://www.mysite.com;

* sign the statement “l agree to the terms of setvising the passport or driver’s license;
* be older than 18 according to the date of birthh@npassport or driver’s license;

* not use a Russian credit card to obtain access [Elst requirement is considered
confidential and will be sanitized from the politwat is transmitted to the Data Subject.

<?xm version="1.0" encodi ng="utf-8"?>
<Pol i cySet
xm ns="ur n: oasi s: nanes: tc: xacmnl : 3. 0: core: schema: wd- 11"
xm ns:pl="http://primelife.eu"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

73

Pol i cySet | d="Pri meLi f ePol i cySet "
Pol i cyCombi ni ngAl gl d="ur n: oasi s: nanmes: tc: xacm : 1. 0: r ul e- conbi ni ng-
algorithmfirst-applicable">

<Tar get >
<l-- ... -->
</ Tar get >

<Policy Policyld="PrineLifePolicy"
Rul eConbi ni ngAl gl d="ur n: oasi s: nanes: t c: xacm : 1. 0: rul e- conbi ni ng-
al gorit hm deny-overri des" >
<Target />

<pl:Rule Ruleld="PrineLi feRul e" Effect="Permt">

<Condi ti on>
<Apply Functionl d="urn: oasi s: nanes:tc: xacm : 1. 0: functi on: and" >
<Appl y Functi onl d="urn: oasi s: nanes: tc: xacnl : 1. 0: functi on: dat e-

| ess-t han-or-equal ">
<pl: Credential Attri but eDesi gnator Credenti al | d="#pp"
Attributel d="urn:BithDate"
Dat aType="htt p: // ww. w3. or g/ 2001/ XM_Schema#dat e" />
<Appl y
Functi onl d="urn: oasi s: nanes: tc: xacm : 3. 0: functi on: dat e-
subt ract - year Mont hDur ati on" >
<Envi ronnment At t ri but eDesi gnat or

Attributel d="urn: oasi s: nanes: tc: xacm : 1. 0: envi ronment : current - dat e"
Dat aType="htt p: / / ww. w3. or g/ 2001/ XM_Schema#dat e" />
<Attri buteVal ue DataType="xs: duration">P18Y</Attri buteVal ue>
</ Appl y>
</ Appl y>
<pl : Apply Functionl d="urn: oasi s: nanes: tc: xacr : 1. 0: functi on: not "
Di scl ose="attri butes-onl y">
<Apply Functionl d="urn: oasi s: nanes: tc: xacm : 1. 0: functi on: stri ng-
equal ">
<pl: Credenti al Attri but eDesi gnator Credenti al | d="#pp"
Attributel d="http://ww. banki ngst andar ds. or g/ Country"
Dat aType="xs: string" />
<AttributeVal ue DataType="xs:string">RU</AttributeVal ue>

</ Appl y>
</ pl : Appl y>
</ Appl y>

</ Condi ti on>

<pl : Credent i al Requi r ement s>
<pl: Credential Credentialld="#pp">
<pl: AttributeMat chAnyOf Attributeld="pl:|usser">
<pl : Mat chVal ue Mat chl d="pl : del egat ee- of "
Dat aType="xs: anyURl ">ht t p: / / ww. admi n. ch</ pl : Mat chVal ue>
<pl : Mat chVal ue Mat chl d="pl : del egat ee- of "
Dat aType="xs: anyURI ">ht t p: / / ww. f gov. be</ pl : Mat chVal ue>
</pl:AttributeMat chAnyOr >
<pl: Attribut eMat chAnyOf Attri butel d="pl: Type">
<pl : Mat chVal ue Mat chl d="pl : subcl ass- of "

Dat aType="xs: anyURIl " >ht t p: / / wwv. un. or g/ Passport </ pl : Mat chVal ue>
<pl : Mat chVal ue Mat chl d="pl : subcl ass- of "

Dat aType="xs: anyURI ">ht t p: // ec. eur opa. eu/ transport/ Dri vi ngLi cence</ pl : Mat chV
al ue>
</pl:AttributeMat chAnyOr >
</pl: Credenti al >

74

<pl: Credential Credentialld="#cc">
<Condi ti on>
<Apply Functionl d="urn: oasi s: nanes: tc: xacnl : 1. 0: functi on: and" >
<Apply Functionl d="urn: oasi s: nanes: tc: xacn : 1. 0: functi on: or">

<Apply Functionl d="pl : del egat ee- of ">
<pl: Credenti al Attri but eDesi gnator Credenti al | d="#cc"
Attributel d="pl:lusser" DataType="xs:anyURl" />
<Attri buteVal ue

Dat aType="xs: anyURI ">ht t p: / / wwv. vi sa. conx/ At t ri but eVal ue>

</ Appl y>

<Apply Functionl d="pl : del egat ee- of ">
<pl: Credential Attri but eDesi gnator Credenti al | d="#cc"

Attributeld="pl:lusser" DataType="xs:anyURl" />

<Attri but eVal ue

Dat aType="xs: anyURI ">ht t p: / / ww. anmer i canexpr ess. conx/ Attri but eVal ue>
</ Appl y>
</ Appl y>
<Apply Functionl d="pl : subcl ass- of ">
<pl: Credenti al Attri but eDesi gnator Credenti al | d="#cc"
Attributel d="pl: Type" DataType="xs:anyURl " />
<Attri buteVal ue

Dat aType="xs: anyURI ">ht t p: / / ww. banki ngst andar ds. org/ Credi t card</ Attri but eVa
| ue>
</ Appl y>
</ Appl y>
</ Condi ti on>
</pl:Credential >
</ pl: Credenti al Requi r ement s>

<pl : Provi si onal Acti ons>
<pl : Provi si onal Acti on Acti onl d="pl : Reveal Under DHP" >
<Attri buteVal ue

Dat aType="xs: anyURI ">ht t p: // wwv. un. or g/ Fi r st Nane</ At tri but eVal ue>
<Attri but eVal ue Dat aType="xs:anyURl ">#dhpl </ Attri but eVal ue>
<Attri buteVal ue Dat aType="xs:anyURl " >#pp</Attri but eVal ue>

</ pl : Provi si onal Acti on>
<pl : Provi si onal Acti on Acti onl d="pl : Reveal Under DHP" >
<Attri buteVal ue

Dat aType="xs: anyURI " >ht t p: / / ww. banki ngst andar ds. or g/ Cr edi t car dNunber </ At tri
but eVal ue>
<Attri but eVal ue Dat aType="xs:anyURl ">#dhp2</ Attri but eVal ue>
<Attri buteVal ue DataType="xs:anyURl ">#cc</Attri but eVal ue>
</ pl : Provi si onal Acti on>
<pl : Provi si onal Acti on Actionl d="pl : Spend" >
<Attri buteVal ue DataType="xs:anyURl " >#pp</Attri but eVal ue>
<Attri buteVal ue DataType="xs:integer">1</Attri buteVal ue>
<AttributeVal ue DataType="xs:integer">10</Attri buteVal ue>
<Attri buteVal ue
Dat aType="xs: anyURI ">htt p: / / ww. ysi te. con</ At tri but eVal ue>
</ pl : Provi si onal Acti on>
<pl : Provi si onal Acti on Actionld="pl:Sign">
<Attri buteVal ue
Dat aType="xs: string" >l agr ee to t he ternms of
service. </ AttributeVal ue>
</ pl : Provi si onal Acti on>
</ pl : Provi si onal Acti ons>
</ pl: Rul e>

75

</ Poli cy>
</ Pol i cySet >

5.4.6 Syntax and Description

In the following we describe a number of extensitmXACML 3.0 to enable the expression of
credential-based access control. We use the pxafiml: to denote the XACML 3.0 namespace
urn:oasis:names:tc:xacml:3.0:core:schema:wd-11.

The extensions we make are mainly in the elemeniscml:Rule>, <xacml:Policy>, and
<xacml:PolicySet> elements. In particular,

1. the elements <CredentialRequirements> and <Preoddiations> are introduced as
child elements to the <xacml:Rule> element, and

2. a <CredentialAttributeDesignator> element is introed in the <xacml:Expression>
element substitution group, which enables this red@ment to be used within the
<xacml:Condition> element.

However, to allow for short policies, elements <dnatialRequirements> and
<ProvisionalActions> can also be included withiraeml:Policy> or <xacml:PolicySet>. This is a
shorthand notation that is equivalent to repedtiege credential requirements in each descendant
<xacml:Rule> element. The <CredentialRequiremenssw <ProvisionalActions> elements
within <xacml:Rule> must therefore be considered an logical conjunction with the
<CredentialRequirements> and <ProvisionalActionisat tare possibly specified in antecedent
<xacml:Policy> or <xacml:PolicySet> elements.

Therefore, the xacml:PolicySetType, xacml:Policy@ygnd xacml:RuleType are extended with
the following elements:

<CredentialRequirements> [Optional]

Contains conjunctive declarations of and requirdsm@m the credentials that the Data
Subject has to present. The credential requirenmao be fulfilled in conjunction with
the rule’s condition for the rule to be assignedstfect value.

If the access requester did not already provider@ofpfor fulfilment of these
requirements, then they are communicated to thesaaequester such that she can create
and provide such proof.

<ProvisionalActions> [Optional]

The actions that an access requester has to pepfgomto being granted access. Typical
actions include revealing of credential attributeighing of statements, or spending of
credentials.

5.4.6.1 Element <CredentialRequirements>
The <CredentialRequirements> element is the coatdor a sequence of credential declarations

which are subsequently needed for specifying canditon those credentials. Each individual
credential is declared within a <Credential> elemen

76

An XACML rule with an embedded <CredentialRequiratse element is only satisfied (i.e., will
only have its stated Effect) in case in addition ttee standard <xacml:Target> and
<xacml:Condition> statements, all requirementshia £CredentialRequirements> element have
been satisfied. There can be at most one <CretiRetjmirements> child element per
<xacml:Rule>, <xacml:Policy>, or <xacml:PolicySetlement. In order to combine different sets
of credential requirements, they have to be emtskddeifferent <xacml:Rule> elements which
are then combined with the standard XACML combiratgprithms.

The <CredentialRequirements> element containsali@fing attributes and elements:
<Credential> [Required, any number]

A conjunctive sequence of <Credential> elementsritdag the credentials that the Data
Subiject is required to present.

5.4.6.2 Element <ProvisionalActions>

This element is a container for all the provisioaetions that an access requester must fulfillrprio
to being granted access. Depending on the typetioina the requestor may have to provide some
form of proof that the provisional action was adifuperformed.

A first list of supported action types is provided this profile, but the policy mechanism is
designed for new action types to be added latenowit changing the schema, much like the
extensible functions in the core of XACML.

The <ProvisionalActions> element contains the feilg attributes and elements:
<ProvisionalAction> [Required, any number]

A conjunctive sequence of <ProvisionalAction> elatseeach of which describes a
provisional action to fulfill.

5.4.6.3 Element <Credential>

This element is used to (1) declare a credenta ffas to be held by an access requester and
optionally to (2) specify conditions that concemyathis particular credential.

When a credential is declared, a credential identi€redentialld is defined. This credential
identifier can subsequently be used in <CredentiabAiteDesignator> elements within the rule’s
<Condition> element to specify further conditions the attribute values of the credential. The
idea is that the conditions specified within th&esi<Condition> element concern mainly cross-
requirements between credential attributes out iférdnt declared credentials, whereas the
conditions specified directly within the <Credehtiselement concern requirements that are
specific to the one credential that is being dedar

For every declared credential, an access requeas$eto prove possession of an atomic credential
satisfying both the conditions specified directlithin the <Credential> element itself and those
specified in the rule’s <Condition> element.

To specify conditions directly within the <Credetiti element we specify two possible ways of
doing so, of which one should be chosen for eadted€htial> element:

1. By including a standard <xacml:Condition> elemenside <Credential> element,
including the <CredentialAttributeDesignator> elet#hat we describe in this document,
but with the restriction that only attributes frdahis credential can be referred to, i.e., the
Credentialld attribute of each <CredentialAttriidésignator> element inside the
<xacml:Condition> is equal to the Credentialld lvé parent <Credential> element.

77

2. By including a dedicated <AttributeMatchAnyOf> elent within which conditions on
the credential can be expressed in a specificrpatiat may often be needed.

The first option offers the highest expressivity Bljowing essentially any combination of
requirements on the attributes of the credentiajuastion. The second option can only express
requirements that adhere to a specific structuaeely matching attributes of the credential
against a list of candidate values, but possibdbwna for more efficient parsing and more efficient
credential selection (i.e., testing which creddsat@n be used to satisfy the policy) at the Data
Subject’'s side. Clearly, any set of requirementsat tttan be expressed using an
<AttributeMatchAnyOf> element can equivalently beeessed in a <xacml:Condition> element,
much like any condition in the <xacml:Target> el@meould equivalently be specified in the
<xacml:Condition> element. We also mention that paring a single attribute to a list of values
can be done more compactly using XACML'’s bag funiities, at least as long as the same
matching algorithm is used for the whole list.

The <Credential> element contains the followinglagtes and elements:
Credentialld [Required]

This attribute specifies an identifier for the deed credential. The credential identifier
has to be unique within the given <xacml:PolicySet>

<xacml:Condition> [Optional] (1st option)

A predicate on this credential’s attributes that t@mbe satisfied in conjunction with the
conditions specified in the <xacml:Condition> elemef the parent <xacml:Rule>.
However, all <CredentialAttributeDesignator> eletseappearing within it have to use
the same Credentialld attribute as the parent <itéd> element, i.e., only conditions
on attributes of this credential can be expressee. h

<AttributeMatchAnyOf> [Optional, any number] (2n@tmn)

A conjunctive sequence of conditions on this créidés attributes which have to be
satisfied together with the rule’s conditions in or@ition>. Since the sequence is
conjunctive, all <AttributeMatchAnyOf> elements leato evaluate to true for the
requirements to be fulfilled.

5.4.6.4 Element <AttributeMatchAnyOf>

An <AttributeMatchAnyOf> element is used for matafpia given attribute with a list of values,
whereby for every list element an individual manchalgorithm is used. This element evaluates to
true if at least one list element successfully imagcagainst the given value.

Although in principle any attribute can be matchénd <AttributeMatchAnyOf> construction is
particularly useful for providing lists of acceptededential types or issuers. Clearly, if no
credential types are explicitly specified, then amgdential type that contains the necessary
attributes can be used to satisfy the policy. Ifssniers are satisfied, then credentials by ameiss
are accepted (including self-stated credentiatgiates).

The element <AttributeMatchAnyOf> contains thedeling attributes and elements:
Attributeld [Required]
The name of the attribute in this credential tsahatched against the list of values.

Disclose [Optional]

78

The type of policy disclosure used for this elemwhen this policy is sent to the Data
Subject. Possible values are “yes”, “no”, and fhtttes-only”. When the attribute is
omitted, the default value “yes” is assumed.

When set to “yes”, this <AttributeMatchAnyOf> elentés sent unmodified to the Data
Subiject.

When set to “no”, this <AttributeMatchAnyOf> eleneis sanitized by means of the
following substitutions:

« the value of Attributeld is replaced with “undisstml”, and

¢ each <MatchValue> child element within this <AttribMatchAnyOf> element
is replaced with an <UndisclosedExpression> element

When set to “attributes-only”, then only the latwurbstitution is performed, i.e., all
<MatchValue> child elements are replaced with amdisclosedExpression> element.
See Section 5.3 for more details on policy sartitima

<MatchValue> [Required, any number]

A disjunctive sequence of values that are indiviguenatched against the attribute
specified by Attributeld using the matching algonit specified within the <MatchValue>
element itself.

5.4.6.5 Element <UndisclosedExpression>

This element can only occur in a policy that istgerthe Data Requestor. It acts as a placeholder
to indicate that a credential condition was omittlest to policy sanitization. See Section 2 for
more information regarding policy sanitization.

5.4.6.6 Element <MatchValue>

This element contains a literal value against witiehgiven attribute (specified with Attributeld
in the parent <AttributeMatchAnyOf> element) is ofed as well as the matching algorithm that
is used.

The element <MatchValue> contains the followingiladites and elements:
Matchld [Required]

The name of the matching algorithm that is usech&dch the attribute with the literal.
Here, one can use one of the functions definecati& 4, or any function defined in the
XACML 3.0 standard that takes two arguments of twerect datatypes (the first
argument of the same type of the attribute, theorsmgcof the type specified in the
DataType argument) and that evaluates to a Boolean.

DataType [Required]

The data type of the literal value against whioh dttribute will be matched. Any of the
built-in data types of XACML 3.0 (see Section 4toé specification) can be used here.

Disclose [Optional]

The type of policy disclosure used for this elemwhen this policy is sent to the Data
Subject. Possible values are “yes” and “no”. Whea attribute is omitted, the default
value “yes” is assumed. Note that the value “aitel-only” is not allowed here.

79

When set to “yes”, this <AttributeMatchAnyOf> elentés sent unmodified to the Data
Subject. When set to “no”, this <AttributeMatchAngOelement is replaced with an
<UndisclosedExpression> element before the poiseit to the Data Subject.

See Section 5.3 for more details on policy sanitina

5.4.6.7 Element <ProvisionalAction>

This element describes a single provisional actiat needs to be fulfilled in order to satisfy a
rule. The schema of the <ProvisionalAction> elemeanhsciously kept independent of the
particular provisional action that needs to beilfatf, in order to keep the door open to possible
future extensions with new provisional action typds schema is reminiscent of the

<xacml:Apply> element, which is also kept indeparid# the particular function being applied to

allow extensions with new function definitions.

The <ProvisionalAction> element contains the follogvattributes and elements:
Actionld [Required]

The identifier (URI) of the action to be perform&tke below for a list of built-in actions.
<xacml:Expression> [Optional, any humber]

Arguments of the action, which may include othenclions. The semantics of the
argument depend on the particular action beingopaed.

This profile supports the following list of prouvisial actions:
http://www.primelife.eu/Reveal

This action requires the Data Subject to reveataibute. The attribute could be part of
one of her credentials, or could be a self-staiadertified attribute. The action takes one
or two arguments of data-type http://www.w3.org/2OMLSchema#anyURI. The first
(mandatory) argument is the URI of the attributeborevealed. The second (optional)
argument is a URI referring to the Credentialld tbé credential that contains the
attribute. If the parent <ProvisionalActions> ele@rneccurs within a <xacml:Rule>, then
the URI could refer to the Credentialld of any <@metial> defined within either the
<xacml:Rule> itself or within the parent <xacml:Rgb; or <xacml:PolicySet>. If it
occurs inside a <xacml:Policy> or <xacml:PolicySéixt not inside a <xacml:Rule>,
then it can only refer to a <Credential> appeamithin the same <xacml:Policy> or
<xacml:PolicySet> element.

http://www.primelife.eu/RevealUnderDHP

This action requires the Data Subject to reveahtiribute while specifying the data
handling policy that will be applied to the attribwafter it is revealed. The attribute could
be part of one of her credentials, or could belfastated, uncertified attribute. The action
takes two or three arguments of data-type
http://iwww.w3.0rg/2001/XMLSchema#anyURI. The firghandatory) argument is the
URI of the attribute to be revealed. The secondnffatory) argument is a URI referring
to the data handling policy under which the attigbbas to be revealed. To do: specify
exactly where (element, attribute) this DHP URKk$rio. The third (optional) argument is
a URI referring to the Credentialld of the credahthat contains the attribute. If the
parent <ProvisionalActions> element occurs withigxacml:Rule>, then the URI could
refer to the Credentialld of any <Credential> definwithin either the <xacml:Rule>
itself or within the parent <xacml:Policy> or <xaldRolicySet>. If it occurs inside a

80

<xacml:Policy> or <xacml:PolicySet> but not inside<xacml:Rule>, then it can only
refer to a <Credential> appearing within the samactl:Policy> or <xacml:PolicySet>
element.

http://www.primelife.eu/RevealTo

This action requires the requestor to reveal arbate to an external third party. The
attribute could be part of one of her credentialscould be a self-stated, uncertified
attribute. The action takes two or three argumentsf data-type
http://www.w3.0rg/2001/XMLSchema#anyURI. The firghandatory) argument is the
URI of the attribute to be revealed. The secondhfiasory) argument is the URI defining
the third party to whom the attribute will be relegh The third (optional) argument is a
URI referring to the Credentialld of the credentlat contains the attribute. If the parent
<ProvisionalActions> element occurs within a <xa&ule>, then the URI could refer to
the Credentialld of any <Credential> defined witlgither the <xacml:Rule> itself or
within the parent <xacml:Policy> or <xacml:PolicySe If it occurs inside a
<xacml:Policy> or <xacml:PolicySet> but not inside<xacml:Rule>, then it can only
refer to a <Credential> appearing within the samactl:Policy> or <xacml:PolicySet>
element.

http://www.primelife.eu/RevealToUnderDHP

This action requires the Data Subject to reveatibute to an external third party while
specifying the data handling policy that will bepligd to the attribute after it is revealed.
The attribute could be part of one of her credéstiar could be a self-stated, uncertified
attribute. The action takes three or four argumentsf data-type
http://www.w3.0rg/2001/XMLSchema#anyURI. The firghandatory) argument is the
URI of the attribute to be revealed. The secondhffasory) argument is the URI defining
the third party to whom the attribute will be relezh The third (mandatory) argument is a
URI referring to the data handling policy under @rhthe attribute has to be revealed. To
do: specify exactly where (element, attribute) thisiP URI links to. The fourth
(optional) argument is a URI referring to the Cratildld of the credential that contains
the attribute. If the parent <ProvisionalActiondeneent occurs within a <xacml:Rule>,
then the URI could refer to the Credentialld of a@redential> defined within either the
<xacml:Rule> itself or within the parent <xacml:Rgb; or <xacml:PolicySet>. If it
occurs inside a <xacml:Policy> or <xacml:PolicySéixt not inside a <xacml:Rule>,
then it can only refer to a <Credential> appeamwithin the same <xacml:Policy> or
<xacml:PolicySet> element.

http://www.primelife.eu/Sign

This action requires the requestor to sign a statednefore accessing the resource. How
the signature is implemented depends on the underliechnology, but carries the
semantics that a verifier can check later that s@at Subject satisfying the policy
explicitly agreed to the statement. The action $akesingle argument of data-type
http://www.w3.0rg/2001/XMLSchema#string describitige statement that needs to be
signed.

http://www.primelife.eu/Spend

This action requires the requestor to “spend” ohéey credentials, thereby imposing
restrictions on now many times the same credecdialbe used in an access request. The
action takes four mandatory arguments. The first igf data-type
http:/iwww.w3.0rg/2001/XMLSchema#anyURI and consaithe Credentialld of the
credential that has to be spent. If the parent viBimmalActions> element occurs within a

81

<xacml:Rule>, then the URI could refer to the Craddld of any <Credential> defined
within either the <xacml:Rule> itself or within th@arent <xacml:Policy> or
<xacml:PolicySet>. If it occurs inside a <xacmliegt or <xacml:PolicySet> but not
inside a <xacml:Rule>, then it can only refer twGredential> appearing within the same
<xacml:Policy> or <xacml:PolicySet> element.

The second and third arguments are of data-type
http://www.w3.0rg/2001/XMLSchema#integer. The sat@rgument is the number of
units that have to be spent for this access; thterlas the spending limit, i.e., the
maximum number of units that can be spent with¢héslential on the same scope.

The fourth argument is of data-type http://www.w8/8001/XMLSchema#string and
defines the scope on which the credential has tepeat. If spending is to be limited
globally, the fourth argument should be set to théxed URI
http://www.primelife.eu/Spend/GlobalScope.

5.4.6.8 Element <CredentialAttributeDesignator>

This element is similar to the <xacml:AttributeDpsator> element, which inserts the value of a
given attribute from the context, but with the nrajiifference that it also contains a reference to
the specific credential from which the attribute shato be taken. The
<CredentialAttributeDesignator> element evaluatethé value of a specific attribute (referred to
by the Attributeld) from a specific credential @afed to by the Credentialld). This element is
intended to be used within a <xacml:Condition> edatrto express requirements on the attribute
values of specific credentials an access requesiarst hold. To enable the
<CredentialAttributeDesignator> element to be uaétin the <xacml:Condition> element, it is
within the <xacml:Expression> element substitugmoup.

In addition to the standard attributes of the <xaktiributeDesignator> element, the element
<CredentialAttributeDesignator> contains the follogvattribute:

Credentialld [Required]

This attribute specifies the identifier of the aeatlal from which the attribute should be
taken. The identifier refers to the Credentialldrilatite of one of the <Credential>
elements within the same <xacml:Rule> element @mni@ of the ancestor <xacml:Policy>
or <xacml:PolicySet> elements.

5.4.6.9 Element <Apply>

This element inherits the scheme of the <xacml:gp@lement, which is used to apply a function
to a list of arguments, but takes one additiortalbatte Disclose to allow for policy sanitization:

Disclose [Optional]

The type of policy disclosure used for this elemwhen this policy is sent to the Data
Subject. Possible values are “yes”, “no”, and fatttes-only”. When the attribute is
omitted, the default value “yes” is assumed.

When set to “yes”, this <Apply> element is sent wlified to the Data Subject.

When set to “no”, this <Apply> element is replacedith an empty
<UndisclosedExpression> element.

When set to “attributes-only”, this <Apply> elemeist sanitized by means of the
following substitutions:

< the value of Functionld is replaced with the vaiuedisclosed”, and

82

e the arguments are removed and replaced with thet lisf
<xacml:AttributeDesignator> and <CredentialAttrieDesignator> elements that
they contain. The list is encoded as a flat sequefelements, even hiding the
nesting structure in case the arguments contaihduxApply> elements.

5.4.6.10Matching Functions

We introduce two new functions for matching creddntypes and credential issuers. These
functions can be used as a Functionld within argcid:Apply> element or as a Matchld in any
<MatchValue> element.

http://www.primelife.eu/delegatee-of

This function shall take two arguments, the first f odata-type
http://www.w3.0rg/2001/XMLSchema#string and the @wt of data-type
http://www.w3.0rg/2001/XMLSchema#anyURI and shall eturn an
http://www.w3.0rg/2001/XMLSchema#boolean. The firatgument shall encode a
comma-separated list of URIs. The function shdlime"True" if and only if the URI in
the second argument occurs in the list given byfils¢ argument. Otherwise, it shall
return “False”. The main purpose of this functientd check whether a given issuer
appears in the list of hierarchical issuers ofealential, as in a credential chain.

http://www.primelife.eu/subclass-of

This function shall take two arguments of data-type
http://www.w3.0rg/2001/XMLSchema#anyURI and shall eturn an
http://www.w3.0rg/2001/XMLSchema#boolean. The fimctshall return "True" if and
only if according to the trusted ontologies the URIthe first argument refers to a
credential type that is a subtype of the credetyi¢ defined by the second argument.
Otherwise, it shall return “False”.

83

Chapter

Protocols and Message Flows

This section sketches the message flow between Rdipect and Data Controller, and between a
Data Controller and a downstream Data Controlldrese protocols are used in the proof of
concept implementation section described in sedi§.Bection contains for example the

description for how SAML 2.0 can be extended foe as protocol language in credential-based
access control.

6.1 Generic Policy

As soon as a user agent starts an HTTP sessionava#itver, the latter is able to collect some
information that may impact the user's privacy. édisr a non exhaustive list of the information
that can be collected by a server upon receiving BhP GET request:

1-

User's client IP address. This is either the IPresklof the user agent requesting
access to this site, or the IP address of a preryes. From this IP address the server
is able to deduce the location of the requestern(iry, city, street ...) and the domain
(company name, ISP, operator ...).

HTTP header, "user agent." The user agent infoonaticludes the type of browser
(IE, Mozilla, Opera ...), its version, and the opemtsystem on which that the
browser is running.

HTTP header “content-language.” The Content-Languagntity-header field
describes the natural language(s) of the intendefieace for the enclosed entity.
Note that this might not be equivalent to all theduages used within the entity-
body.

HTTP header, "referrer.” The referrer specifiesgr®vious web page from which the
user accessed the current web page. It gives iatimmabout the navigation history
of the user agent.

Query string of the URI. Anything after the questimark in a URI. If the user agent
accessed the web page through a search engineléG¥adpoo ...) the query string
of the URI typically contains the key words typedtbe user in the search engine.
What and when. The time of each request and thie fuait the resource being
requested. Dynamically generated URIs may includierination that can be used to
track users.

84

7- HTTP Cookies. These provide a means for websitegaktk users over time by
setting information that the user agent records sentls back to the server with
future requests.

The very act of asking a server for its privacyigoleaks information about the client. For this
reason, we propose to use what we call a genelicyp@P) to cover the information disclosed
"implicitly" through HTTP request headers. Data @olters should provide safe access to the
generic policy without using or storing informatigathered as a side effect of that access. The
user agent can then check to see if the genericypolatches the user's preferences before
proceeding to retrieve the specific policy for aegi web page or resource.

Our implementation of this involves performing amHP HEAD request on the server's root path,
and examining the HTTP response for an HTTP Lirkdee with the appropriate link relationship
type, for example:

Li nk: <http://exanpl e.com w3c/ policy.json>;
rel ="http://prinelife.eul/generic-privacy-policy"

Where "http://primelife.eu/generic-privacy-policy" is the link relationship and
"http://example.com/w3c/policy.json” is the URI fdne server's generic policy. User agents
would be expected to provide the minimum set ofleesfor such requests, e.g.

HEAD / HTTP/ 1.1
Connection: cl ose
Host: exanpl e.com

This limits the implicitly disclosed information tie user agent's IP address and the time of the
request. If the user wants to avoid the risk okever logging this information, the user agent
could be configured to make the request via anyana@ing proxy. A further possibility would be
for the user agent to request the server's gepelicy from a third party, such as a search engine
that has previous collected generic policies duthey course of indexing websites. This would
allow search engines to offer users a means tdifggmivacy friendly websites in the list of sites
returned for a given search, i.e. those that peogeneric privacy policies that match the user's
preferences.

Rather than starting from scratch, we chose to baseric policies on the vocabulary developed
for P3P (Platform for Privacy Preferences). P3Rripes a rich set of terms for describing privacy
policies, but this flexibility is also a significadrawback as it makes it impractical to provide a
user interface for defining user preferences, dkewise, to automatically generate a human
readable description of conflicts between the sggeferences and the server's policy.

As a result, we restricted generic policies toaa Ifkt of properties for which the user preference
could be trivially realized as a set of groupedcihexes. We further chose to use P3P's data
categories rather than the taxonomy of data itesrthia was found to be a much better fit to the
needs for describing the kinds of data collectedhfHTTP requests. Our approach is a significant
enhancement in expressivity compared to Compactg@8€ies which are limited to dealing with
information collected in HTTP Cookies.

This left open the question of how to representegemolicies. One choice would have been to
use the XML format defined by P3P, but this wousl/iér required the definition of a new XML
schema to constrain the flexibility. Another choieeuld have been to define a restricted subset of
the PPL policy language. That would have complitatee format without any benefits from a
shared implementation of the matching engine ard mgerface code. In the end, a very simple
format was chosen using JSON [JSO] (JavaScriptdDbjetation), a lightweight data-interchange

85

format that is easy to process via web page scapt$ as a result is gaining widespread adoption.
Here is an example policy in JSON:

{

“fullURI": null,

"optURI": null,

"name": "ACME wi dgets online inc.",

"purposes”: ["current", "adm n", "tailoring", "individual-analysis"
1.

"recipients": ["ours", "delivery", "same"],

"retention": "business-practices",

"categories": ["computer", "navigation", "interactive"]
}

The terms used are borrowed directly from the P3P specification, along with the longer
descriptions of these terms. The generic policy hapism was implemented as a Firefox
extension and presented at the W3C Workshop oradriand data usage control, held 4-5
October 2010 in Cambridge MA, USA. Note that ifsthiork were to be taken further, it would be
appropriate to consider adding versioning inforomti either as part of the policy or via
dereferencing the URI for the relationship type.

6.2 Data Subject and Data Controller Protocol

@ Requestresource
_

5=
A
<

L Requestpersonal data [Ele=
v . 5 _ﬁn e webpages, Requestpersonal data
; resources,... e
Personal data : — L
a2 Personal data
resource e ——
—— @
Policy Engine Policy Engine L Policy Engine
Data Subject Data Controller Third party

Figure 6 PrimeLife PPL collaboration scenario.

The collaboration scenario depicted in Figure 8ashdata subject (user) who wants to access the
resource hosted by the data controller. This resoisr protected by the access control policy that
also contains PPL privacy-enhancing elements. Sbemesponse to the initial user's request data
controller sends back his requirements as oneeo$titps the user is asked to perform (provisional
actions) in order to gain access to the resouroeekample, data controller can ask the user to
reveal his personal data. Additional informationtsgack from the data controller also contains

statements on how this data will be treated ontsedbllected (specified in attached data handling

policy).
Data subject will then try to match data handlimdjqy and its own data handling preferences for
the requested personal data types. If policiessaoeessfully matched against each other, then
data subject repeats the resource request, thiswviith additional personal data accompanied by
the sticky policy, which is the result of matching.

86

Message exchange format is defined as an extetwithie Security Assertion Mark-up Language
(SAML). The root element of the data controllersjwest with provisional actions is SAML
<Assertion> element. It contains the <Issuer> eténtieat describes policy author and also an
<AttributeStatement> which contains data contraliiemtifier (specified as the attribute with the
namehtt p:// ww. prinelife.eul/ ppl/DataControll erl D). Data handling policy is
nested inside the XACML policy that itself is a paf a <Statement> element. For that the
original SAML <Statement> element was extended thnd a new (inherited) type was created -
PPLPolicyStatementTypExample of this message format can be found below

< sam a: Assertion xmns =" urn:oasis:names:tc:SAM.:2 .0 :assertion "
xm ns:ppl =" http: // ww. prinelife .eu/ppl"
xm ns:sam a =" urn:oasis:nanes:tc: SAM.: 2 .0 :assertion ">

< sam a:lssuer >http: // store . exanple .com </ sanl a:lssuer >
< sam a: AttributeStatement >
< sam a: Attribute
Nane =" http: // ww. prinelife .eul/ppl/
Dat aControllerI D ">
< sam a: AttributevValue >http: // store . exanple .com
</ sam a: AttributeVal ue >
</ sam a:Attribute >
</ sam a: AttributeStatenent >
< sam a: Statement xsi:type =" cl:PPLPolicyStatenment Type ">
<ppl : Policy >
< ppl : Dat aHandl i ngPol i cy Policyld ="# DHP1 ">

</ ppl bat aHandl i ngPol i cy >
< ppl : Dat aHandl i ngPol i cy Policyld ="# DHP2 ">

</ ppl: Dat aHandl i ngPol icy >
< ppl : Provi si onal Acti ons >
< ppl : Provi si onal Acti on
Actionld="http://ww. prinelife.eul/ppl/Reveal Under DHP ">
< xacml : Attri but eval ue DataType =" xs:anyURl ">
http: // wwww. exanple .org/ names # display_nane
</ xacm :AttributeVal ue >
< xacm : Attri but eval ue DataType =" xs:anyURl ">
DHP1
</ xacm :AttributeVal ue >
</ ppl: Provisional Action >
< ppl : Provi si onal Acti on
Actionld ="http://ww. prinelife .eu/ ppl/ Reveal Under DHP ">
< xacml : Attri but eval ue DataType =" xs:anyURl ">
http: // www. exanple .org/ nanes # user_nane
</ xacm : AttributeVal ue >
< xacml : Attri but eval ue DataType =" xs:anyURl ">
DHP1
</ xacm :AttributeVal ue >
</ ppl: Provisional Action >
<ppl : Provi si onal Acti on
Actionld="http://ww. prinelife.eul/ppl/Reveal Under DHP ">
< xacm : Attri but eval ue DataType =" xs:anyURl ">
http: // www w3.0rg /2006/ vcard /ns# enmail
</ xacm : AttributeVal ue >
< xacml : Attri but eval ue DataType =" xs:anyURl ">
DHP2
</ xacm :AttributeVal ue >

87

</ ppl: Provisional Action >
</ ppl: Provisional Acti ons >
</ ppl:Policy >
</ sanl a: Statenment >
</ sanl a: Assertion >

The data subject's response is based on custoremi¢hat was introduced in the PPL language -
<Claims> (see below). It is a list of nested <Claiglements. Each claim contains many SAML
<Assertion> elements. They either contain: (1)rthesaled Pl value (<AttributeType> element),

(2) the access control decision (<ResponseTypexnezld or (3) the sticky policies

(<StickyPolicyStatementType> element) that aredohko the Plls by the unique identifiers.

<cl:Cainms xmns:cl =" http: // ww . prinelife .eu/ppl / clains
xmns:sp =" http: // ww. prinelife .eu/ppl/ stickypolicy "

xm ns:ppl =" http: // ww. prinelife .eu/ppl"

xm ns:ob =" http: // ww. prinelife .eu/ppl/ obligation
xm ns:sam a =" urn:oasis:nanes:tc: SAM.:2 .0 :assertion ">
<cl:C aim>
< sanm a: Assertion >
< sam a: |l ssuer >http://ww. prinelife.eu/clains/self-issued2l
</ sam a:lssuer >
< sanm a: Statenent xsi:type="cl: ResponseType"Deci si on="Access" >
<cl:MssingPll />
<cl: DenyPlI'l />
</ sam a: St at ement >
</ sam a: Assertion >
< sam a: Assertion >
<sam a: |l ssuer> http://ww. prinmelife.eu/clains/self-issued
</ sam a:lssuer >
< sam a: AttributeStatemrent >
< sam a: Attribute xsi:type =" cl:AttributeType
StickyPolicyld =" SP1869111054 "
Name =" http: // www .w3.org /2006/ vcard /ns# email ">
<sam a: Attri but eVal ue> bob@xanpl e. com
</sam a: Attri but eval ue >
</ sam a:Attribute >
</ sam a: AttributeStatenent >
</ sam a: Assertion >
< sam a: Assertion >
<sam a: |l ssuer> http://ww. prinelife.eu/clainms/self- issued
</ sam a:lssuer >
< sam a: Statement xsi:type =" cl:StickyPolicyStatenment Type ">
< sp:Attribute ID=" SP1869111054 " matching =" true "
AttributeURI ="http://ww. w3.o0rg /2006/ vcard /ns# email ">

< ppl : Authori zationsSet matching =" true ">

</ ppl:AuthorizationsSet >
< ob: ol igationsSet natching =" true ">

</ ob: CbligationsSet >
</ sp:Attribute >
</ sam a: Statenent >
</ sam a: Assertion >
</ cl:Claim>
</ cl:Claims >

88

The message flow between data subject and dataotieninstances including SAML assertion
and PPL claims documents is illustrated in Figure 7

Data Data
Subject Controller

1. Request resource

A4

2. Request personal data (saml:Assertion)

P
T~

Match with preferences

Y

3. Request resource + Plls + sticky policies (ppl:Claim)

P

4. Send Resource

N

Figure 7 Message flow between data subject andatetizoller

Within the downstream usage scenario message festat the same. Here data controller acts in
a similar way as the data subject in the previoassage flow. When third party requests personal
data stored on the data controller side (using SAMEsertion> element), the latter tries to match

the policy under which the third party wants to tise data with the persisted sticky policy. If the

result of the matching is positive, the data isntBbared with the third party under the derived

sticky policy (sent inside <Claims> element).

6.3 Data Subject and Data Controller Protocol Including
the Ul dialog box

For usability purpose we proposed to use a grapimtaface showing the content of the request
and the privacy policy coming from the Data CorénolThe Data Subject can then select which
PIl he can send. After this selection the Ul wilbss the matching/mismatching result between
user's preferences and Data Controllers privacicpol'he user can finally decide to agree on the
result of the matching and send the data or dissame discard the transaction. Figure 8 describes
the entire interaction.

This Ul is implemented as a browser plug-in comroatig with the DS and DC through HTTP.
More details of the specification of the plug-imdze found in [D4.3.2].

89

9 . Send Resource

4 -Invoke Matching

-

1- Select Policy

Data Subject

L &
T =

Data Controller

Figure 8 Interaction between Data Subject, datarGbet and the Browser plug-in

For communication, HTTP headers are used to execapecial protocol. In the following table,
the http://localhost:8082 stands for the DC Sertiee, http://localhost:9477 stands for the DS
Server. The following table describes this HTTPtpecol

Step | HTTP headers/parameters | Values

GET http://localhost:8082/clique/register (InvokegdUser)

1 Req - -

1 Resp | HTTP HEADERS:
X-PrimeLife-PPL-Controllerinfo | Example.com's store subscriptipn

(store.example.com, contact@example.com

X-PrimeLife-PPL-ControllerPolicy| http://localhost:8082/clique/policy
X-PrimeLife-PPL-ResourcePolicy | http://localhost:8082/clique/policy

GET http://localhost:8082/clique/policy (Invoked bgowser plugin)

2 Req - -

2 Resp - Policy in content

POST http://localhost:9477/dataSubject/accessResdlnvoked by browser plugin)

3 Req Parameters:
resource [policy XML]
group “NameOfThePreferenceGroup”

3 Resp Calim in content

Claims content is displayed by browser plug
mismatches.

in dre@lWser clicks on send and accepts

4 Req Parameter:
claim

[claims of 3rd response]

4 Resp

[claims in content]

90

POST http://localhost:8082/clique/register (Involgdbrowser plugin)

5 Req HTTP Header:
X-PrimeLife-PPL-Proof any value
Parameter:
proof [claims]

5 Resp [show result page]

91

Chapter

Implementation

The first version of the PPL Engine [D.5.3.2] pdrd the foundations that were used in the
project continuation. The main elements alreadiuoied in the first engine implementation were
mechanisms for the XML policies marshalling andspgtence - the two aspects that are filling the
gap between the data repositories and the reseddrigine are described in section 7.1

The initial implementation covered only the dat&jeat elements, such as policy matching and
basic access control mechanism. We extended futtieerengine elements (PDP, PEP) by
refactoring the existing solution to support fule data subject/data controller scenario as \gell a
the downstream usage. New processing model impleaian the PDP, based mainly on the
strategy pattern, is introduced in section. 7.2.

These changes also allowed very smooth integratficthe new functionalities into the engine,
like the obligations handling (Sect. 7.3) or thefprence group support (section 7.6).

Further, we have defined the PPL Engine interfdwa tould be used from the external
applications. We exposed the functionality of thgiee by providing the API described in section
7.7.

7.1 Marshalling and Persistence
7.1.1 Marshalling Java objects with JAXB

To be able to analyze and process PPL languagagmthat are created in XML format we need
to transform them into Java data types. One o&tadlable solutions is to use the JAXB API.

Java Architecture for XML Binding (JAXB) [JAXB] prades an APl and tools to map Java
classes into theirs XML representations. JAXB piegi two main features: the capability to
marshal (transform) Java objects into XML data cdtree, and the vice versa: unmarshall the
XML data structure into Java objects. To use thapping, it's necessary to compile an XML
schema into Java classes hierarchy. The lattegearerated as Java beans and contain the specific
JAXB annotations to allow the marshalling and thenarshalling process, as seen in Figure 9

92

Tt

E, .

‘: E L N IAKE |

compiler

Application
==
. | = mﬁ’ ﬁ

JaXB APl

: ._ arshal] ey

Figure 9 JAXB class generation and marshalling/ushelling process.

7.1.2 Persistence with JPA

On the other hand, the engine has to be able tsispeahe policies in a data base. The well
established Java API for the object persistend@is

JPA is a Java programming interface that bridgegtie between object oriented domain models
(Java classes hierarchy) and relational databasersy, technique known as ORM (Object
Relational Mapping).

JPA is based on: (1) a set of interfaces and dabse separates the user of a persistence service
(the application) and the provider of a persisteservice (the data base engine), (2) a set of
annotations to specify the mapping between Javesetaand relational data base tables, (3) a
persistence provider (like Hibernate [HIB] or Toyi[TOP]), or an implementation of the JPA
specification, (4) an XML file describing the pesteince configuration (provider, datasource, etc.).

7.1.3 Hyperjaxb3

JAXB provides us the way to map between the XMLiget files and Java beans, and JPA
provides us the way to map between Java classeshanctlational data base. So we need to
gather these two API to have an extendible wayotdrgm one object representation to another.
The problem is when we generate a class hierardgthy JAXB, the classes contain only JAXB
annotations. To introduce the persistence capabilinto those classes we need to add JPA
annotations as well (Figure 10).

Adding manually the JPA annotations into the JAX@&herated Java classes is too difficult and
complex, especially when handling a big numberlagses (such as the ones generated from the
PPL language schema).

The solution here is to use HyperJaxb3 [HYP]. Hypda3 uses the JAXB framework to generate
the Java class hierarchy from the XML schema fiesl also adds the appropriate JPA
annotations. The generation process provided byeHgxb is illustrated in Figure 11.

93

: . —
| </ } Jjava L—‘E J

JAXB JPA (3 3

Figure 10 JPA/JJAXB mappings.

@JaxB
UL JAXE
o - EJra
e |

@JpPa

Figure 11 HyperJaxb3 class generation.

7.2 Policy Decision Point

The major part of the data controller request pssitg is implemented inside the PDP. Above all
steps involved in the request processing the tvemse to be most important from the final
decision perspective: access control and policyhmad).

Because of the different possible requests andonsgprequirements we defined the set of
strategies that may alter the policy processingthedinal result. The three use cases that were
considered for the Pll access are defined below.

Simple Scenario

In the simple scenario, when data subject is aiajydata controller request, we assume that
preferences policies are shared among all usess\When the Pl requested by the data controller
is missing, that information must be passed touber interface. Also the Plls that preference
policy was mismatched against data controller'scpoére returned to the web browser extension
to allow user accepting a mismatch.

Batch downstream Usage Scenario

In the downstream usage context all Plls o cetigie (Pll's attribute name) are selected from the
Pll store. If there is no PII of that type, thenpynset is returned to the third party. The
preferences used for matching are this time retdevfrom the content of
<AuthzDownstreamUsage> element inside preferenckxsyp

94

Downstream Usage for Specific PIl Scenario

If the third party requests access for the sindlausing its Pl store identifier, most of the step
are the same as in previous scenario. The onlgrdifte is that Pll store is queried for the single
object.

After analyzing the differences that are distinging those cases, we defined four strategy groups
that are covering the steps in algorithm where Yiehds changing.Each of the point is illustrated
as a separate column in the Figure 12. The spetifitegies are presented inside each column.

Missing Policy Response

eQue Dy Pll Query Handling

by
consider Preference
Group

include
mismatched

by Attribute from Pll’s skip

ignore

Name sticky policy mismatched

Figure 12 Processing strategies.

PIl Query group represents the strategy that defihe criteria after which Plls are looked up in
the store. The case of forwarding or ignoring thirmation about missing PII is labelled as
Missing PII. For the decision which of the prefarempolicies should be chosen for matching we
have defined the Policy Query strategy that eithkes the policy from policy store according to
the preference group or downstream usage policgdtm sticky policy associated directly with
Pll. The last group, Response Handling, refershtoibterpretation of the outcome of a single
action response. In downstream usage case Plidhveitbther value of the access control response
than "Permit" and the positive matching result a@rst skipped whilst in the simple data
subject/data controller scenario they affect theeralN decision, changing it either to
"Indeterminate” or "Deny", depending on the poligigmatch or the denial of access coming from
HERAS.

Strategies were transformed into the Java clasarblgy. The four groups are represented as the
interfaces that are name®iiQueryStrategy IMissingPiiStrategy IPolicyQueryStrategyand
IResponseHandlingStrateggspectively. Diagrams in the Figure 13, Figure Eigure 15 and
Figure 16 are presenting how the ideas behindotitiern were mapped to the Java classes.

95

class F'iiQueryEtrategy/

winterfaces
IPiiQueryStrategy

+ executeQuery) - void

iy i

PiiGue ryByAttribute Name Strategy PiiGueryByld Strategy

Figure 13 PIl query strategies

class MissingF‘iiEh’atemr/

winterfaces
IMissingPiiStrategy

+ considerPiif) : boolean
+ fiterPii(P (I Type) : void

& £

ConsiderMissingPii Strategy IlgnoreMissingPii Strategy

Figure 14 Missing PII strategies

class F'Dli::yﬂueryﬁn'ategy/

«interfaces
[PolicyGuerySirategy

+ execufeGuen FliType) - Ohject]]

7 il il

PolicyByPreferenceGroup Strate gy PolicyByPii Strategy

PolicyDoNot5SelectStrategy

Figure 15 Policy query strategies

96

class ResponseHandling Strategy /

winterfaces
IResponseHandlingS trategy
+ handlk tion Rezponzez(Action Responze) : PdpRi

7 T T

IncludeMismatched Strate gy SkipMismatchedStrategy

SkipAll Strategy

Figure 16 response handling strategies

Two additional strategies (PolicyDoNotSelectStrategthe Figure 15 and SkipAllStrategy in the
Figure 16) are also considered there. They ar@atof the three scenarios defined here and are
used for the update preference group functionaligcribed later in section 7.6.

7.2.1 PDP Request

The canonical form of the PDP request is repredemyethePDPRequestlass. It is constructed
inside the PEP, transforming the incoming SAML Atea to the request object. Assertion is
passed to the request object constructor whererntarshaled to Java object representing XML
element. Information that is retrieved from the SlAkhessage are stored as the request object
fields:

» properties describing requestor (in XACML termirngpfareferred to as subject) are in the
attributes field

« the map of the data handling policies that cantherrequest (dhpMap field)

» list of the Java class representation of the <BrowalAction> elements (provisional
Actions field)

Each of the three scenarios presented before resempted by the concrete class that extends
PDPRequestThe classes implements getter methods for theepsing strategies, which were
defined as abstract in the parent class. The hlasarchy is shown in the Figure 17.

DataSubjectPDPRequesiass is used as a request in the simple datealidzita controller

scenario. Plls query strategy in this scenario @ delect by PIl attribute name
(PiiQueryByAttributeNameStrategyass). List of the missing Plls is consideredhia response

(ConsiderMissingPiiStrategyPreference policy chosen for matching is deteeciiby the user's
current preference groudlicyByPreferenceGroupStratégyFinally, the mismatched PlIs are
also forwarded within the respondgedudeMismatchedStratejyy

The batch downstream usage scenario is implemersied DownstreamPDPRequestForNames
class. In this case the difference is that we daapsider the missindghoreMissingPiiStrategy

or the mismatched SkipMismatchedStratepgyPlls in the response. Also instead of using
preference policy in matching the sticky policy'sowshstream usage policy is used
(PolicyByPiiStrategy.

The last scenario, where the single PIl is reqdeste using same strategies as previous
downstream usage scenario except instead of reggieshole batch of Plis identified by their
attribute name the PII identifier is used for qongrPIl store PiiQueryByldStrategy

97

class PDP request hierarnh]r/

PDPRequest

- attributes: List=Attribute Type>=
- dhpMap: Map=String, DataHandlingPolicyType>
- provisionalActions: List<ProvisionalActionType>

+ PDPRegquest|String) : void

+ getFiterdPiStrategyy) - IFiterFiSirategy

+ getFiluenStrateqy) : (FikuernySianeqy

+ getPolicyGuenSiategy) ; IPolicyQuenSiategy

+ getResponzeHsndingSirstegy() - iResponzeHsndiing Strategy

o L

Data SubjectPDPRequest DownstreamPDP RequestForids

DownstreamPDPRequestForMames

Figure 17 PDP request class hierarchy

7.2.2 Provisional Actions

For each <ProvisionalAction> element present inddia controller's resource policy PDP creates
specific handler object representing one of themigsible actionsReveal RevealUnderDhp
RevealToRevealToUnderDhSign Spendl that will execute the processing phases. Creatfon
the action handling objects is the job RifovisionalActionsFactorywhich follows the factory
design pattern. The class hierarchy representioggional action handler elements is depicted in
the Figure 18.

class ProvisionalActions
«interfaces
IProvisionalAction ProvisionalActionFactory
+ handle() - ActionResponse(] . o .)))
+ pgetP ! (P lActionType, PDPRequest) : IProvisionaldction
Pt [I
ol [I
________________ |
| [|
1 1) 1
| e __ I o . |
! | | I A |
| I | |
| | | | 1
Reveal ! | | !
| i | 1 Spend
| |
| |
| | | |
RevealUnderDhp | | Sign
| |
| |
RevealTo RevealToUnderDhp

Figure 18 Provisional action factory class diagram.

All the burden associated with the configuratioriteff specific action handler is in this case left t
the factory object. The creation of the provisiomation handler could take several simple
initializtion steps depending on the action in sahj

1. The provisional action object is populated witle data handling policies map that comes
along with the request.

98

2. XACML request is created, taking the data algr attributes (likeDataControllerID) that
will be used for creation of the XACML subject elenmt and PII type (Pl Attribute Name) that
will be used as the requested resource attribeteRgyure 19).

3. Last step involves passing the strategies ¢y, policy query, filter) that were set in the
PDPRequesto the action object.

(4 .] eresource

‘ SUbject -Pll
Attribute
Name

Data
Controller | Attribute 2 Attribute n
Id

Figure 19 Access control request structure.

After all provisional action handlers are creatid, processing step begins by invoking handle()
method on each of them.

sd RevealUnderDhp
PDP provisionalfction::ProvisionalActionFactory interf: C tz:Access Components::Matching
PilQuery:|IPilQuenyStartagy| Control
T T T T T
| | | | |
. . . | 1 ! !
etProvisionaldction(PDPRequest) jonalAction:-RevealUnderDhp | | |
- ————-——- T I I I
! | | |
handie(| ! 1 1 |
T -) | | |
1 L ¥ Name)_ | 1 1
| el | |
| | |
| ‘List<PI| Type> | l
| T | |
| | |
| evaluste(PlIType, RequestType) o ! |
| t Ll |
| | |
| . i |
E luationRe:
| e _ _EEMsenmERonEE |
| | |
| o+ Datat S .) | |
| ma jolicyType, Datat F Type) - |
|]] o
! ! tickyPol !
L L_EEerel_ _______
| == | |
| | |
:actionResponge | | |
[S-——————mm o il I I I
T | - | | |
| | : | | |
| | | | |
| | = | | |

Figure 20 Provisional action sequence diagram.

The scenario considering provisional actRavealUnderDhgs illustrated in Figure 20. In the
case of this provisional action, the overall PDBpmmse relies on standard XACML access
control decision and the policy matching result.

7.2.3 Access Control Engine

99

For the evaluation of the XACML-based part of tlediqy (which is ignoring all the new elements
introduced by the PPL language specification) veeusing HERAS [HER] AF implementation.

The order of the method calls is illustrated inUfegy21. In the first phase of the access control
process implemented in thccessControlUtilsclass we obtain PDP provided by the HERAS
library using theSimplePDPFactoryclass. HERASSimplePDPexposes a getter method for the
policy repository. This repository is used by thegiee to evaluate the incoming request.
Preference policies that will be used in the pre@ s deployed there. But before it is possible the
policies are converted to the HERAS XACML classkthecause those are the types expected by
the method in by the PolicyRepository class. lefatie convertion process filters out all the PPL-
related elements from the policy and marshalsatratp the HERAS format.

Now that the policies are deployed successfullyghtwn HERAS repository, the XACML access
control request visualized in the Figure 19 is eatdd in the PDP and in the result to that method
call we receive the decision whether access t®this permitted or denied.

sd Access Control

AccessControlUtils HERAS::SimplePDPFactory| HERAS::PolicyRepository| Converter Hfils

| getSimplePDP) |
e

HERAS::SimplePDP

simple PDP
e — ——— —— — —

1
getPolicyRepository() -

] l
|
-policyRepository
- —— = —— —— — =

M

|

|

|

|

|

|

|

|

|
S S
|

|

|

|

I..
T
1o
15
e
]
'3
g

|

|

|

|

|

|

________.|:___+______________________
¥

Figure 21 PIl access control sequence diagram.

Later in this scenario we also use HERAS to deteemihich <DataHandlingPreferences>

element from the user's preferences policy shoegldige for the matching. To obtain the element,
there is an algorithm presented as pseudo-codégorifam 1 for finding the proper rule element

containing data handling preferences from the palind policy sets hierarchy.

ThefindApplicableRulemethod iterates through the policy structure iptddirst search manner.
Each policy set, policy and rule element's targaested (matched in HERAS vocabulary, not to
be mistaken with policy matching) against the retjaarget, to check if it is applicable for that
rule (policy set or policy respectively). That medahat request's target and elements' target's
properties gubject resourceandaction) are compared with each other to obtain the in&dion if
such rule folicy or policyse} is referring to the current request or not. Ifreat element's target

is applicable then algorithm invokes itself recuesy on the children elements.

100

The final data handling preferences element (treereturned with the access control response) is
always taken from the last applicable rule foundhgyalgorithm.

Algorithm 1 find Applicable Rule method that is returning the last applicable rule
rule < null
for policySetOrPolicy in policyList do
if policySetOrPolicy instanceof PolicySetType then
nested PolicyList < getNestedPolicies(policySetOr Policy)
ruleTemp <« findApplicableRule(nested PolieyList, request) {recursive invoca-
tion}
if ruleTemp # null then
rule <— rulelemp
end if
else
ruleList <— getRules(policy SetOr Policy)
for » in ruleList do
if matchTarget(request, r.getTarget()) then
rule < r
end if
end for
end if
end for
return rule

7.2.4 Matching Engine

After obtaining the positive access control resh# policies part related to the data handling
(<DataHandlingPreferences> and <DataHandlingPolielements) are a subject to the policy
matching process. Each data handling policy cansibtwo separate parts - authorizations and
obligations. The matching process of these two efgmis performed independently.

Matching is in charge of deciding whether the poliless premissive than the user's preferences.
Generally, when policy requires more authorizatitrn the user has allowed in his preferences
or the policy obligations do not cover all the ghlions specified by user than the mismatch

occurs and information about which elements arecanformant is supplied to the sticky policy.

Authorizations matching is implemented in the AuibationsMatcher class and provides two
methods: match, that produces the authorizations met of the sticky policy and
getAuthMismatch, that returns mismatches list,nf,athat is also later included in the sticky
policy.

Obligations matching implementation is encapsulatgdrm of the Obligations Matching Engine
(OME) web service. The class that invokes servicint's method is the ObligationsMatcher.
The single method is provided here, getStickyPolyssible mismatches are in this case a part of
the sticky policy obligations set element.

The matching sequence is depicted in Figure 22.

101

sd Matching Sequence

PalicyMatcher (AuthorizationsMatcher, ObligationsMatcher

T T
| |
| match(AuthorzationsSet, AuthorzationsSet) - |

T
I
I
. 1
I
I
I
match(AuthzUseForPurpose, AuthzUseForPurpose) 1
I
1
match(AuthzDownstreamUsage, AuthzDownstreamUsage) I
I
|z _ _ _AuthorzationsSet _ _ ____ __ | !
stickyPolicyAuthonzationsSet I
I
getAuthMi) :AuthorizationsMismatch | I
= I
I
‘mismatches I
- —— = — 1
I
| getStickyPolicy(ObligationsSet, ObligationsSet) !
t L
|
e e G OuigatensSet __ _______________
| stickyPolicyObligationsSet
T |

Figure 22 Policy matching sequence diagram

7.3 Obligation Enforcement Engine (OEE)

This section describes mechanism in place at Dat#raller side to make sure that committed
obligations (e.g. part of a sticky policy) are irdeenforced.

7.3.1 Overview

Pll, Obligation Protocols 1
|| obligation —r
- Obligation
Policy Extractor P
/
Pl
Obligation
[
event
Obligation
Repository
Actions Plug-in
[== FOblige\tioa
ystems Plug-n ramew or|
External [j]
System i
(e.g. DataBase) action

Figure 23:. Architecture diagram

102

Figure 23 gives an overview on the framework enf@gyobligations. The key feature of this
framework is its extensibility, which is achieveardugh plug-ins for triggers and actions. The
framework relies on the following components:

Policy Extractor and plug-ins

The policy extractor is in charge of storing peratata in an external system and make sure that
a reference to the personal data is part of thieypdince the structure of incoming message may
depend on the protocol, different plug-ins are usafithien the obligation policy is embedded
within a container message, the corresponding plyzarses the message and forwards only the
obligation policy part to the system.

Obligation Parser

The obligation parser is in charge of deserializiobligations, checking inconsistencies,
scheduling deterministic triggers, registering vergs, and storing the received obligations.

Scheduler

The scheduler is used to send events requiredrgyliased triggers, which are scheduled by other
components of the obligation enforcement framewdarkorder to be able to fire the scheduled
event right in time, it will schedule the eventanfigurable delta time t the actual event time. A
value for the delta time may be 10 seconds.

Obligation Repository

The repository stores obligations. It may be aciéid component or part of the policy repository
that stores sticky policies.

Event Engine

Is in charge of triggering actions necessary tmmaf obligations. It consumes internal events
(e.g. from scheduler) and external events (e.gl eegess on personal data). The major goal to
have a single point of event receiving and distithuis to ensure integrity. All the external
systems, scheduler and obligation engine communitaiough the event engine. It behaves
mainly like a queuing component keeping track efriceived and processed messages. It ensures
message reliability in case of system shut dowmalfunctions.

Obligation Engine

The obligation engine is the main load processmmponent. It is triggered by the event engine
and processes corresponding obligation rules. Alfieexecution of actions, the obligation engine
may change the state of the obligation rule and tmapyv outward events. The obligations contain
actions with parameters attached to each obligatiten Each of these actions must match to an
available action plug-in within the obligation engi

In the obligation engine component, we proposealéyer action plug-in mechanism. The upper
layer contains the plug-ins for specific actiong. edelete, notify and the lower plug-in layer

contains the implementations for different extersgbtems supporting a set of actions. For
instance, delete operation can operate on filesnadata in a relational database. Notification to
user could be sent via e-mail, fax, or postal mail.

The obligation enforcement engine may be extendddaudit features. Keeping track of actions
executed by the obligation enforcement engine wéadilitate the work of Data Controller and
external auditors by enabling automatic analysistrates and check for conformance with
policies.

This section gives an overview of the obligatiofoecement engine. There are three components:
1. OEE Service: the engine

103

2. OEE Client: a sample client
3. Action Handler: dummy front end for legacy systenexecute “actions”, e.g. delete data.
This will be replaced by SAP’s database frontend.

The client loads a sticky policy (see StickyPobeyl) associated with a reference to a Pii. The
client sends events related to the PII.

7.3.2 Implementation of OEE

["= ¢ = s e e e et e e Em s -
-Data controller I
|

1) piii, spi Data 2) Store pii; at uid; Pl store

ntrol
coletr ¥ 3) Store sp;, set AC, etc.
fronten

d

4) SetPiiObligations(uid;,obl)

Figure 24 - Obligation Engine: Loading Obligation

Figure 24 presents the first API of the Obligatienforcement Engine (OEE) that is used to
upload new obligations.
» Pii: one piece of personal data
o Uid;: the local (i.e. at data controller side) refeetw Pij.
* Sp: the sticky policy associated with Pii
o Obl: the obligation part of Spi.e. an ObligationsSet

Please refer to section 7.3.2.1 for a full list&#gl function calls.

104

1) Get(uri;, purpose) PEP
——>| f{rmmmmmmmmmeeeeoooooe- >

Pll store

2) ConsumeEvent(EventUsePiiForPurpose

3) Do(Action) Action

Handler

Figure 25 - Obligation Engine: External Event

Figure 25 presents the second API of the Obligaiaforcement Engine (OEE) that is used to
receive relevant events. Please refer to secti®r2.1. for a full listing obligation API function
calls.

If the event is relevant, i.e. there is an obligatassociated with the PII that is triggered by thi
event, the corresponding action is executed. Astame “executed” by calling appropriated action
handler with a set of parameters.

Pll store

1) Internal event

3) Delete

— Action
Handler

AH-Connectors -. Do(Piild, ActionDeletePii [

Figure 26 — Obligation Engine: Internal Event

7.3.2.1 Obligation Management Web Service APIs

This section will give an overview to the web seeviAPI for Registering and Removing
Obligations. This API offers three methods:

®* void SetPiiObligations(PiiUniqueId piild, ObligationsSet stickyObligationsSet);

105

This method sets internal scheduler and “regigterélevant events in order to enforce
obligations specified in a sticky policy.

The first parameter is the unique id of the Plihis system. For instance when the Pll is
stored on a database, the unique id could be sematabase + table + cell.

The second parameter is an obligation set, i.eoltfigation part of the sticky policy.

* void SetPiiObligations(PiiUniquelId piild, string stickyObligationsSet);

Same as above, but second parameter is a XML4igedadtring of the former
ObligationsSet type. This method is deprecatedshaodld not be used anymore.

* void RemovePiiObligations(PiiUniqueId piild);

This method remove obligations related to someT#é parameter is the unique id of
this PII.

7.3.2.2 API for Triggering Event
This API offers one method:

* void ConsumeEvent(Event piiEvent);

This method takes an object of a derived classvehE which will OEE lead to
enforcement according actions on registered olitigat For the moment, we support two
types of events: EventUsePiiForPurpose and EveatErii.

7.3.2.3 Working with OEE Service

Starting and Stopping the Service As OEE is a Windows service, it is registerechaservice
during installation process and then listed in ¢kevices section at the Windows management
console.

Log and Debug Outputs: some basic information about the start and abagived events as
well as warnings and errors are sent to the Windapdication event log. Moreover, there is also
a debug log which is far more informative. It is text file which is located on
%LocalAppData%\EMIC\PrimelifeOEE of the LocalSewrvidser.

Persistence of OEE’s StateThe main task of OEE is to store event-triggerdbas up to a long
time (several day, months or even years) and waigh event to trigger the according action.
Considering that a computer may have to restdniage to be exchanged in hardware during that
period, there's a need to store the data on naatileomemory like hard disk.

OEE will store its events, actions, and even asesabout what time-dependent event should have
been triggered but have not been triggered yet. JBE& has been implemented as a proof of
concept and does not provide strong persistenchaneans.

Configuration File: The configuration file of OEE can be found in timstallation directory of
OEE. It is named “OEEWindowsService.exe.config’efidhare several configurable parameters
and flags that influence the behavior of OEE. Theme be found in the “applicationSetting”
element of the configuration file and are describexit:

» Parameter ServiceAddress: This parameter sets Rie Where OEE should provide its
web service. It is mandatory as there is no hareldatkfault value given for it.

» Parameter DebugMode: The DebugMode-flag will set@EE in debug mode. In debug
mode, OEE will behave less aggressive on incomser inputs, print out a warning

106

telling about the error and try to recover fromttimegular state automatically by
guessing closest the right input value.

» Parameter SpareDeltaTimeForTimedEvents: On Obtigatithat require an action to be
executed within a certain time, OEE will schediie &ction right at the end of the given
time period. But as there could be a workload ean@&EE running machine right on that
time, where an action needs to be executed, thenast scheduled t seconds before the

end of the time period.

New trigger/action handlers can be defined and éda& the OEE with a plug-in mechanism.

7.4 Action Handler

Another web service that completes the obligatieasdling process is the Action Handler that
resides on the data controller (it is not parthe mentioned before Obligation Handler, rather
than that it should be consider as integral pathefdata controller implementation). Its main task
is to fulfill actions coming from OEE that were wdts either of Pll events or time-based actions
triggered by a scheduler.

* Plis
» sticky
policies

data
subject

-
=
(]
=
[=
(o]
-
Yy
—
el
e
—
(=
(o]
Q
Q
i
1]
e

data controller

store PII

Pll

store sticky policy store

setPiiObligations(pii, obligations)

obligations enforcement adapter

. setPiiObligations(piiUniqueld, obligations)
OEE

Figure 27: Setting Obligation

class ObligationsEnforcementAdapter /

Obligations EnforcementAdapter

sanvice: OEESenvice

+ setPiilbligations{PlIType, ObligationsSet) : void

Figure 28: ObligationsEnforcementAdapter class

107

class EventTrigger /

EventTrigger

- oeeSernice: OEESemnvice

+ triggerDelete Pi(P1IType)
triggerPiiShared(PlIType, String)
+ triggerlsePiForPumpose(PlIType, String)

4

Figure 29: EventTrigger class

Action Handler is implemented in form of the welrviee that is integrated into the data
controller interface. That allows manipulation b&tPIl store required by some of the considered
actions (e.g., log "Pll used for marketing purpdsé&he interface is meant to be used by the
Obligation Handler (OEE service) to execute théoasttriggered by the events associated with
the obligation (Figure 30)

get Pl ‘{__";J

third B Pll for
purpose

party

.

=]
=
Q
4=
e
o
Y
o
L
©
S
4
=
Q
(&S]
40}
4+
18}
o

Action
Handler

log(piiUniqueld, message)

Figure 30: Executing the event

class ActionHandler /

ActionHandler5ervice

+ delete(long) : void
log(long, String) : void
+ notify(long, String, String, String) : void

4

Figure 31: Action handler service

Current implementation provides three methods {#ei@1):

108

del et e(l ong pii Uni quel d) - that facilitates Action Delete Personal Data

e log(long piiUniqueld, String nessage) - that facilitates Action Log

notify(long piiUniqueld, String mnedia, String address,
String nmessage) - that facilitates Action Notify Data Subject

7.5 Policy enforcement Point

Policy Enforcement Point (PEP) is defined in ouchitecture as the interface between data
subject and data controller policy engine (or dadatroller and third party). The interface is
different in the data subject and the data comrab this component is kept separate for both
entities.

The main PEP task is to transform the policy regj(teat could be either in string representation
or already marshalled object) to the comnRiDPRequesbbject that is used to invoke the PDP.
On the data subject it contains a single methodgs® which is processing data controller request
(provisional actions) and returns the claims doauinégth the access control decision, revealed
PII values and theirs sticky policies (Figure 3P)e DataSubjectPDPRequeslass is used here
as the PDP request.

class D5 PEP -

PEP

+ process(String, String) : ClaimsType

Figure 32: Data Subject PEP interface

PEP interface on the data controller side is marapex as it supports data subject and other
(third party) data controller requests Figure 38rdHhe three methods are provided:

1. List<PllType> processPolicy(String resourceNane, d ainsType
cl ai ms, bool ean set Cbli gations)

2. CainsType processDownstreansage(String policyQueryResponse,
String default ServerPolicy)

3. d ai nsType processRequest For SpecificPii (String
pol i cyQueryResponse, String defaultServerPolicy)

class DC PEP

PEP

+ processPolicy(String, ClaimsType, boolean) : List<PlIType>
+ processDownstreamlsage(Strng, String) : ClaimsType
+ proecessRequestForSpecificPi(Sting, String) : ClaimsType

Figure 33: Data Controller PEP interface

109

processPolicymethod is invoked as a consequence of the datgctutequest for the data
controller resources. It analyses the claims docamegurned by the data subject.
The following steps are taken here:

1. List of the sticky policies is retrieved fronethlaims.

2. List of the PllIs is retrieved from the claims.

3. Each PII is associated with the correct stickyicy (according to the sticky policy's
identifier).

4, Obligation Enforcement Engine is called for eabligations set contained in the sticky
policies.

The two other methods in the PEP interface are usethe downstream usage scenario.
processDownstreamUsage is a request for the liBilefstored in the data controller's Pll Store.
The PDP request created here is thHeownstreamPDPRequestForNamesbject.
processRequestForSpecificPiis a request for the single specific PIl and itesus
DownstreamPDPRequestForl&DP request object.

7.6 Preference Groups

To give the users possibility to easily change rth@ivacy preferences we introduced the
preference groups. They allow users to maintaintiptel browsing profiles with a different
privacy settings (e.g., the "secure” profile whigmot allowing any PII to be revealed or "trusted"
profile which contains a list of trusted websitieattare allowed to collect user's data).

The preference groups support means that useraarstore multiple preference policies, which
identifiers are recognized as the group names. Wikebe able in the future to select his current
browsing profile in the Firefox extension. The imfation about under which profile user is
browsing will be passed to the engine as the pamrméthe data subject's PEP only method.

Additional functionality associated with the prefiace groups is a possibility to update the current
preferences if there was a policy mismatch (eibiyecreating a new group or updating the current
one) so the next when the user is requesting th& cantroller's resource there will be no
mismatch.

7.7 API

To expose the engine functionality to allow othewelopers reuse our engine, we decided to
create the API for the management of data subjedtdata controller instances. The interface is
prepared in form of the RESTful HTTP methods.

7.7.1 Data Subject API

For managing Plls and PreferenceGroups on thesdajact we provide the following API:
Managing PII
* Create aPlIl
PUT /api/pii?name=attributeNane&val ue=attributeVal ue HITP/ 1.1
Parameters:
0 name - attribute name of the PII (the type).

o value - attribute value of the PII.

110

* Update a PII
PCST /api/pii ?nane=attribut eNane&val ue=attri butevalue HTTP/ 1.1
Updates the value of the PII with that attributenea
Parameters:
0 name - attribute name of the PII (the type).
0 value - new attribute value of the PII.
* Delete aPIl
DELETE /api/ pii?name=attri buteNanme HTTP/ 1.1
Parameters:
0 name - attribute name of the PII (the type).
* Getall Plls
CET /api/pii HITP/1.1
Returns list of all Plls stored in the database.
Managing Preference Groups
« Create a preference group
PUT /api/groups HITP/ 1.1
Creates one or more preference groups.
Request content
String representation of the resource policy inXML format. The root element of the policy
document must be http://www.primelife.eu/ppl:Polay

http://ww. prinelife.eul/ppl:PolicySet.

* Update a preference group
PCST /api/groups/group id[?new pref group=new pref group id]
HTTP/ 1.1
Updates the preference group by merging the mismaatérom the sticky policy, so the next
time when the matching is performed (between theydrom specified preference group
and the same the data controller's resource pdheyg will be no mismatch.
Parameters
0 group id - the policySetld or policyld of the preface group.
o new pref group - (optional) identifier of the neweference group if the result
shall be stored as a new preference group.
0 policy { the policy of the resource the user igrigyto gain access to. Note: this is
the same input as given to thecessResourfemethod.

* Delete a preference group
DELETE / api / groups/ pref group id HITP/ 1.1
Deletes a preference group.
Parameters
o pref group id - the identifier of a preference grou

» Get all preference groups identifiers

111

CET /api/groups HITP/ 1.1

Gets a list of all preference group names stordbddrdatabase.
Response

A JSON list:

[PrefGroupNamel, PrefGroupName2]

Get a preference group policy

CET /api/groups/pref group id HTTP/ 1.1
Gets the XML of a specific preference group.
Parameters

o pref_group_id - the identifier of a preference grou

7.7.2 Data Controller API

Direct management of data controller's resourceRihdtore is now possible by calling RESTful
interface methods.

Uploading resource data and policy
PUT /api/resource/ name HITP/ 1.1
Parameters
o Name - resourse nhame
Request content

String representation of the resource policy inXML. format. The root element of the
policy document must be
urn: oasi s: nanes:tc: SAM.: 2. 0: assertion: Asserti on.

Response

Resource id

Uploading PII

PUT /api/pii HITP/ 1.1
Parameters:

o Name - PII's attribute name (e.g.
http://ww. w3. or g/ 2006/ vcar d/ ns#enai |).

0 Value - PII's attribute value (e.gj ohn. doe@xanpl e. com).

Request Content:

String representation of the sticky policy in th®X format. The root element of the
sticky policy document must be
http://ww. prinelife.eu/ ppl/stickypolicy:Attribute.

Response:

Pllid

P1l downstream usage request for a single PII
PCST /api/pii HITP/ 1.1

Request content:

112

String representation of the request policy inXhL format. The root element of the
policy document must be
urn:oasi s:nanes:tc: SAM.: 2. 0: assertion: Asserti on.

Response

String representation of the claims in the XML fatilrhe root element of the document
ishttp://ww. prinelife.eu/ppl/clains:dains.

113

Chapter

Appendix

8.1 Privacy Policy schema

Implementers will need a complete schema for theydanguage and obligation preferences,
including a core vocabulary for credentials, pugspsrecipients, events, notifications, etc. A
complete schema has yet to be finished.

8.1.1 PrimeLife root schema

The root schema includes the reference to all tircipal elements of the language like for
example the XACML schema, the Obligation schemagd€ntial schema...

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.primelife.eu/ppl" xmlns:ppl="http://www.primelife.eu/ppl”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:ob="http://www.primelife.eu/ppl/obligation”
xmlns:cr="http://www.primelife.eu/ppl/credential™
targetNamespace="http://www.primelife.eu/ppl" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<Xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemalocation="access_control-xacml-2.0-policy-schema-os.xsd"/>
<Xs:import namespace="http://www.primelife.eu/ppl/credential”
schemalLocation="PrimeLifeCredential.xsd"/>
<Xs:import namespace="http://www.primelife.eu/ppl/obligation”
schemalLocation="PrimeLifeObligation.xsd"/>
<!-- PolicySet -->
<xs:element name="PolicySet" type="ppl:PolicySetType"
substitutionGroup="xacml:PolicySet"/>
<xs:complexType name="PolicySetType">
<xs:complexContent>
<xs:extension base="xacml:PolicySetType">
<XS:sequence>
<xs:element ref="ppl:DataHandlingPolicy" minOccurs="0"
maxOccurs="unbounded" />
<xs:element ref="ppl:DataHandlingPreferences"
minOccurs="0"/>
<xs:element ref="ppl:StickyPolicy" minOccurs="0"/>
<xs:element ref="cr:CredentialRequirements”
minOccurs="0"/>
<xs:element ref="ppl:ProvisionalActions"
minOccurs="0"/>

114

</Xs:sequence>

</xs:extension>
</xs:complexContent>
</xs:complexType>
<l-- -->
<!-- Policy-->

<xs:element name="Policy" type="ppl:PolicyType" substitutionGroup="xacml:Policy"/>

<xs:complexType name="PolicyType
<xs:complexContent>

"

<xs:extension base="xacml:PolicyType">
<Xs:sequence>

maxOccurs="unbounded"/> -->
maxOccurs="unbounded"/>

minOccurs="0"/>

minOccurs="0"/>

minOccurs="0"/>

<!-- <xs:element ref="ppl:Rule"

<xs:element ref="ppl:DataHandlingPolicy" minOccurs="0"
<xs:element ref="ppl:DataHandlingPreferences"
<xs:element ref="ppl:StickyPolicy" minOccurs="0"/>
<xs:element ref="cr:CredentialRequirements”
<xs:element ref="ppl:ProvisionalActions"

</Xs:sequence>

</xs:extension>
</xs:complexContent>
</xs:complexType>
<l-- -->
<!-- Rule -->

<xs:element name="Rule" type="ppl:RuleType"

<xs:complexType name="RuleType">
<xs:complexContent>

substitutionGroup="xacml:Rule"/>

<xs:extension base="xacml:RuleType">
<Xs:sequence>

max0ccurs="unbounded"/>

minOccurs="0"/>

minOccurs="0"/>

minOccurs="0"/>

<XS:

<XS:

<XS:
<XS:

<XS:

element

element

element
element

element

</Xs:sequence>

</xs:extension>
</xs:complexContent>
</xs:complexType>
<l---->

ref=

ref=

ref=
ref=

ref=

"ppl:DataHandlingPolicy" minOccurs="0"
"ppl:DataHandlingPreferences"

"ppl:StickyPolicy" minOccurs="0"/>
"cr:CredentialRequirements”

"ppl:ProvisionalActions"

<!-- Common Type of DHP, DHPreferences and StickyPolicy DHPSP; Data Handling

Policy/Pref Sticky Policy-->

<xs:complexType name="CommonDHPSPType">

<Xs:sequence>

<xs:element ref="AuthorizationsSet" minOccurs="0"/>
<xs:element ref="ob:0ObligationsSet" minOccurs="0"/>

</Xs:sequence>
</xs:complexType>
<l---->

<!-- DataHandlingPolicy -->

<xs:element name="DataHandlingPolicy" type="ppl:DataHandlingPolicyType"/>
<xs:complexType name="DataHandlingPolicyType">

<xs:complexContent>

<xs:extension base="ppl:CommonDHPSPType">
<xs:attribute name="PolicyId" type="xs:anyURI"

use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l-- -

<xs:element name="DataHandlingPreferences" type="ppl:DataHandlingPreferencesType"/>
<xs:complexType name="DataHandlingPreferencesType">

<xs:complexContent>

<xs:extension base="ppl:CommonDHPSPType"/>

</xs:complexContent>

115

</xs:complexType>
<l-- -

<xs:element name="StickyPolicy" type="ppl:StickyPolicyType"/>
<xs:complexType name="StickyPolicyType">
<xs:complexContent>
<xs:extension base="ppl:CommonDHPSPType"/>
</xs:complexContent>
</xs:complexType>
<l-- -->
<!-- List of Authorization -->
<xs:element name="AuthorizationsSet" type="ppl:AuthorizationsSetType"/>
<xs:complexType name="AuthorizationsSetType">
<XS:sequence>

<xs:element ref="Authorization"” minOccurs="0" maxOccurs="unbounded"/>

</Xs:sequence>
<xs:attribute name="matching" type="xs:boolean" default="true"

use="optional"/>

<xs:attribute name="mismatchId" type="xs:IDREF" use="optional"/>
</xs:complexType>
<l---->
<!-- Authorization -->
<xs:element name="Authorization" type="AuthorizationType" abstract="true"/>
<xs:complexType name="AuthorizationType">

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<Xs:any namespace="#i#tany" processContents="lax"/>
</Xs:sequence>
<xs:attribute name="matching" type="xs:boolean" default="true"

use="optional"/>

<xs:attribute name="mismatchId" type="xs:IDREF" use="optional"/>
<xs:anyAttribute/>
</xs:complexType>

<l---->

<!-- Purposes -->

<xs:element name="Purpose" type="xs:anyURI"/>
<l-- -

<!-- Authorization: Use for purpose -->

<xs:element name="AuthzUseForPurpose" substitutionGroup="Authorization">
<xs:complexType>
<xs:complexContent>
<xs:restriction base="AuthorizationType">
<Xs:sequence maxOccurs="unbounded">
<xs:element ref="ppl:Purpose"/>
</Xxs:sequence>
</Xs:restriction>
</xs:complexContent>
</xs:complexType>
</xs:element>
<l-- -->
<!-- Authorization: Downstream usage -->
<xs:element name="AuthzDownstreamUsage" substitutionGroup="Authorization">
<xs:complexType>
<xs:complexContent>
<xs:restriction base="AuthorizationType">
<Xs:sequence minOccurs="0">
<xs:element ref="ppl:Policy"/>
</Xs:sequence>
<xs:attribute name="allowed" type="xs:boolean"

use="optional"/>

</xs:restriction>
</xs:complexContent>
</xs:complexType>
</xs:element>

<l-- -
<!-- ProvisionalAction extension -->
<!-- ProvisionalActions -->

<xs:element name="ProvisionalActions" type="ppl:ProvisionalActionsType"/>
<xs:complexType name="ProvisionalActionsType">
<Xs:sequence>
<xs:element ref="ppl:ProvisionalAction" maxOccurs="unbounded"/>
</Xs:sequence>

116

</xs:complexType>
<l-- -->
<!-- ProvisionalAction -->
<xs:element name="ProvisionalAction" type="ppl:ProvisionalActionType"/>
<xs:complexType name="ProvisionalActionType">
<Xs:sequence>
<xs:element ref="xacml:AttributeValue" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="ActionId" type="xs:anyURI" use="required"/>
</xs:complexType>
<l-- -->

</Xs:schema>

8.1.2 PrimeLife Claim Schema

This schema describes how the claims between Daltige& and Data Controller should be
formatted. These claims re-use some elements @AiML 2 schema.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema
xmlns:ppl="http://www.primelife.eu/ppl”
xmlns:pplc="http://www.primelife.eu/ppl/claims"
xmlns:ob="http://www.primelife.eu/ppl/obligation”
xmlns:obmm="http://www.primelife.eu/ppl/obligation/mismatch”
xmlns:sp="http://www.primelife.eu/ppl/stickypolicy”
xmlns:samla="urn:oasis:names:tc:SAML:2.0:assertion”
xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xacmlc="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://www.primelife.eu/ppl/claims">

<Xs:import namespace="http://www.primelife.eu/ppl”
schemaLocation="PrimeLifeSchema.xsd" />
<Xs:import namespace="http://www.primelife.eu/ppl/obligation”
schemalLocation="PrimeLifeObligation.xsd" />
<Xs:import namespace="http://www.primelife.eu/ppl/obligation/mismatch"
schemalLocation="PrimeLifeObligationMismatch.xsd" />
<Xs:import namespace="http://www.primelife.eu/ppl/stickypolicy"”
schemalLocation="StickyPolicy.xsd" />
<Xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemalLocation="access_control-xacml-2.0-policy-schema-os.xsd" />
<Xs:import namespace="urn:oasis:names:tc:xacml:2.0:context:schema:os"
schemalLocation="access_control-xacml-2.0-context-schema-os.xsd" />
<Xs:import namespace="urn:oasis:names:tc:SAML:2.0:assertion"
schemalLocation="http://docs.oasis-open.org/security/saml/v2.0/saml-schema-
assertion-2.0.xsd" />
<xs:element name="ResourceQuery" type="pplc:ResourceQueryType" />
<xs:complexType name="ResourceQueryType">
<XS:sequence>
<xs:element ref="xacmlc:Request" />
<xs:element maxOccurs="unbounded" minOccurs="0"
ref="samla:Assertion" />
<xs:element minOccurs="0" ref="ppl:DataHandlingPolicy" />
</Xs:sequence>
</xs:complexType>
<xs:complexType mixed="false" name="ConditionStatementType">
<xs:complexContent mixed="false">
<xs:extension base="samla:StatementAbstractType">
<Xs:sequence>
<xs:element ref="xacml:Condition" />
</Xs:sequence>
<xs:attribute name="EvidenceId" type="xs:anyURI" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType mixed="false" name="ProvisionalActionStatementType">
<xs:complexContent mixed="false">

117

<xs:extension base="samla:StatementAbstractType">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="pplc:ProvisionalAction" />
</Xs:sequence>
<xs:attribute name="EvidenceId" type="xs:anyURI" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="ProvisionalAction" type="pplc:ProvisionalActionType" />
<xs:complexType name="ProvisionalActionType">
<xs:complexContent>
<xs:extension base="ppl:ProvisionalActionType">
<xs:attribute name="EvidenceId" type="xs:anyURI" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType mixed="false" name="AttributeStatementType">
<xs:complexContent mixed="false">
<xs:extension base="samla:AttributeStatementType">
<xs:attribute name="EvidenceId" type="xs:anyURI" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType mixed="false" name="AttributeType">
<xs:complexContent mixed="false">
<xs:extension base="samla:AttributeType">
<xs:attribute name="StickyPolicyId" type="xs:anyURI" />
<xs:attribute name="EvidenceId" type="xs:anyURI" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l-- -=>

<xs:complexType mixed="false" name="EvidenceStatementType">
<xs:complexContent mixed="false">
<xs:extension base="samla:StatementAbstractType">
<Xs:sequence>
<xs:element maxOccurs="unbounded" ref="pplc:Evidence"
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l-- -->

<xs:element name="Evidence" type="pplc:EvidenceType" />
<xs:complexType name="EvidenceType">

<xs:sequence maxOccurs="unbounded" minOccurs="0">

<xs:any maxOccurs="unbounded" minOccurs="0" namespace="##any"
processContents="lax" />

</Xs:sequence>

<xs:attribute name="ID" type="xs:anyURI" use="optional" />
</xs:complexType>
<l-- -

<xs:complexType mixed="false" name="StickyPolicyStatementType">
<xs:complexContent mixed="false">
<xs:extension base="samla:StatementAbstractType">
<Xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="sp:Attribute" />
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l-- -

<xs:element name="PPLPolicyStatement" type="pplc:PPLPolicyStatementType" />
<xs:complexType name="PPLPolicyStatementType">
<xs:complexContent>
<xs:extension base="samla:StatementAbstractType">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="ppl:Policy" />
<xs:element ref="ppl:PolicySet" />
</xs:choice>

118

</xs:extension>
</xs:complexContent>
</xs:complexType>
<l-- -=>

<xs:element name="Claim" type="pplc:ClaimType" />
<xs:complexType name="ClaimType">
<Xs:sequence>
<xs:element ref="samla:Assertion" minOccurs="0"
maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
<l-- -->

<xs:element name="Claims" type="pplc:ClaimsType" />
<xs:complexType name="ClaimsType">
<Xs:sequence>
<xs:element ref="pplc:Claim" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

<xs:element name="Response" type="pplc:ResponseType" />
<xs:complexType mixed="false" name="ResponseType">
<xs:complexContent mixed="false">
<xs:extension base="samla:StatementAbstractType">
<Xs:sequence>
<xs:element ref="pplc:MissingPII" minOccurs="0"/>
<xs:element ref="pplc:AccessPII" minOccurs="0"/>
<xs:element ref="pplc:DeneyPII" minOccurs="0"/>
<xs:element ref="pplc:MissingCredential”
minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="Decision" type="pplc:Decision"
use="required" />
</xs:extension>
</xs:complexContent>

</xs:complexType>
<l-- -

<Xs:simpleType name="Decision">
<xs:restriction base="xs:string">
<xs:enumeration value="Access" />
<xs:enumeration value="Deny" />
<xs:enumeration value="Indeterminate" />
</Xs:restriction>
</xs:simpleType>

<xs:element name="MissingPII" type="pplc:ListPIIType" />
<xs:element name="AccessPII" type="pplc:ListPIIType" />
<xs:element name="DeneyPII" type="pplc:ListPIIType" />
<xs:element name="MissingCredential" type="pplc:ListPIIType" />

<xs:complexType mixed="false" name="ListPIIType">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="value" type="xs:string"/>
</Xs:sequence>
</xs:complexType>

</xs:schema>

8.1.3 PrimeLife Credenatial Handling Schema

This schema specifies how credential requirememntlshbe declared

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:cr="http://www.primelife.eu/ppl/credential” xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.primelife.eu/ppl/credential” elementFormDefault="qualified"
attributeFormDefault="unqualified">

119

<Xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemalLocation="access_control-xacml-2.0-policy-schema-os.xsd"/>
<!-- CredentialRequirements extension (note: MatchValueType is modeled on
xacml:AttributeValueType) -->
<xs:complexType name="MatchValueType" mixed="true">
<XS:sequence>
<Xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="MatchId" type="xs:anyURI" use="required"/>
<xs:attribute name="DataType" type="xs:anyURI" use="required"/>
<xs:attribute name="Disclose" type="cr:DiscloseType" use="optional”
default="yes"/>
</xs:complexType>
<xs:complexType name="AttributeMatchAnyOfType">
<xs:sequence maxOccurs="unbounded">
<xs:choice>
<xs:element ref="cr:MatchValue" minOccurs="0"/>
<xs:element ref="cr:UndisclosedExpression” minOccurs="0"/>
</xs:choice>
</Xs:sequence>
<xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>
<xs:attribute name="Disclose" type="cr:DiscloseType" use="optional"/>
</xs:complexType>
<xs:complexType name="CredentialType">
<xs:sequence maxOccurs="unbounded">
<xs:choice>
<xs:element ref="cr:AttributeMatchAnyOf" minOccurs="0"/>
<xs:element ref="cr:UndisclosedExpression” minOccurs="0"/>
</xs:choice>
</Xs:sequence>
<xs:attribute name="CredentialId" type="xs:anyURI" use="required"/>
</xs:complexType>
<xs:complexType name="CredentialRequirementsType">
<XS:sequence>
<xs:element ref="cr:Credential” maxOccurs="unbounded"/>
<xs:element ref="cr:Condition" minOccurs="0"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="ConditionType">
<XS:sequence>
<xs:element ref="xacml:Expression"/>
</Xs:sequence>
</xs:complexType>
<xs:element name="MatchValue" type="cr:MatchValueType"/>
<xs:element name="AttributeMatchAnyOf" type="cr:AttributeMatchAnyOfType"/>
<xs:element name="Credential” type="cr:CredentialType"/>
<xs:element name="CredentialRequirements" type="cr:CredentialRequirementsType"/>
<xs:element name="Condition" type="cr:ConditionType"/>

<Xs:simpleType name="DiscloseType">
<xs:restriction base="xs:string">
<xs:enumeration value="yes"/>
<Xs:enumeration value="no"/>
<xs:enumeration value="attributes-only"/>
</Xs:restriction>
</xs:simpleType>
<xs:complexType name="UndisclosedExpressionType" mixed="false">
<xs:complexContent mixed="false">
<xs:extension base="xacml:ExpressionType">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="AttributeId" type="xs:anyURI"/>
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="CredentialAttributeDesignatorType" mixed="false">
<xs:complexContent mixed="false">
<xs:extension base="xacml:ExpressionType">
<xs:attribute name="CredentialId" type="xs:anyURI"
use="required"/>
<xs:attribute name="AttributeId" type="xs:anyURI"
use="required"/>

120

<xs:attribute name="DataType" type="xs:anyURI"
use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="UndisclosedExpression" type="cr:UndisclosedExpressionType"
substitutionGroup="xacml:Expression"/>
<xs:element name="CredentialAttributeDesignator"
type="cr:CredentialAttributeDesignatorType" substitutionGroup="xacml:Expression"/>
<!-- Redefined XACML elements -->
<xs:complexType name="PrimelifeApplyType" mixed="false">
<xs:complexContent mixed="false">
<xs:extension base="xacml:ApplyType">
<xs:attribute name="Disclose" type="cr:DiscloseType"
use="optional" default="yes"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Apply
substitutionGroup="xacml:Apply"/>
</Xs:schema>

type="cr:PrimelifeApplyType"

8.1.4 PrimeLife Obligation Schema

This schema specifies how triggers and actionsel® obligation should be formatted.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://www.primelife.eu/ppl/obligation”

elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns="http://www.primelife.eu/ppl/obligation”
xmlns:ob="http://www.primelife.eu/ppl/obligation”
xmlns:ppl="http://www.primelife.eu/ppl"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:import namespace="http://www.primelife.eu/ppl" schemalLocation="PrimelLifeSchema.xsd" />
<xs:attribute name="match" type="xs:boolean" default="true"/>

<!-- List of Obligations -->
<xs:element name="ObligationsSet" type="ob:0ObligationsSet"/>
<xs:complexType name="ObligationsSet">
<Xs:sequence>
<xs:element ref="ob:0Obligation" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
<xs:attribute name="infinit" type="xs:boolean" default="false" use="optional"/>
<xs:attribute name="mismatchId" type="xs:string" use="optional"/>
<xs:attribute name="elementId" type="xs:string" use="optional” />
</xs:complexType>

<!-- Obligation -->
<xs:element name="Obligation" type="ob:Obligation" />
<xs:complexType name="Obligation">
<Xs:sequence>
<xs:element ref="ob:TriggersSet" minOccurs="1" maxOccurs="1" />
<xs:element ref="ob:Action" minOccurs="1" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
<xs:attribute name="mismatchId" type="xs:string" use="optional"/>
<xs:attribute name="elementId" type="xs:string" use="optional" />
</xs:complexType>

<!-- List of Triggers -->
<xs:element name="TriggersSet" type="ob:TriggersSet" />
<xs:complexType name="TriggersSet">
<Xxs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element ref="ob:Trigger" />
</Xs:sequence>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>

121

<xs:attribute name="mismatchId" type="xs:string" use="optional"/>
<xs:attribute name="elementId" type="xs:string" use="optional" />
</xs:complexType>

<!-- Trigger (abstract) -->
<xs:element name="Trigger" abstract="true" type="ob:Trigger" />
<xs:complexType name="Trigger">
<Xs:sequence/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
<xs:attribute name="mismatchId" type="xs:string" use="optional"/>
<xs:attribute name="elementId" type="xs:string" use="optional” />
</xs:complexType>

<!-- Action (abstract) -->
<xs:element name="Action" abstract="true" type="ob:Action"/>
<xs:complexType name="Action">
<Xs:sequence/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
<xs:attribute name="mismatchId" type="xs:string" use="optional"/>
<xs:attribute name="elementId" type="xs:string" use="optional” />
</xs:complexType>

<!-- TriggerAtTime -->
<xs:element name="TriggerAtTime" type="ob:TriggerAtTime" substitutionGroup="ob:Trigger"/>
<xs:complexType name="TriggerAtTime">
<xs:complexContent>
<xs:extension base="ob:Trigger">
<XS:sequence>
<xs:element name="Start" type="ob:DateAndTime" minOccurs="1" maxOccurs="1"/>
<xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- DateAndTime -->
<xs:element name="DateAndTime" type="DateAndTime" />
<xs:element name="Duration" type="Duration" />

<xs:complexType name="DateAndTime">
<xs:choice>
<xs:element name="DateAndTime" type="xs:dateTime" minOccurs="1" maxOccurs="1" />
<xs:element name="StartNow" />
</xs:choice>
<xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
<xs:attribute name="mismatchId" type="xs:string" use="optional"/>
<xs:attribute name="elementId" type="xs:string" use="optional” />
</xs:complexType>

<!-- Duration -->
<xs:complexType name="Duration">
<Xs:sequence>
<xs:element name="Duration" type="xs:duration" minOccurs="1" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="matching" type="xs:boolean" default="true" use="optional"/>
<xs:attribute name="mismatchId" type="xs:string" use="optional"/>
<xs:attribute name="elementId" type="xs:string" use="optional" />
</xs:complexType>

<!-- TriggerPeriodic -->
<xs:element name="TriggerPeriodic" type="ob:TriggerPeriodic"
substitutionGroup="ob:Trigger"/>
<xs:complexType name="TriggerPeriodic">
<xs:complexContent>
<xs:extension base="ob:Trigger">
<XS:sequence>
<xs:element name="Start" type="ob:DateAndTime" minOccurs="1" maxOccurs="1" />
<xs:element name="End" type="ob:DateAndTime" minOccurs="1" maxOccurs="1" />
<xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
<xs:element name="Period" type="ob:Duration” minOccurs="1" maxOccurs="1" />
</xs:sequence>

122

</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- TriggerPersonalDataAccessedForPurpose -->
<xs:element name="TriggerPersonalDataAccessedForPurpose"
type="ob:TriggerPersonalDataAccessedForPurpose"” substitutionGroup="ob:Trigger"/>
<xs:complexType name="TriggerPersonalDataAccessedForPurpose">
<xs:complexContent>
<xs:extension base="ob:Trigger">
<XS:sequence>
<xs:element ref="ppl:Purpose” minOccurs="0" maxOccurs="unbounded" />
<xs:element name="MaxDelay" type="ob:Duration” minOccurs="1" maxOccurs="1" />
</xs:sequence>
</Xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- TriggerPersonalDataDeleted -->
<xs:element name="TriggerPersonalDataDeleted" type="ob:TriggerPersonalDataDeleted"
substitutionGroup="ob:Trigger"/>
<xs:complexType name="TriggerPersonalDataDeleted">
<xs:complexContent>
<xs:extension base="ob:Trigger">
<Xs:sequence>
<xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- TriggerPersonalDataSent -->
<xs:element name="TriggerPersonalDataSent" type="ob:TriggerPersonalDataSent"
substitutionGroup="ob:Trigger"/>
<xs:complexType name="TriggerPersonalDataSent">
<xs:complexContent>
<xs:extension base="ob:Trigger">
<XS:sequence>
<xs:element name="Id" type="xs:anyURI" minOccurs="1" maxOccurs="1" />
<xs:element name="MaxDelay" type="ob:Duration” minOccurs="1" maxOccurs="1" />
</xs:sequence>
</Xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- TriggerDataSubjectAccess -->
<xs:element name="TriggerDataSubjectAccess" type="ob:TriggerDataSubjectAccess"
substitutionGroup="ob:Trigger"/>
<xs:complexType name="TriggerDataSubjectAccess">
<xs:complexContent>
<xs:extension base="ob:Trigger">
<Xs:sequence>
<xs:element name="url" type="xs:anyURI" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</Xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- TriggerDatalLost -->
<xs:element name="TriggerDatalLost" type="ob:TriggerDatalost"
substitutionGroup="ob:Trigger"/>
<xs:complexType name="TriggerDatalLost">
<xs:complexContent>
<xs:extension base="ob:Trigger">
<XS:sequence>
<xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:extension>
</xs:complexContent>

123

</xs:complexType>

<!-- TriggerOnViolation -->
<xs:element name="TriggerOnViolation" type="ob:TriggerOnViolation"
substitutionGroup="ob:Trigger"/>
<xs:complexType name="TriggerOnViolation">
<xs:complexContent>
<xs:extension base="ob:Trigger">
<XS:sequence>
<xs:element name="MaxDelay" type="ob:Duration" minOccurs="1" maxOccurs="1" />
<xs:element ref="ob:0Obligation" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</Xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- ActionDeletePersonalData -->
<xs:element name="ActionDeletePersonalData" type="ob:ActionDeletePersonalData"
substitutionGroup="ob:Action"/>
<xs:complexType name="ActionDeletePersonalData">
<xs:complexContent>
<xs:extension base="ob:Action">
<XS:sequence>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- ActionAnonymizePersonalData -->
<xs:element name="ActionAnonymizePersonalData" type="ob:ActionAnonymizePersonalData"
substitutionGroup="ob:Action"/>
<xs:complexType name="ActionAnonymizePersonalData">
<xs:complexContent>
<xs:extension base="ob:Action">
<XS:sequence>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- ActionNotifyDataSubject -->
<xs:element name="ActionNotifyDataSubject" type="ob:ActionNotifyDataSubject"
substitutionGroup="ob:Action"/>
<xs:complexType name="ActionNotifyDataSubject">
<xs:complexContent>
<xs:extension base="ob:Action">
<Xs:sequence>
<xs:element name="Media" type="xs:string" minOccurs="1" maxOccurs="1" />
<xs:element name="Address" type="xs:string" minOccurs="1" maxOccurs="1" />
</xs:sequence>
</Xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- ActionLog -->
<xs:element name="ActionLog" type="ob:ActionLog" substitutionGroup="ob:Action"/>
<xs:complexType name="ActionLog">
<xs:complexContent>
<xs:extension base="ob:Action">
<XS:sequence>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- ActionSecureLog -->
<xs:element name="ActionSecurelLog" type="ob:ActionSecureLog" substitutionGroup="ob:Action"/>
<xs:complexType name="ActionSecurelLog">

124

<xs:complexContent>
<xs:extension base="ob:Action">
<XS:sequence>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:schema>

8.1.5 Mismatching Schema

In order to automatically express what are les efgmthat are mismatching between the Data
controller preferences and the data subject pripatigy, we generated a XML schema describing
all the elements that could not be compatible i dlathorization and obligation policies. This
schema can be used with the Ul interface to shaiweaiser what are the differences between his
preferences and the privacy policy of the datarodlet. This information can help him to make a
decision.

8.1.5.1 Authorization Mismatch Schema

<?xml version="1.0" encoding="utf-8"?>

<xs:schema
xmlns="http://www.primelife.eu/ppl/authorization/mismatch”
xmlns:aumm="http://www.primelife.eu/ppl/authorization/mismatch”

xmlns:ppl="http://www.primelife.eu/ppl”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.primelife.eu/ppl/authorization/mismatch”
elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:import namespace="http://www.primelife.eu/ppl" schemalLocation="PrimelLifeSchema.xsd" />

<!-- Authorization Mismatch -->
<xs:element name="AuthorizationsMismatch" type="aumm:AuthorizationsMismatchType"/>
<xs:complexType name="AuthorizationsMismatchType">
<Xs:sequence>
<xs:element ref="aumm:AuthorizationsSet" minOccurs="0" maxOccurs="1" />
<xs:element ref="aumm:AuthzUseForPurpose" minOccurs="0" maxOccurs="1" />
<xs:element ref="aumm:AuthzDownstreamUsage" minOccurs="0" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="mismatchId" type="xs:ID" use="optional"/>
</xs:complexType>
<l-- -

<xs:element name="AuthorizationsSet" type="aumm:AuthorizationsSetMismatchType"/>
<xs:complexType name="AuthorizationsSetMismatchType">
<XSs:sequence>
<xs:element name="Policy" type="ppl:AuthorizationsSetType" />
<xs:element name="Preference" type="ppl:AuthorizationsSetType" />
</Xs:sequence>
<xs:attribute name="mismatchId" type="xs:ID" />
</xs:complexType>

<xs:element name="AuthzUseForPurpose" type="aumm:AuthzUseForPurposeMismatchType"/>
<xs:complexType name="AuthzUseForPurposeMismatchType">
<Xs:sequence>
<xs:element name="Policy" type="aumm:PurposelListType" />
<xs:element name="Preference" type="aumm:PurposelListType" />
</Xs:sequence>
<xs:attribute name="mismatchId" type="xs:ID" />
</xs:complexType>

125

<xs:complexType name="PurposelListType">
<Xs:sequence>
<xs:element ref="ppl:Purpose” minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
<l-- -

<xs:element name="AuthzDownstreamUsage" type="aumm:AuthzDownstreamUsageMismatchType"/>
<xs:complexType name="AuthzDownstreamUsageMismatchType">
<Xs:sequence>
<xs:element name="Policy" type="ppl:AuthorizationType"/>
<xs:element name="Preference" type="ppl:AuthorizationType" />
</Xs:sequence>
<xs:attribute name="mismatchId" type="xs:ID" />
</xs:complexType>

</Xs:schema>

8.1.5.2 Obligation Mismatching Schema

<?xml version="1.0" encoding="utf-8"?>

<xs:schema
xmlns="http://www.primelife.eu/ppl/authorization/mismatch"
xmlns:aumm="http://www.primelife.eu/ppl/authorization/mismatch"

xmlns:ppl="http://www.primelife.eu/ppl"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.primelife.eu/ppl/authorization/mismatch"
elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:import namespace="http://www.primelife.eu/ppl" schemalLocation="PrimeLifeSchema.xsd" />

<!-- Authorization Mismatch -->
<xs:element name="AuthorizationsMismatch" type="aumm:AuthorizationsMismatchType"/>
<xs:complexType name="AuthorizationsMismatchType">
<XS:sequence>
<xs:element ref="aumm:AuthorizationsSet" minOccurs="0" maxOccurs="1" />
<xs:element ref="aumm:AuthzUseForPurpose" minOccurs="0" maxOccurs="1" />
<xs:element ref="aumm:AuthzDownstreamUsage" minOccurs="0" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="mismatchId" type="xs:ID" use="optional"/>
</xs:complexType>
<l-- -

<xs:element name="AuthorizationsSet" type="aumm:AuthorizationsSetMismatchType"/>
<xs:complexType name="AuthorizationsSetMismatchType">
<Xs:sequence>
<xs:element name="Policy" type="ppl:AuthorizationsSetType" />
<xs:element name="Preference" type="ppl:AuthorizationsSetType" />
</Xs:sequence>
<xs:attribute name="mismatchId" type="xs:ID" />
</xs:complexType>

<xs:element name="AuthzUseForPurpose" type="aumm:AuthzUseForPurposeMismatchType"/>
<xs:complexType name="AuthzUseForPurposeMismatchType">
<Xs:sequence>
<xs:element name="Policy" type="aumm:PurposelListType" />
<xs:element name="Preference" type="aumm:PurposelListType" />
</Xs:sequence>
<xs:attribute name="mismatchId" type="xs:ID" />
</xs:complexType>

<xs:complexType name="PurposelListType">
<Xs:sequence>
<xs:element ref="ppl:Purpose" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

126

<l-- -

<xs:element name="AuthzDownstreamUsage" type="aumm:AuthzDownstreamUsageMismatchType"/>
<xs:complexType name="AuthzDownstreamUsageMismatchType">
<Xs:sequence>
<xs:element name="Policy" type="ppl:AuthorizationType"/>
<xs:element name="Preference" type="ppl:AuthorizationType" />
</Xs:sequence>
<xs:attribute name="mismatchId" type="xs:ID" />
</xs:complexType>

</Xs:schema>

8.1.6 Sticky Policy Schema

The sticky policy schema inherits from the datadhiag schema.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.primelife.eu/ppl/stickypolicy"
xmlns="http://www.primelife.eu/ppl/stickypolicy"
xmlns:sp="http://www.primelife.eu/ppl/stickypolicy"
xmlns:ppl="http://www.primelife.eu/ppl"
xmlns:ob="http://www.primelife.eu/ppl/obligation”
xmlns:obmm="http://www.primelife.eu/ppl/obligation/mismatch"
xmlns:aumm="http://www.primelife.eu/ppl/authorization/mismatch"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<Xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemalLocation="access_control-xacml-2.0-policy-schema-os.xsd"/>

<Xs:import namespace="http://www.primelife.eu/ppl"
schemalLocation="PrimeLifeSchema.xsd"/>

<Xs:import namespace="http://www.primelife.eu/ppl/obligation”
schemalLocation="PrimeLifeObligation.xsd"/>

<Xs:import namespace="http://www.primelife.eu/ppl/obligation/mismatch"
schemalLocation="PrimeLifeObligationMismatch.xsd"/>

<Xs:import namespace="http://www.primelife.eu/ppl/authorization/mismatch"
schemaLocation="PrimeLifeAuthorizationMismatch.xsd"/>

<xs:element name="StickyPolicy" type="sp:StickyPolicy"/>
<xs:complexType name="StickyPolicy">
<Xs:sequence>
<xs:element ref="sp:Attribute" maxOccurs="unbounded"/>

</Xs:sequence>
<xs:attribute name="matching" type="xs:boolean" default="true"
use="optional"/>
</xs:complexType>

<xs:element name="Attribute" type="sp:AttributeType"/>
<xs:complexType name="AttributeType">
<Xs:sequence>
<xs:element ref="ppl:AuthorizationsSet"/>
<xs:element ref="ob:0ObligationsSet"/>
<xs:element ref="sp:Mismatches" minOccurs="0" maxOccurs="1" />
<!-- «<xs:element ref="obmm:0ObligationsSet" minOccurs="0"/> -->

</Xs:sequence>
<xs:attribute name="AttributeURI" type="xs:anyURI" use="optional"/>
<xs:attribute name="matching" type="xs:boolean" default="true"
use="optional"/>
<xs:attribute name="ID" type="xs:anyURI" use="optional"/>
</xs:complexType>

<xs:element name="Mismatches" type="sp:MismatchesType"/>

<xs:complexType name="MismatchesType">
<Xs:sequence>

127

<xs:element ref="aumm:AuthorizationsMismatch” minOccurs="0"/>
<xs:element name="ObligationsMismatch" type="obmm:Mismatches"
minOccurs="0"/>
</Xs:sequence>
</xs:complexType>

</xs:schema>

8.2 Example Policies

This appendinx section presents some emaples afigmland preferences related what was
defined in this document. These exemples are \@itpared to the XML shcema described
before and can be useful for any developer thatsvantest or implement the PrimeLife policy
engine.

8.2.1 XACML

This example is presenting the policy that is seguthe access to the resources that target
namespace attribute (urn:oasis:names:tc:xacmleb@urce:target-namespace) has a value
urn:example:med:schemas:record. Further the singk inside the policy is permitting read
access to the subjects that role (urn:oasis:nacnescml:2.0:example:attribute:role) attribute is
equal to "head physician”.

<Policy PolicyId =" Poll " RuleCombiningAlgId =" urn:oasis:names:tc:xacml:1 .0:
rule - combining - algorithm:permit - overrides " >
<Target >
<Resources >
<Resource >
< ResourceMatch MatchId =" urn:oasis:names:tc:xacml:1 .0 :function:stringmatch ">
< AttributeValue DataType =" http: // www .w3.org /2001/ XMLSchema # string ">
urn:example:med:schemas:record </ Attributevalue >
< ResourceAttributeDesignator
AttributeId =" urn:oasis:names:tc:xacml:1 .0 :resource:target - namespace
DataType =" http: // www .w3.org /2001/ XMLSchema # string "/>
</ ResourceMatch >
</ Resource >
</ Resources >
</ Target >
<Rule Ruleld =" ReadRule " Effect =" Permit ">
<Target >
<Subjects >
<Subject >
< SubjectMatch MatchId =" urn:oasis:names:tc:xacml:1 .0 :function:string - equal ">
< AttributeValue DataType =" http: // www.w3. org /2001/ XMLSchema # string ">
head physician </ AttributeValue >
< SubjectAttributeDesignator
AttributeId =" urn:oasis:names:tc:xacml:2 .0 :example:attribute:role "
DataType =" http: // www .w3.org /2001/ XMLSchema # string "/>
</ SubjectMatch >
</ Subject >
</ Subjects >

<Actions >
<Action >
< ActionMatch
MatchId =" urn:oasis:names:tc:xacml:1 .0 :function:string - equal ">

< Attributevalue

DataType =" http: // www .w3.org /2001/ XMLSchema # string ">

read </ xacml:AttributeValue >

< ActionAttributeDesignator

DataType =" http: // www .w3.org /2001/ XMLSchema # string "
AttributeId =" urn:oasis:names:tc:xacml:1 .0 :action:action -id"/>
</ ActionMatch >

128

</ Action >
</ Actions >
</ Target >
</ Rule >
</ Policy >

8.2.2 Data Controller to Data Subject Claim

In the example below we define a claim containimg Il request from the data controller to the
data subject. Claims contain the list of requirell, Ehe identity of the data controller
http://store.example.comnd the list of data handling policies stating hbe collected Plis will
be treated.

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is a sample SAML assertion that store.example.com sends back to
the data subject after the first access attempt. It contains the
policy for accessing the subscription page at store.example.com, plus
the information about store.example.com itself (ID and privacy seals).
-->

<samla:Assertion xmlns="urn:oasis:names:tc:SAML:2.0@:assertion"
xmlns:cl="http://www.primelife.eu/ppl/claims"”
xmlns:cr="http://www.primelife.eu/ppl/credential™
xmlns:ob="http://www.primelife.eu/ppl/obligation”
xmlns:ppl="http://www.primelife.eu/ppl"
xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:samla="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Version="2.0" ID="assertionlaf6c003518cd91ba8832c" IssueInstant="2010-08-31T23:59:59">

<samla:Issuer>http://store.example.com</samla:Issuer>

<samla:AttributeStatement>
<samla:Attribute Name="http://www.primelife.eu/ppl/DataControllerID">
<samla:AttributeValue>http://store.example.com</samla:AttributeValue>
</samla:Attribute>

<samla:Attribute
Name="http://www.european-privacy-seal.eu/hasEuropeanPrivacySeal">
<samla:AttributeValue>true</samla:AttributeValue>
</samla:Attribute>

</samla:AttributeStatement>

<samla:Statement xsi:type="cl:PPLPolicyStatementType">
<ppl:Policy>
<ppl:DataHandlingPolicy PolicyId="#DHP1">
<ppl:AuthorizationsSet>
<ppl:AuthzUseForPurpose>

<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/individual-analysis</ppl:Purpose>
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pv1l/admin</ppl:Purpose>
<ppl:Purpose>http://www.w3.0rg/2006/01/P3Pv1l/marketing</ppl:Purpose>
</ppl:AuthzUseForPurpose>
<ppl:AuthzDownstreamUsage allowed="false" />

</ppl:AuthorizationsSet>

<ob:0ObligationsSet>

<!-- Obligation to log within 5 minutes use of PII for purpose "contact"
within 15 minutes use of PII for purpose "delivery"
within 30 seconds use of PII for purpose "pseudo-analysis" -->

<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/contact</ppl:Purpose>

129

<ob:MaxDelay>

<ob:Duration>

POYOMODTOH5MOS

</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>

<ob:TriggerPersonalDataAccessedForPurpose

xmlns="http://www.primelife.eu/PPL/obligation">

<ppl:Purpose>http://www.w3.0rg/2006/01/P3Pvlil/delivery</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOH15MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">

<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/pseudo-analysis</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOHOM30S
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
</ob:TriggersSet>
<ob:ActionLog/>
</ob:0bligation>
<!-- Obligation to delete collected PII within 5 days -->
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerAtTime>
<ob:Start>
<ob:StartNow/>
</ob:Start>
<ob:MaxDelay>
<ob:Duration>
POYOM5DTOHOMOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerAtTime>
</ob:TriggersSet>
<ob:ActionDeletePersonalData/>
/ob:0Obligation>
</ob:0ObligationsSet>

</ppl:DataHandlingPolicy>

<ppl:DataHandlingPolicy PolicyId="#DHP2">
<ppl:AuthorizationsSet>
<ppl:AuthzUseForPurpose>

<ppl:Purpose>http://www.w3.0rg/2006/01/P3Pv11l/payment</ppl:Purpose>
</ppl:AuthzUseForPurpose>
<ppl:AuthzDownstreamUsage allowed="true" />
</ppl:AuthorizationsSet>

<ob:0ObligationsSet>
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">

<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/contact</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOH5MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">

130

<ppl:Purpose>http://www.w3.0rg/2006/01/P3Pvlil/delivery</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOH15MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">

<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/pseudo-analysis</ppl:Purpose>

<ob:MaxDelay>

<ob:Duration>

POYOMODTOHOM30S

</ob:Duration>

</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>

</ob:TriggersSet>
<ob:ActionLog/>

</ob:0Obligation>

<!-- Obligation to delete collected PII within 5 days -->
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerAtTime>
<ob:Start>
<ob:StartNow/>
</ob:Start>
<ob:MaxDelay>
<ob:Duration>
POYOM10DTOHOMOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerAtTime>
</ob:TriggersSet>
<ob:ActionDeletePersonalData/>
</ob:0Obligation>
</ob:0ObligationsSet>
</ppl:DataHandlingPolicy>

<ppl:DataHandlingPolicy PolicyId="#DHP3">
<ppl:AuthorizationsSet>
<ppl:AuthzUseForPurpose>
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/individual-
analysis</ppl:Purpose>
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pv1l/admin</ppl:Purpose>
<ppl:Purpose>http://www.w3.0rg/2006/01/P3Pv1l/marketing</ppl:Purpose>
</ppl:AuthzUseForPurpose>

<ppl:AuthzDownstreamUsage allowed="true"/>
</ppl:AuthorizationsSet>

<ob:0bligationsSet>
<l--

Obligation to log (within 5 minutes) use of PII for purpose "contact" and
"pseudo-analysis”

-->

<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerPersonalDataAccessedForPurpose

xmlns="http://www.primelife.eu/PPL/obligation">

<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/contact</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOH5MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">

<ppl:Purpose>http://www.w3.0rg/2006/01/P3Pvll/delivery</ppl:Purpose>

131

<ob:MaxDelay>
<ob:Duration>
POYOMODTOH15MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/pseudo-analysis</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOHOM30S
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
</ob:TriggersSet>
<ob:ActionLog/>
</ob:0bligation>

<!-- Obligation to delete collected PII within 7 days -->
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerAtTime>
<ob:Start>
<ob:StartNow/>
</ob:Start>
<ob:MaxDelay>
<ob:Duration>
POYOM7DTOHOMOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerAtTime>
</ob:TriggersSet>
<ob:ActionDeletePersonalData/>
</ob:0Obligation>
</ob:0bligationsSet>

</ppl:DataHandlingPolicy>

<ppl:ProvisionalActions>
<ppl:ProvisionalAction
ActionId="http://www.primelife.eu/ppl/RevealUnderDHP">
<xacml:AttributeValue
DataType="xs:anyURI">http://www.w3.0rg/2006/vcard/ns#email</xacml:AttributeValue>
<xacml:AttributeValue
DataType="xs:anyURI">#DHP3</xacml:AttributeValue>
</ppl:ProvisionalAction>

<ppl:ProvisionalAction
ActionId="http://www.primelife.eu/ppl/RevealUnderDHP">
<xacml:AttributeValue
DataType="xs:anyURI">http://www.example.org/names#display_name</xacml:AttributeValue>
<xacml:AttributeValue
DataType="xs:anyURI">#DHP1</xacml:AttributeValue>
</ppl:ProvisionalAction>

<ppl:ProvisionalAction
ActionId="http://www.primelife.eu/ppl/RevealUnderDHP">
<xacml:AttributeValue
DataType="xs:anyURI">http://www.example.org/names#user_name</xacml:AttributeValue>
<xacml:AttributeValue
DataType="xs:anyURI">#DHP1</xacml:AttributeValue>
</ppl:ProvisionalAction>
</ppl:ProvisionalActions>

</ppl:Policy>

</samla:Statement>
</samla:Assertion>

132

8.2.3 Obligations

This section presents the policies, preferences,stinky policies of each example presented in
Sect. 2.4.2.5. It is important to notes that oy bbligation part of PPL policies are presented
here as consumed and generated by the OME and OEE.

Sticky policies presented in this section are “datenl” sticky policies with additional data used
by the user interface. Those annotations do neelédze user’s trust domain.

8.2.3.1 Example 1 (matching)

Use of Pl for Purpose X, Y will log within 5 Mineg + Delete PII within 7 days

Files of this example, namely “preference.xml”, fipp.xml” and “matchresults.xml”, are
installed to “%PL_OBL_Samples%\DocExample 1 - MatghObligations”.

8.2.3.1.1 Preference-side obligations set

<?xml version="1.0" encoding="utf-8" ?>
<!-- This is the obligation part of a PPL pref -->

<ob:0ObligationsSet xmlns:ob="http://www.primelife.eu/ppl/obligation”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ppl="http://www.primelife.eu/ppl”
xsi:schemaLocation="http://www.primelife.eu/PPL/obligation
file:./PrimeLifeObligation.xsd">

<!-- Obligation to log (within 5 minutes) use of PII for purpose "contact" and "pseudo-
analysis" -->
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/contact</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOH5MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/pseudo-analysis</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOH5MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
</ob:TriggersSet>
<ob:ActionLog/>
</ob:0Obligation>

<!-- Obligation to delete collected PII within 7 days -->
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerAtTime>
<ob:Start>
<ob:StartNow/>
</ob:Start>
<ob:MaxDelay elementId="myIdA">
<ob:Duration>
POYOM7DTOHOMOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerAtTime>

133

</ob:TriggersSet>
<ob:ActionDeletePersonalData/>
</ob:0Obligation>

</ob:0ObligationsSet>

8.2.3.1.2 Policy-side obligations set

<?xml version="1.0" encoding="utf-8" ?>
<!-- This is the obligation part of a PPL policy -->

<ob:0bligationsSet xmlns:ob="http://www.primelife.eu/ppl/obligation”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ppl="http://www.primelife.eu/ppl”
xsi:schemaLocation="http://www.primelife.eu/PPL/obligation
file:./PrimeLifeObligation.xsd">

<!-- Obligation to log within 5 minutes use of PII for purpose "contact"
within 15 minutes use of PII for purpose "delivery"
within 30 seconds use of PII for purpose "pseudo-analysis"
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/contact</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOHS5MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">
<ppl:Purpose>http://www.w3.0rg/2006/01/P3Pv1l/delivery</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOH15MOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
<ob:TriggerPersonalDataAccessedForPurpose
xmlns="http://www.primelife.eu/PPL/obligation">
<ppl:Purpose>http://www.w3.0rg/2002/01/P3Pvl/pseudo-analysis</ppl:Purpose>
<ob:MaxDelay>
<ob:Duration>
POYOMODTOHOM30S
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerPersonalDataAccessedForPurpose>
</ob:TriggersSet>
<ob:ActionLog/>
</ob:0Obligation>

<!-- Obligation to delete collected PII within 5 days -->
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerAtTime>
<ob:Start>
<ob:StartNow/>
</ob:Start>
<ob:MaxDelay elementId="myId1i">
<ob:Duration>
POYOM5DTOHOMOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerAtTime>
</ob:TriggersSet>
<ob:ActionDeletePersonalData/>
</ob:0Obligation>

</ob:0ObligationsSet>

134

8.2.3.1.3 Result (Sticky Policy)

<?xml version="1.0"?>
<ObligationsSet xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.primelife.eu/ppl/obligation/mismatch">
<ObligationsSet xmlns="http://www.primelife.eu/ppl/obligation">
<Obligation>
<TriggersSet>
<TriggerPersonalDataAccessedForPurpose>
<Purpose xmlns="http://www.primelife.eu/ppl">
http://www.w3.0rg/2002/01/P3Pv1l/contact</Purpose>
<MaxDelay>
<Duration>POYOMODTOH5MOS</Duration>
</MaxDelay>
</TriggerPersonalDataAccessedForPurpose>
</TriggersSet>
<ActionLog />
</Obligation>
<Obligation>
<TriggersSet>
<TriggerPersonalDataAccessedForPurpose>
<Purpose xmlns="http://www.primelife.eu/ppl">
http://www.w3.0rg/2002/01/P3Pvl/pseudo-analysis</Purpose>
<MaxDelay>
<Duration>POYOMODTOHOM30S< /Duration>
</MaxDelay>
</TriggerPersonalDataAccessedForPurpose>
</TriggersSet>
<ActionLog />
</Obligation>
<Obligation>
<TriggersSet>
<TriggerAtTime>
<Start>
<DateAndTime>2010-08-19T11:53:00.8824003+02:00</DateAndTime>
</Start>
<MaxDelay>
<Duration>P@YOM5DTOHOMOS</Duration>
</MaxDelay>
</TriggerAtTime>
</TriggersSet>
<ActionDeletePersonalData />
</Obligation>
</ObligationsSet>
</0ObligationsSet>

8.2.3.2 Example 2 (mismatching)

Files of this example, namely “preference.xml”, fipp.xml" and “matchresults.xml”, are
installed to “%PL_OBL_Samples%\DocExample 2 - Migthang Obligations”

8.2.3.2.1 Preference-side obligations set

Same asin7.1.1.1..

8.2.3.2.2 Policy-side obligations set

First obligation: same as in 7.1.1.2.

Second obligation:
<!-- Obligation to delete collected PII within 10 days -->
<ob:0Obligation>
<ob:TriggersSet>
<ob:TriggerAtTime>
<ob:Start>
<ob:StartNow/>

135

</ob:Start>
<ob:MaxDelay elementId="myId1i">
<ob:Duration>
POYOM10DTOHOMOS
</ob:Duration>
</ob:MaxDelay>
</ob:TriggerAtTime>
</ob:TriggersSet>
<ob:ActionDeletePersonalData/>
</ob:0Obligation>

8.2.3.2.3 Result (Sticky Policy)

<?xml version="1.0"?>
<ObligationsSet xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" matching="false"
xmlns="http://www.primelife.eu/ppl/obligation/mismatch">
<ObligationsSet xmlns="http://www.primelife.eu/ppl/obligation">
<Obligation>
<TriggersSet>
<TriggerPersonalDataAccessedForPurpose>
<Purpose xmlns="http://www.primelife.eu/ppl">
http://www.w3.0rg/2002/01/P3Pvl/contact</Purpose>
<MaxDelay>
<Duration>P@YOMODTOH5MOS</Duration>
</MaxDelay>
</TriggerPersonalDataAccessedForPurpose>
</TriggersSet>
<ActionLog />
</Obligation>
<Obligation>
<TriggersSet>
<TriggerPersonalDataAccessedForPurpose>
<Purpose xmlns="http://www.primelife.eu/ppl">
http://www.w3.0rg/2002/01/P3Pvl/pseudo-analysis</Purpose>
<MaxDelay>
<Duration>P@YOMODTOHOM30S</Duration>
</MaxDelay>
</TriggerPersonalDataAccessedForPurpose>
</TriggersSet>
<ActionLog />
</Obligation>
<Obligation matching="false">
<TriggersSet matching="false">
<TriggerAtTime matching="false">
<Start>
<DateAndTime>2010-08-19T11:59:25.1098192+02:00</DateAndTime>
</Start>
<MaxDelay mismatchId="mismatchId_4" matching="false">
<Duration>POYOM10DTOHOMOS< /Duration>
</MaxDelay>
</TriggerAtTime>
</TriggersSet>
<ActionDeletePersonalData />
</Obligation>
</ObligationsSet>
<Mismatches>
<Mismatch mismatchId="mismatchId_4">
<Similarity>@.5714285714285714</Similarity>
<Preference elementId="myIdA">
<Duration xmlns="http://www.primelife.eu/ppl/obligation">
<Duration>P@YOM7DTOHOMOS< /Duration>
</Duration>
</Preference>
<Policy elementId="myId1">
<Duration xmlns="http://www.primelife.eu/ppl/obligation">
<Duration>P@YOM1ODTOHOMOS< /Duration>
</Duration>
</Policy>
</Mismatch>
</Mismatches>
</ObligationsSet>

136

137

References

[ACDS08] C.A. Ardagna, M. Cremonini, S. De Capitatii Vimercati, and P. Samarati. A
privacy-aware access control system. Journal of @len Security, 16(4):369-392,
2008.

[ACK09] C.A. Ardagna, J. Camenisch, M. Kohlwei$®, Leenes, G. Neven, B. Priem, P.
Samarati, D. Sommer, and M. Verdicchio. Exploitieryptography for Journal of
privacy-enhanced access control: A result of théMERproject. Computer Security,
20009. (to appear).

[ACP11] C. Ardagna, S. De Capitani di Vimercati,F&raboschi, E. Pedrini, P. Samarati, and
M. Verdicchio, "Expressive and Deployable Accesi@id in Open Web Service
Applications,” in IEEE Transactions on Service Commy (TSC), 2011

[Agrawal] Rakesh Agrawal, Jerry Kiernan, Ramakremn Srikant, and Yirong Xu.
Implementing P3P using database technology. In dedings of the 19th
International Conference on Data Engineering, M&@®:3.

[AHKSO02] P. Ashley, S. Hada, G. Karjoth, and M. 8oter. E-P3P privacy policies and privacy
authorization. In Proc. of the ACM workshop on Rdy in the Electronic Society
(WPES 2002), Washington, DC, USA, November 2002.

[Ali] M. Ali, L. Bussard, and U. Pinsdorf.: Obligah Language and Framework to Enable
Privacy-aware SOA. To appear in DPM'09: workshoara Privacy Management
(2009).

[Ardagna] Ardagna, C.A., Cremonini, M., De CapitdnVimercati, S., Samarati, P.: A privacy-
aware access control system. J. Comput. Secur) (81@8) 369-397

[Art.29 Opinion 100 Annex] Article 29 Working PartyOpinion 100: Annex, accessed 10
December 2008.
http://ec.europa.eu/jhustice _home/fsj/privacy/depsiocs/2004/wp100a_en.pdf

[Art.29 Opinion 100] Article 29 Working Party, Opam 100: Opinion on More Harmonised
Information Provisions, accessed 10 December 2008.
http://ec.europa.eu/justice _home/fsj/privacy/dogsfacs/2004/wp100_en.pdf

[Art.29 Opinion 136] Article 29 Working Party, Opam 136: Opinion on the concept of personal
data, accessed 10 December 2008.
http://ec.europa.eu/justice _home/fsj/privacy/dogsfecs/2007/wp136_en.pdf

[ATO2] A. Arsenault and S. Turner. Internet x.508bpic key infrastructure: Roadmap.
Internet Draft, Internet Engineering Task Force)20

[BCCO5] E. F. Brickell, J. Camenisch, and L. ChBirect anonymous attestation. In Proc. of
the 11th ACM Conference on Computer and CommurminatSecurity (CCS 2005),
Alexandria, VA, November 2005.

[BCS05] M. Backes, J. Camenisch, and D. Sommer.njmmmus yet accountable access
control. In Proc. of the 2005 ACM Workshop on Pdyan the Electronic Society,
pages 40-46, ACM New York, NY, USA, 2005.

[BFIK98] M. Blaze, J. Feigenbaum, J. loannidis, aAd. Keromytis. The role of trust
management in distributed systems security. Seloteenet Programming: Issues in
Distributed and Mobile Object Systems, 1998.

[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy. Déedimed trust management. In Proc. of
1996 IEEE Symposium on Security and Privacy, Oakl&#A, USA, May 1996.

[Boag] S. Boag, D. Chamberlin, M. F. FernandezFDrescu, J. Robie, J. Simeon, and M.
Stefanescu, editors. XQuery 1.0: An XML Query Laage. W3C Working Draft,
April 2002.

139

[BS02] P. Bonatti and P. Samarati. A unified fraroekv for regulating access and
information release on the web. Journal of Comp8&aurity, 10(3):241-272, 2002.

[Casassa] Casassa, M., Beato, F.: On parametrigatibh policies: Enabling privacy-aware
information lifecycle management in enterprises. Highth IEEE International
Workshop on Policies for Distributed Systems andwséeks, 2007. POLICY'07.
(June 2007) 51-55

[CDO00] J. Camenisch and I. Damgard. Verifiable gption, group encryption, and their
applications to separable group signatures andsign sharing schemes. In Proc. of
the 6th International Conference on the Theory Apdlication of Cryptology and
Information Security (ASIACRYPT 2000), Kyoto, Jap&eptember 2000.

[CFL97] Y-H. Chu, J. Feigenbaum, B. LaMacchiaResnick, and M. Strauss. Referee: Trust
management for web applications. Computer Netwarkd ISDN Systems, 29(8-
13):953-964, 1997.

[Cha85] D. Chaum. Security without identificatiofransaction systems to make big brother
obsolete. ommunications of the ACM, 28(10):10304,034ctober 1985.

[Cholvy] Cholvy, L., Garion, C.: Deriving individliabligations from collective obligations.
In AAMAS '03: Proceedings of the second internaofoint conference on
Autonomous agents and multiagent systems, New YNk, USA, ACM (2003)
962-963

[CLO1] J. Camenisch and A. Lysyanskaya. An effitigystem for non-transferable
anonymous credentials with optional anonymity reimn. In Proc. of the Advances
in Cryptology - EUROCRYPT 2001, International Caeigce on the Theory and
Application of Cryptographic Techniques, Innsbrugkstria, May 2001.

[Cra02] L.F. Cranor. Web Privacy with P3P. O'Re8lyAssociates, 2002.

[CVO02] J. Camenisch and E. Van Herreweghen. Deaigh implementation of the idemix
anonymous credential system. In Proc. of the 9tiMATbnference on Computer and
Communications Security (CCS 2002), Washingtion, DSA, November 2002.

[Damianou] Damianou, N., Dulay, N., Lupu, E., Slom#.: The ponder policy specification
language. In POLICY '01: Proceedings of the Intéomal Workshop on Policies for
Distributed Systems and Networks, London, UK, SgeirVerlag (2001) 18-38

[Directive 2002/58/EC] Directive 2002/58/EC on Ry and Electronic Communications,
accessed 10 December 2008.
http://eur-lex.europa.eu/pri/en/oj/dat/2002/I 2020120020731en00370047.pdf

[Directive 95/46/EC] Directive 95/46/EC of the Epean Parliament and of the Council on the
protection of individuals with regard to the prosieg of personal data and on the
free movement of such data, accessed 10 December08. 20
http://ec.europa.eu/justice_home/fsj/privacy/dossi8-ce/dir1995-46 partl en.pdf

[D4.3.2] Ul Prototypes: Policy Administration and reBentation - Version 2
http://www.primelife.eu/images/stories/deliveraiis3.2-
policy administration_and_presentation_ui_protosyp-public.pdf

[D5.2.3] D5.2.3 Final research report on researchext generation policies

[D5.3.2] Second Release of the PrimeLife Policy iBag
http://www.primelife.eu/images/stories/deliveralitts 3. 2-
second_release_of the_policy engine-public.pdf

[D5.3.3] D5.3.3 Final release of the policy engine

[EN99] C. Ellison. Spki requirements. Request E&mmments 2692, Internet Engineering
Task Force, 1999.

[EPAL] IBM: Enterprise privacy authorization langyea(EPAL 1.2)

[eXt05] eXtensible Access Control Markup Languag&CML) Version 2.0, February 2005.
Seehttp://docs.oasis-open.org/xacml/2.0/access coraoinl-2.0-core-spec-o0s.pdf

140

[Fin09]

[FK92]
[GDO6]
[HER]
[HIB]
[Hig09]
[Hilty]
[HYP]
[IDE]
[IE6]

[Int]
[Irwin]

[1Y05]

[JAXB]
[JSON]
[Kagal]

[Katt]

[Kojima]

[KSWO02]

[LGFOO]

[Lib]

[LMWOS5]

[Moses]

PrimeLife. Final requirements and stateto#-art for next generation policies, 2009.
https://trac.ercim.org/primelife/browser/docs/deliables/D5.1.1-
Requirements_and_state-of-the-art for next gemweragtiolicies-Final.pdf

D. Ferraiolo and R. Kuhn. Role-based acomsstrol. In Proc. of the 15th NIST-
NCSC National Computer Security Conference, 1992.

S. Gevers and B. De Decker. Automating pryéiendly information disclosure.
Technical Report CW441, K.U. Leuven, Dept. of Cotepiscience, April 2006.
Holistic Enterprise-Ready Application Secuyrithttp://www.herasaf.org/heras-af-
xacml.html

Hibernate. http://www.hibernate.org/.

Higgins: Open source identity framework 020http://www.eclipse.org/higgins/
Manuel Hilty, D.B., Pretschner, A.: On olltions. Computer Security ESORICS
2005 (2005) 98-117

HyperJAXB. http://java.net/projects/hyperjékb

IDEntity MIXer (IDEMIX). http://www.zurich.ibm.com/security/idemix/
http://en.wikipedia.org/wiki/Internet Explorer 6

International security, trust, and privacyiahce (istpa)http://www.istpa.org/

Irwin, K., Yu, T., Winsborough, W.H.: On thmodeling and analysis of obligations.
In CCS '06: Proceedings of the 13th ACM confererme Computer and
communications security, New York, NY, USA, ACM () 134-143

K. Irwin and T. Yu. Preventing attribute mfmation leakage in automated trust
negotiation. In Proc. of the 12th ACM Conference domputer and
Communications Security (CCS 2005), Alexandria, UWSA, November 2005.

JAXB. http://jaxb.java.net/

http://www.json.org/

Kagal, L., Finin, T., Joshi, A.: A policyahguage for a pervasive computing
environment. In POLICY '03: Proceedings of the HEEE International Workshop
on Policies for Distributed Systems and Networksastiington, DC, USA, IEEE
Computer Society (2003)

Katt, B., Zhang, X., Breu, R., Hafner, M.eigrt, J.P.. A general obligation model
and continuity: enhanced policy enforcement engpmaisage control. In SACMAT
'08: Proceedings of the 13th ACM symposium on Asceentrol models and
technologies, New York, NY, USA, ACM (2008) 123-132

Takao Kojima, Yukio Itakura. Proposal ofiyacy policy matching engine. Digital
Identity Management October 31, 2008, Fairfax, Wiy USA: p.9-14

G. Karjoth, M. Schunter, and M. Waidneriviacy-enabled services for enterprises.
In Proc. of the 13th International Conference ontabase and Expert Systems
Applications (DEXA'02), Aix-en-Provence, Francep&ember 2002.

N. Li, B.N. Grosof, and J. Feigenbaum. Aagtically implementable and tractable
delegation logic. In Proc. of the IEEE SymposiumSaturity and Privacy, Oakland,
CA, USA, June 2000.

Liberty alliance projecthttp://www.projectliberty.org/

N. Li, J.C. Mitchell, and W.H. Winsborouglgeyond proof-of-compliance: Security
analysis in trust management. Journal of the ACR{3B474-514, 2005.

Moses, T.: OASIS eXtensible Access Conttatkup Language (XACML) Version
2.0. OASIS Standard oasis-access control-xacm&@r8-spec-os, OASIS (February
2005)

[Netscape 7http://en.wikipedia.org/wiki/Netscape (version 7)

[Ni]

Ni, Q., Bertino, E., Lobo, J.: An obligation adel bridging access control policies
and privacy policies. In SACMAT '08: Proceedingdiué 13th ACM symposium on
Access control models and technologies, New York, NSA, ACM (2008) 133-
142

141

[NLWO5] J. Ni, N. Li, and W.H. Winsborough. Autoneat trust negotiation using
cryptographic credentials. In Proc. of the 12th ACdnference on Computer and
Communications Security (CCS 2005), Alexandria, USA, November 2005.

[OAS09] OASIS XACML v3.0 Privacy Policy Profile Veion 1.0, Committee draft 1, April
2009.http://www.0asis-open.org/committees/document.pbp@ohent id=32425

[P3P] L. Cranor, M. Langheinrich, M. Marchiori, NPresler-Marshall, and J. Reagle. The
Platform for Privacy Preferences 1.0 (P3P1.0) Sigation. W3C Recommendation,
April 2002. Seénttp://www.w3.0rg/TR/P3P/

[P3P Prefs] L. Cranor, M. Langheinrich, and M. Mdezi. A P3P Preference Exchange
Language 1.0 APPEL1.0). W3C Working Draft, April See
http://www.w3.org/TR/P3P-preferences

[PLING] W3C Policy Language Interest Group, Use &asaccessed 24 October 2008.
http://www.w3.org/Policy/pling/wiki/UseCases

[Pretschner] Hilty, M., Pretschner, A., Basin, Bghaefer, C., Walter, T.: A policy language for
distributed usage control. In 12th European Symposon Research in Computer
Security (ESORICS 2007). Volume 4734 of LNCS, SgeinVerlag (2007) 531-546

[Pri] Privacy and Identity Management for EuropeRI[ME). http://www.prime-
project.eu.org/

[Privacy Bird] AT&T privacy bird, seéttp://www.w3.0rg/2002/p3p-ws/pp/privacybird.pdf

[Rakaiby] EI Rakaiby, Y Cuppens, F., Cuppens-BoiaaN.: Formalization and management
of group obligations. In Proceedings of IEEE In&ional Symposium on Policies
for Distributed Systems and Networks (POLICY'02D@9)

[Rea] Reasoning on the web (rewerse)http://www.pms.ifilmu.de/rewerse-
wgal/index.html

[RFC2119] Key words for use in RFCs to Indicate legment Levels, S. Bradner, editor, IETF
RFC 2119, March 1997.

http://www.ietf.org/rfc/rfc2119.txt

[Rissanen] Rissanen, E.. OASIS eXtensible AccesstrGlo Markup Language (XACML)
Version 3.0. OASIS working draft 10, OASIS (Mardb0®)

[SAML2a] Assertions and Protocols for the OASIS @dyg Assertion Markup Language
(SAML) V2.0, OASIS Standard, 15 March 2005

[SAML2b] SAML 2.0 Profile of XACML, Version 2.0, Qmmittee Draft 1, 16 April 2009

[SCFY96] R.S. Sandhu, E.J. Coyne, H.L. Feinsteimd &. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38-47, 1996.

[Schiitz] Pretschner, A., Schitz, F., SchaeferV@alter, T.: Policy evolution in distributed
usage control. In 4th Intl. Workshop on Security dirust Management. Elsevier
(June 2008)

[SWW97] K. E. Seamons, W. Winsborough, and M. Wéttslinternet credential acceptance
policies. In Proc. of the Workshop on Logic Prognaimg for Internet Applications,
Leuven, Belgium, July 1997.

[TCPA] TCG: Trusted Computing Platform Alliance (P8). Main Specification Version
1.1b, Trusted Computing Group, Inc. (February 2002)

[Thibadeau] R. Thibadeau, Privacy Server Protocojeet, http://yuan.ecom.cmu.edu/psp/

[TOP] TopLink. http://www.oracle.com/technology/piucts/ias/toplink/.

[Trombetta] Ni, Q., Trombetta, A., Bertino, E., Lmb].: Privacy-aware role based access control.
In: SACMAT '07: Proceedings of the 12th ACM sympwsi on Access control
models and technologies, New York, NY, USA, ACM@2ZDp41-50

[Gama] Gama, P., Ferreira, P.: Obligation policks:enforcement platform. In POLICY'05:
Proceedings of the Sixth IEEE International Workstom Policies for Distributed
Systems and Networks, Washington, DC, USA, IEEE @dsr Society (2005) 203-
212

[Tru] Truste.http://www.truste.org/about/index.php

142

[U-PO7]
[W3C02]

[WCJS97]

[Web06]

[Win]
[WNRO5]

[WSJ0O0]

Credentica. U-Prove SDK overview: A Credemt white paper, 2007.
http://www.credentica.com/files/U-Prove SDKWhitepapdf.

W3C. Platform for privacy preferences (P3Pproject, April 2002.
http://www.w3.0rg/TR/P3R/

M. Winslett, N. Ching, V. Jones, and le@lhin. Assuring security and privacy for
digital library transactions on the web: Client a®iver security policies. In Proc. of
the 4th International Forum on Research and TeogyolAdvances in Digital
Libraries (ADL '97), Washington, DC, USA, May 1997.

Web services policy framework. See
http://www.ibm.com/developerworks/webservices/lifgfapecification/ws-
polfram/?S_TACT=105AGX04&S CMP=LmMarch 2006.

Windows cardspacéttp://cardspace.netfx3.com/

P. Wang, P. Ning, and D.S. Reeves. Netwackess control for mobile adhoc
networks. In Proc. of the 7th International Confee on Information and
Communications Security (ICICS '05), pages 350-36&ijing, China, December
2005.

W. Winsborough, K. E. Seamons, and V. JoAatomated trust negotiation. In Proc.
of the DARPA Information Survivability Conference Bxposition (DISCEX 2000),
Hilton Head Island, South Carolina, USA, Januar§®0

[XACML3 Credentials] XACML 3.0 Credential Profil®?rimeLife: IBM, University of Milano

and University of Bergamo.

[XACML3] eXtensible Access Control Markup Langua€ACML) Version 3.0, April 2009.

[YWS03]

Seehttp://www.oasis-open.org/committees/document.pbp@ohent id=32425

T. Yu, M. Winslett, and K.E. Seamons. Sugijpg structured credentials and
sensitive policies through interoperable strategfes automated trust. ACM
Transactions on Information and System SecuritySEHC), 6(1):1-42, February
2003.

143

