
1

D6.3.1 Advancement and
integration of concepts for secure
and dynamic creation of Mobile

Services

Editors: Marc-Michael Bergfeld (GD)

 Stephan Spitz (GD)

Reviewers: Aleksandra Kuczerawy (KUL)

 Karel Wouters (KUL)

Identifier: D6.3.1

Type: Deliverable

Class: Public

Date: May 1st, 2011

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 216483 for the
project PrimeLife.

Privacy and Identity Management in Europe for Life

Abstract

This document presents the challenges of Identity Management and Services on Mobile Devices,
especially with regard to open systems, collaboration and privacy between Front-end Mobile Devices
and Back-end Servers. It looks into existing technologies for static and increasingly flexible Mobile
Services and introduces future technology paths for highly dynamic creation of Mobile Services,
bearing the increasingly important aspect of Security for such Mobile Services in mind.

2

Members of the PrimeLife Consortium

1. IBM Research GmbH IBM Switzerland

2. Unabhängiges Landeszentrum für Datenschutz ULD Germany

3. Technische Universität Dresden TUD Germany

4. Karlstads Universitet KAU Sweden

5. Università degli Studi di Milano UNIMI Italy

6. Johann Wolfgang Goethe – Universität Frankfurt am Main GUF Germany

7. Stichting Katholieke Universiteit Brabant TILT Netherlands

8. GEIE ERCIM W3C France

9. Katholieke Universiteit Leuven K.U.Leuven Belgium

10. Università degli Studi di Bergamo UNIBG Italy

11. Giesecke & Devrient GmbH GD Germany

12. Center for Usability Research & Engineering CURE Austria

13. Europäisches Microsoft Innovations Center GmbH EMIC Germany

14. SAP AG SAP Germany

15. Brown University UBR USA

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The above referenced consortium members shall have no liability for
damages of any kind including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory due to applicable law. Copyright
2011 by Unabhängiges Landeszentrum für Datenschutz, Giesecke & Devrient GmbH, Europäisches Microsoft
Innovations Center GmbH, SAP AG.

3

List of Contributors

This deliverable has been jointly authored by multiple PrimeLife partner organisations. The
following list presents the contributors for the individual parts of this deliverable.

Chapter Author(s)

Executive Summary Marc-Michael Bergfeld (GD), Stephan Spitz (GD)

First Chapter Marc-Michael Bergfeld (GD), Stephan Spitz (GD)

Second Chapter Marc-Michael Bergfeld (GD), Stephan Spitz (GD), Stuart Short
(SAP), Ulrich Pinsdorf (Microsoft)

Third Chapter
4.1 Stuart Short (SAP), Ulrich Pinsdorf (Microsoft),
4.2 Marc-Michael Bergfeld (GD), Stephan Spitz (GD),
4.3 Harald Zwingelberg (ULD), Marit Hansen (ULD)

Fourth Chapter Marc-Michael Bergfeld (GD), Stephan Spitz (GD)

4

Executive Summary

This paper elaborates upon the advancement and integration of concepts for secure and dynamic
creation of Mobile Services in the course of the PrimeLife project.

It presents the current status and challenges for Secure and Dynamic Services on Mobile Devices
by looking into the role of increasingly open systems, collaboration and privacy between Front-
end Mobile Devices and Back-end servers (see section 1.1).

Herein, Secure Elements as technologies for the provisioning of secure, the management of
various (partial) identities and the enhancement of privacy aspects are seen to be critical (see
section 1.2).

These Secure Elements, however, will increasingly need to correspond to highly dynamic and
flexible offerings that leverage both Mobile Front-end and Server Back-end infrastructures (see
section 1.3).

Two emerging technologies are highly capable of corresponding to the requirement of ever more
flexibility, without sacrificing security, identity and privacy: Secure Micro SD cards and Trusted
Execution Environments (see section 1.4).

Both technologies have been developed further in the course of the PrimeLife project – for
example in the eCV prototype which allows for flexible interaction between Front- and Back-end
in the case when privacy-relevant policy mismatches occur in the service composition.

These technologies are explained in detail (see section 2.1) and particularly the capabilities of the
Trusted Execution Environment are laid out in detail (see section 2.3). Technical specifications of
the Trusted Execution Environments are attached in the appendix.

The integration of the Front- and Back-end is explained based on the PrimeLife eCV scenario and
the results of the PrimeLife eCV demonstrator (see section 3.1 and 3.2). In this domain, the
research of the PrimeLife project has already led to the creation of a unique solution in which the
individual person can now reach into the service composition / service-oriented architecture of the
Back-end in a secure, identity-aware and private manner ad hoc via the mobile Front-end.

Further, newly arising legal aspects of identity management and privacy enhancement in secure
and dynamic Mobile Service are presented and put into perspective of future developments (see
section 3.4).

A roadmap of solved and unsolved issues with regards to security, identity management and
privacy enhancement in Mobile Services is presented (see section 4.1).

A conclusion is drawn – also reflecting upon the results of the PrimeLife project with regards to
infrastructure for identity management and privacy enhancement and future directions of research
are indicated (see section 4.2).

PrimeLife’s funding supported G&D in its efforts by nurturing the development of the conceptual
research regarding the topic, the development of a corresponding demonstrator (see PrimeLife
Deliverable 6.2.2), the standardization o the findings in the Global Platform Consortium and the
preparation of translating the research findings into a real-world product technology.

5

Contents

1. Introduction: Present status and challenges for Secure and Dynamic Services on
Mobile Devices 7

1.1 Open systems, collaboration and privacy between Front-end Mobile Devices and
Back-end servers ... 7
1.2 Present Secure Elements as Enablers of static and flexible Mobile Services 8
1.3 The present and future environment of Mobile Services: From static to flexible
and highly dynamic solutions .. 10
1.4 Technologies for Secure and Dynamic Mobile Services and the privacy challenge
in highly dynamic environments ... 11

2. Front- and Back-end Technologies for Dynamic Mobile Services 13
2.1 Front-end Technologies ... 13
2.2 Trusted Execution Environments as Next Generation Mobile Platforms and
Service Enablers .. 15
2.3 TEEs, Open Interfaces and first APIs .. 16

3. Integration of Front- and Back-end for Secure creation of Dynamic Mobile Services 19
3.1 The collaboration of Front- and Back-end for secure and dynamic Mobile
Services ... 19
3.2 The mobile Front-end as service delivering environment 21
3.3 The server Back-end as service processing counterpart 22
3.4 Future legal requirements for secure and Dynamic Mobile Services 23

3.4.1 Considering security and privacy protection goals 24
3.4.2 Other legal requirements... 25

4. Outlook and Conclusions: A Roadmap for SE-based Privacy in Secure and Dynamic
Mobile Services 27

4.1 A Roadmap of solved and open issues for SE-based privacy.............................. 27
4.2 Conclusion and outlook towards future research... 28

References 30

A. TEE Client API Description 33
A.1 Overview of the TEE Client API as standardized in Global Platform................. 33
A.2 Scope of the standardization of the TEE Client API in Global Platform............. 33
A.3 TEE Client API Architecture ... 34
A.4 TEE Client API Principles and Concepts .. 35

A.4.1 TEE Client API Design Principles.. 35
A.4.2 TEE Client API Fundamental Concepts ... 36
A.4.3 TEE Client API Usage Concepts .. 42
A.4.4 Security ... 43

6

List of Figures

Figure 1: Various Secure Elements as “Private World” in Mobile Devices9

Figure 2: Differentiating between static, flexible and highly dynamic Mobile Services.10

Figure 3: Dynamics, Security and Privacy relating to the analyzed technologies12

Figure 4: Exemplary Secure Element options for “Normal” and “Private Worlds”14

Figure 5: Overview of the “Public” and “Private World” and the Interfaces in TEEs....................15

Figure 6: Trusted Input + Output = Secure Private User Dialog...17

Figure 7: Interaction via the “Private World” of the Mobile Device: Example from the eCV
Demonstrator...21

Figure 8: A Roadmap of Topics for secure, private and identity-related Mobile Services.28

Figure 9: The full Integration of Front-end and Back-end for Secure Dynamic Mobile Services..29

Figure 10: TEE Client API System Architecture as standardized in Global Platform....................34

Figure 11: TEE Client API Shared Memory Buffer Lifetime...38

Figure 12: TEE Client API Memory Reference timing diagram ..40

7

Chapter 1

1.Introduction: Present status and
challenges for Secure and Dynamic
Services on Mobile Devices

1.1 Open systems, collaboration and privacy between Front-
end Mobile Devices and Back-end servers

Open systems, mobile Applications and the increasing collaboration across individuals and
groups, based on modern technology platforms and solutions are giving rise to the dynamic
creation of new services, especially through the Application of Mobile Devices such as Mobile
Phones, Netbooks, Tablet PCs or even cars and their interaction with Back-end Servers in Service-
Oriented Architectures (SOA).

At present, these dynamics meet with an infrastructure that

“[…]was built without a way to know who and what you are connecting to. This limits
what we can do with it and exposes us to growing dangers. If we do nothing, we will face
rapidly proliferating episodes of theft and deception that will cumulatively erode public
trust in the Internet.” [CK05].

Hence, the opportunities of open collaboration, such as ad hoc access and exchange of information
and knowledge (e.g. the rapid sharing of data, usage of different identities across various peers)
and the possibilities of combining Mobile Devices at the Front-end of customer interaction with
the Backend-servers’ (i.e. in the “Cloud”), are today interrelating with increasing challenges for
security, privacy and identity management, because “The Web Means the End of Forgetting”
[RJ10]. Examples of these challenges are:

 Providing Trusted Platforms for the execution of services between front- and back-end.

 Providing dedicated channels of communication, storage and interaction for partial identities
of individuals.

8

 Securing the interactions against attacks and intervention.

 Providing solutions of anonymity where applicable without jeopardizing authentication.

This document elaborates on the recent conceptual and technological developments (e.g. in the
PrimeLife project) and the hence arising opportunities for the dynamic creation of services with
Front-end Mobile Devices and Back-end Servers, including the use of security, identity-
management-enabled and privacy-enhancing technologies (in abbreviation: SPI technologies).

In this domain, the research of the PrimeLife project has already led to the creation of a unique
solution in which the individual person can reach into the service composition / service-oriented
architecture of the Back-end in a secure and private manner ad hoc via the mobile front-end (see
section 4.2, also see Deliverable 6.2.2.). This is a highly novel Application of the technological
concepts described in this deliverable.

This document has following structure:

 Chapter 1 details the present market and technology environment, and the privacy challenges
in this context.

 Chapter 2 presents Front- and Back-end technologies for Secure and Dynamic Mobile
Services.

 Chapter 3 elaborates on the integration of Front- and Back-end for Secure and Dynamic
Mobile Services.

 Chapter 4 concludes the present situation and sketches paths for future research.

1.2 Present Secure Elements as Enablers of static and
flexible Mobile Services

Secure Elements (SEs) are platforms, esp. for Mobile Devices, on which Applications can be
installed, personalized and managed. Increasingly, this can be done over-the-air (OTA). With
recent1 technology developments, OTA provisioning of Applications is done via a Trusted Service
Managers (TSM). This helps to adapt formerly static SEs more flexibly for new Mobile Services
and Applications.2
Further, SEs are seen to potentially provide a “safe resort” for value-intensive, critical
Applications which using significant professional and private data, especially as the environment
for Mobile Devices and the services provided via these is increasingly challenged with risks of
data theft [BM10], espionage [RC10], security breaches [WV10].

On a conceptual level, SEs can be categorized into three different areas:

 Removable SEs (e.g. Stickers, Secure Micro SD cards and UICCs3)

 Non-removable SEs (e.g. embedded SEs)

 SEs from a combination of software programs on dedicated hardware (e.g. Trusted Execution
Environments).4

1 Note: Recent referring to the introduction of such services from 2006/7 onwards.
2 Note: For practical examples, see e.g. www.venyon.com or www.smarttrust.com
3 Note: A UICC is a UMTS Integrated Circuit Card, i.e. a type of Subcriber Identification Module (SIM) used in 3G UMTS

devices.
4 Note: In the case of the TEE, the SE consists of a physical module, e.g. a partition of the CPU and software embedded into this

physical module (e.g. a secure Operating System). For a detailed elaboration on the different categories of SEs, see Mobey
Forum (2005), p.4f.

9

The history of Secure Elements and the capabilities of Smart Cards and Tokens in the context of
Secure Dynamic Mobile Services has already been analysed elsewhere [BHS08]. Further, the
security in embedded systems and the different virtualization technologies have been analyzed and
the usability aspects of Secure Environments have been commented upon, and the applicable
cryptography have been revised [SSP08].
In essence, it has been shown that SIM cards, for example, have advantages for, operator-specific,
static and highly secure identification tasks [BHS08]. Embedded security systems and
virtualization technologies, in comparison, are more applicable for highly dynamic service
provisioning [BHS08].
In short,

“Smart Cards and Tokens provide high security in a mobile and flexible manner.
Embedded Security Mechanisms and Virtualization may provide significant processing
power for security relevant Applications and that the subsequent combination of these
still independent capabilities could be combined into “a system which can cover all levels
of security, be static as well as flexible and highly performing. As an example, such
systems could provide Smart Cards or Tokens for Mobile Devices which can store
different identities and assist in using selected ones of these for different services such as
payments, bookings or participation in online communities. The Embedded Security
Mechanism would assist in decoding and processing the data stored on the Smart Card or
Token, thus making the overall system secure and highly performing.”[BHS08]

In addition to the well established Smart Cards / SIMs / UICCs, some additional Secure Element
technologies have emerged successfully in the Mobile Ecosystem, whilst others have not spread so
widely. As a result, the present context of SE technologies for Mobile Devices looks as follows:

Dynamic
Mobile Services

TEE

UICCµSD

eSE

Trusted Service Manager
(Over-the-Air)

Sticker

Figure 1: Various Secure Elements as “Private World” in Mobile Devices

A selection of the above mentioned SEs also supports increasingly Dynamic Mobile Services –
without sacrificing security.
Complementary technologies such as Secure µSD cards, Stickers and selected embedded Secure
Elements have seen rather wide uptake in the market, because they enabled new Mobile Services

10

in the Value Chain for established stakeholders and / or were accessible to new players for the
establishment of new Mobile Service concepts.5 Secure Micro SD cards and the Trusted Execution
Environment are of particular relevance as they combine increased security with increased
flexibility. Because these two SEs can also be used as a storage and processing platform for the
identification of individuals and their credentials, they are particularly relevant for privacy-
enhanced and identity-management-enabled services that need to be highly secure and flexible.
Further, they offer largely open interfaces within their architecture in order to promote a rapid
uptake by existing and new stakeholders along the Mobile Services value chain.

On the other hand, initiatives to embed Trusted Platform Modules into Mobile Devices have not
succeeded on a wide basis. Apparently, the economic incentive for the different stakeholders
along the value chain of the Mobile Services industry remained unclear and fragmented business
interest along the value chain were not orchestrated for a systemic solution [see MF10]. Neither
has the potential option to integrate an additional Smart Card reader into Mobile Devices found
wide acceptance.6

1.3 The present and future environment of Mobile Services:
From static to flexible and highly dynamic solutions

The situation sketched in section 1.1 has led to a shift from technologies that relate to rather static
Mobile Services towards those technologies that empower a highly dynamic, complex and rapidly
changing environment of Mobile Services. Security, privacy and identity management solutions
need to be tailored to this environment.

In Detail:
Initially, Mobile Services were embedded into static environments: Fixed and concrete client and
server components, actors and scenarios constituted the service sphere: Fixed security
requirements for given scenarios resulted. Time was sufficient to develop and modify client and
server components when new security, privacy and identity challenges arose. Technologies for
this scenario exist in the form of UICC cards and Stickers, for example.

Highly dynamic
Mobile Services

Flexible
Mobile Services

Static
Mobile Services

Technology status:
Emerging

Technology status:
Developing

Technology status:
Existing

TEE

Sticker

Storage capacity,
flexibility and

openness.

de
ve

lo
pm

en
t

de
ve

lo
pm

en
t

Figure 2: Differentiating between static, flexible and highly dynamic Mobile Services.

5 Note: Also see [MF10] for a detailed analysis of the Mobile Value Chain –with particular attention to Mobile Financial
Services.
6 Note: The additional effort and costs for the handset manufacturer, who largely operates based on the requirements of the
Mobile Network Operators (MNOs), were not consistently required and called for along the Mobile Services Value Chain.
Similarly, a requirement for an additonal Smart Card reader was not commonly agreed upon from all players in the Value Chain.

11

Subsequently, and at present, Mobile Services need to be flexibly embedded into increasingly
changing environments: Heterogeneous scenarios needed to be addressed. Security rules are
required in order to embed security, privacy and identity management aware behaviour in the
equipment that can be context-aware and follow the overarching rules under different situations.
Hence, the security, privacy and identity management “co-evolves with the isotropic and steadily
changing context into which it is embedded” [BHS08]. Technologies for this scenario are
developing, for example in the form of Secure µSD Cards.

Increasingly at present, and even more so in the future, Mobile Services will need to be highly
adaptive to ever changing, dynamic environments. “This will consider unknown equipment,
actors, and heterogeneity of space. The definition of SoS will result in security policies. The client
and the server will know the policies […, and] take a “flexible and secure”, “pervasive and
secure”, “resilient and secure”, “recoverable and secure” character, depending on the situation.”
[BHS08]. Technologies for this scenario are emerging in the area of Trusted Execution
Environments, for example.

Figure 1 exemplifies how the present, developing and emerging technologies fit to these different
aspects of the Mobile Service environment. The below presented, existing technologies of, for
example, Static Stickers and Secure µSD cards both enable static and flexible Mobile Services
respectively. The need for higher flexibility, capacity (i.e. processing speed and storage) and a
predominantly open environment for Mobile Services, which can then empower security, privacy-
enhancement and identity management, is largely expected to be answered by Trusted Execution
Environments (TEEs) as emerging technology (see section 3).
Analyzed in detail, the following matching of privacy challenges and present, developing and
emerging technologies can be summarized:

1.4 Technologies for Secure and Dynamic Mobile Services
and the privacy challenge in highly dynamic
environments

Figure 3 below exemplifies how the three technologies analysed in this paper correspond to the
various building blocks of highly dynamic and secure Mobile Services, and where open issues for
identity management and privacy enhancement remain. Exemplarily, figure 3 summarizes which
subsections of secure, privacy-enhanced and identity-enabled Mobile Services are provided.
It becomes evident that static technologies such as the Passive Stickers provide a Secure Element
for selected Mobile Services (e.g. NFC functionalities of Credit Card payments), but do not
correspond to an environment that would call for highly flexible provisioning of partial identities.
As Passive Stickers, they have one or a set of preinstalled identities (e.g., a credit card number),
but cannot be provided with new, partial identities over-the-air in a flexible manner.
Further, privacy is only partially provided as the Passive Sticker would interact with a terminal
which would then route the communication through an additional network. Hence, there is no
“private” end-to-end communication between the individual and the recipient of the message (e.g.
a payment via Credit Card), but processing networks are involved in “getting the message across”.
For Secure µSD cards, flexibility is given and partial identities as well as privacy can be assured.
Here, partial identities can be provided over-the-air for different relationships and audiences (e.g.
a partial identity for travelling with frequent flyer programs, another partial identity for interaction
with a bank, a third partial identity for customer loyalty programs, et cetera). Further, these partial
identities can be combined with unique keys at both ends of the communication channel (i.e.
VPN-like architectures), so that a communication channel which is linked to one of the partial
identities remains “private” because it is encrypted and can only be read by the counterpart for this

12

partial identity and not the processing network in between (Nota bene: Also see the PrimeLife
demonstrator with the PrimeLife Application running in a Privacy-PIN protected Private World on
a µSD Card, encrypting and decryption messages to a specific head hunter account). This could,
for example, be used for the provisioning of “private” health information from an insurance
company to a patient via mobile phones, which is impossible today in the U.S. because privacy
cannot yet be assured.

Trust:
A Trusted Secure

Element / Environment

Identity:
A specific

communication channel
for the partial identity

TEESticker µSD

Yes Yes Yes

No Yes Yes

Partially Yes Yes

Possibly Possibly Possibly

Privacy:
Secure communication,
only for the individual

Anonymity:
Unlinkeablility of the

interaction to the
individual

Highly dynamic No Partially Yes

Figure 3: Dynamics, Security and Privacy relating to the analyzed technologies

For TEEs, most categories are fulfilled in the same manner as for the µSD cards. In addition,
TEEs can provide a direct link to the hardware, e.g. a mobile phone and its keypad and display,
and can thus assist in even making the input and output of information trustworthy, private and
identity-related. For example, a secure User Interface (UI), which includes a secure display and
keypad, will assure that the input, e.g., an amount for a money transfer or the need for a new
medicine prescription, can only be read by the respective Application that is linked to the partial
identity / e.g., a bank account), is then encrypted and wired through the network to the recipient in
a privacy-enhanced manner.
For all technologies, however, anonymity as one additional building block for enhanced privacy
remains an open issue: For example, Mobile Devices have unique identities in the networks over
which they communicate, provided by the log-on of the SIM card (i.e. the subscriber identification
module) to the networks, based on the corresponding Personal Identification Number. Hence, the
network can identify the individual Mobile Device. Further, the usage profile correlated to the
respective device provides further insight into the individual’s preferences and interests. Thus,
although the above mentioned technologies can fully or partially provide trusted, identity-related
and private means of communication and interaction, the individual device, and therefore also its
user, are not anonymous.

The following chapter looks at the emerging technology environment for mobile devices and
reflects upon their integration with back-end technologies in the context of identity management
and privacy-enhancements.

13

Chapter 2

2.Front- and Back-end Technologies for
Dynamic Mobile Services

2.1 Front-end Technologies

In order to comply with the above described dynamics in the market and technology environment
for Mobile Service, Secure Elements need to be highly standardized, modularized and highly
flexible / adaptive to ever changing requirements. These characteristics will drive their rapid and
wide distribution.
In order to achieve such distribution and keep costs low, independently of the eventual usage of
the Secure Elements, it will be necessary to embed them into the platforms of the above
mentioned Mobile Devices ex ante. For this, technologies such as the ARM TrustZone®7 may be
leveraged, because of their dominant design in the market place for Mobile Device platforms.
Further, the appeal of these Secure Elements will be particularly high to the respective Mobile
Service providers if they rapidly, easily and seamlessly integrate with Applications provided by
Third Parties in the market place. Quick diffusion can be expected, if the SEs in the Front-end
enable these Third Parties to embed security, privacy and identity-management into their solutions
ad hoc. Further, a pre-certification of the Secure Elements with regards to security, privacy and
identity-management will additionally enhance market acceptance, because it would provide
independent solution and Application providers with a “dock-on” method to security, privacy and
identity-management. To achieve this goal, clear and open interfaces will be essential.
Most recent developments in the SE environment provide two solutions: Micro SD cards, as a
physically removable option to provide “Private Worlds” on Mobile Devices and TEEs as built in
– and thus widely diffused – architectures to provide “Private Worlds” too.
From a technology architecture point of view, both solutions are structured in a similar manner:

7 Note: ARM TrustZone® technology is a system-wide approach to security on high performance computing platforms for a

huge array of Applications including secure payment, digital rights management (DRM), and web-based services.

14

Java Card Applets

SD Card Middleware

Mobile Application using a SD Card

The SD Card The TEE

Mc-ex Driver

Java Card API

“Trustlets” (ie Applets in TEE)

TEE Client API

Mobile Application using a TEE

TEE Internal API

Option of Secure Element for
“Normal World” and “Private World”

Option of Secure Element for
“Normal World” and “Private World”

Figure 4: Exemplary Secure Element options for “Normal” and “Private Worlds”

In essence, the following characteristics apply:

 Mobile Applications using a SD Card leverage the SD Card Middleware and a Mc-ex Driver
to connect to Java card Applets.

 Mobile Applications using a TEE leverage the TEE Client API to connect to “Trustlets”, i.e.
Applets in the TEE (see Appendix for the full technical specification of the Client API).

 Both, Applets in the SD Card as well as Applets in the TEE leverage an internal API (Java
Card API or TEE Internal API) to connect further.

Hence, µSD cards as well as TEEs provide the necessary clear, open and scalable structure which
is necessary to quickly and flexibly adapt to the highly dynamic market and technology
environment of Mobile Service, as described above:

 Different Mobile Service providers can provide secure, identity-enabled and privacy-
enhanced Mobile Applications to the µSD or the TEE over-the-air.

 The interfaces of the µSD or TEE can provide a “wall” behind which essential data, partial
identities and access keys are protected in a “PrivateWorld”.

 The “Private World” can be certified according to security standards and requirements of
different industries and legal environments (e.g. health, payment & banking, headhunting
services as in the PrimeLife demonstrator, or loyalty programmes).

Based on this similar architectural structure, the technologies and demonstrators for one of these
SE options can resemble and provide insights for the other Secure Elements as well. In the
PrimeLife project, the “eCV scenario” (see [PU11]) has been implemented on a Secure µSD Card.
This demonstrator provided insights and a first example on how “Private World” Applications
work, based on available, most recent technology.
In direct comparison, TEEs are expected to provide even higher flexibility, more storage, higher
processing speed and smarter APIs than the presently existing Secure µSD card solutions. In
contrast though, TEEs will not be physically removable from the Mobile Devices, need integration

15

into the very beginning of the Mobile Services value chain (i.e. through the Silicon producer of the
CPU), and their proliferation throughout the Mobile Device platforms will take additional time.
Hence, it is expected that Secure µSD cards and TEEs will coexist in the context of Mobile
Services, but will both be capable of serving the increasingly dynamic market and technology
context.8
For the sake of conceptual and technological advancement, the following sections will focus on
the TEE and its integration into secure, identity-enabled and privacy-enhanced Mobile Services
between Front- and Back-end:

2.2 Trusted Execution Environments as Next Generation
Mobile Platforms and Service Enablers

As introduced above, TEEs provide security, privacy-enhancement and identity-management
solutions that enable new types of services. TEEs address the need for flexible, powerful and
efficient security solutions in various forms of Mobile Devices. Amongst others, TEEs can, for
example, be based on ARM TrustZone enabled chipsets (i.e. SoCs). TEEs utilize ARM
TrustZone’s division of the SoC into two distinct areas, so to speak a “Public World” and a
“Private World”, as shown in the below figure. TEEs then provide open interfaces in order to
enable the development of dedicated Applications with security, privacy and identity-management
capabilities.
In this concept of “Public and Private Worlds”, the TEEs encapsulate security-, privacy and
identity-management-relevant parts of an Application in the dedicated “Private World”. Those
parts of the Application that are not security-, privacy- or identity-management-relevant remain in
the “Public World”.

ARM TrustZone enabled SoC

TEE Driver

Integration Layer

TEE

TEE Client API TEE Internal API

Application
Security-, privacy- and identity

management-enhanced Application
Modules

The “Public World” The “Private World”

Figure 5: Overview of the “Public” and “Private World” and the Interfaces in TEEs

8 Note: TEEs can be set into perspective with Trusted Platform Modules (TPMs). In contrast to TPMs, though, TEEs do not add
additional hardware costs.

16

Two clear and open interfaces between the “Public” and the “Private World” – the TEE Client
Application Protocol Interface (API) and the TEE Internal API – enable Application providers to
dock-on to the concept (see appendix for full technical specifications empowers them to offer
secure services to the market without having to go into the details of security and privacy
protection or the specifics of identity-management).

It is important to explain these two interfaces, because their characteristics have a direct effect on
how the Back-end can relate to the Mobile Devices, delivering the Mobile Service to the end
consumer.

2.3 TEEs, Open Interfaces and first APIs

The TEE Client API (see see appendix for full technical specifications) and the TEE Internal API
essentially build the “wall” between the “Private” and the “Public” world.
Both follow a lightweight approach, meaning they are easy to use and easy to understand. Hence,
developers can concentrate on the design of their business logics. TEEs are also integrated into
different SoCs in order to diffuse quickly to the different Mobile Devices. In order to limit the
complexity of security, privacy-enhancement and identity-management requirements for the
developers, the TEEs’ two interfaces are also in the process of standardization in the Device
Committee of the Global Platform initiative.9 In detail, they work as follows:

TEE Client API10
The TEE Client API enables the exchange of data between the rich OS Applications of Mobile
Devices and the security- and privacy-enhanced part of the Application. Based on the standardized
and open TEE Client API, developers are able to define which data shall be interchanged between
the “Public” and the “Private World”, and in which manner. The interface is optimized for
simplicity, runtime performance and ease of use.

TEE Internal API
The TEE Internal API offers Applications that leverage security-, privacy- and identity-
management-related modules (i.e. “Trustlets”) the option to access the TEE itself. The TEE
Internal API is very similar to industry-proven interfaces. This reduces the efforts for development
and maintenance of the respective Applications.

In short, these two interfaces and the concept of TEEs offer a highly modularized, simple and
easy-to-use Secure Element on Mobile Devices which empowers rapid deployment and constant
adaptation of security-, privacy- and identity-management-enhanced solutions for e.g. Mobile
Phones, Netbooks, Tablet PCs or even Cars.
From a security perspective, the following considerations have been taken into account in the
development of TEEs:

TEE Security Considerations
In order to complement the existing Secure Elements in an adequate way, TEEs are characterized
by the following points:

 High performance

 Low Footprint

 Provable Security

9 Note: For details, see: http://www.globalplatform.org/aboutuscommitteesdevice.asp
10 For technical description, see Appendix

17

 Certifiability

 High performance and low footprint

The exchange of data between the “Public” and the “Private World” is optimised to exchange
large blocks of data and hereby create as little communication overhead as possible. Furthermore,
highly performant TEEs are optimized to have very small footprints.11

Provable security
The security level of TEEs is balanced to provide an ideal distribution of security, performance
and flexibility. As most Applications on Mobile Devices do not need to be fully tamper resistant,
e.g. against invasive attacks, TEEs are targeted at a mid-range security level (i.e. slightly lower
than the static solutions of, e.g. Smart Cards). In return, however, TEEs offer high performance,
flexibility and also storage capacity. In the future, TEEs are expected to be fully certified
environments which provide provable security (also see the EU-funded Sepia Project, www.sepia-
project.eu).

Certifiability
Being based on the above mentioned, standardized and clear interfaces, TEEs can be driven
towards security and privacy certification more easily than other Secure Elements.
TEEs and Secure User Dialog Looking at modern Applications on Mobile Devices and their value
for the individual User (e.g. mobile banking Applications, mobile social networking and mobile
loyalty programs etc.), protecting these interactions and assuring the adequacy of the information
exchanged via Mobile Devices becomes increasingly clear.

At present, two security gaps remain for Mobile Devices, especially Mobile Handsets: The input
of data in a trusted manner (e.g. without interference between the act of typing on the keyboard or
on the touch screen) and the output of data in a trusted manner (e.g. without the display of
manipulated data over the screen of Mobile Devices):

Eyes read display:
Trusted Output

Fingers type
information:
Trusted Input

Input + Output
= Secure User Dialogue

Figure 6: Trusted Input + Output = Secure Private User Dialog.

TEEs can provide a Secure User Interface / User Dialogue by assuring that any input will be
transmitted in a secure way via the “Private World”. Also, TEEs can assure that the display is

11 Note: The so called “memory footprint” refers to the amount of main memory that a program uses or references while running,

including, for example, active memory regions like code, static data sections, all the stacks, plus the memory required to hold
any additional data structures that the program ever needs while executing and will be loaded at least once during the entire
run.

18

disconnected from the “Public World” while the individual is reading trusted information on the
screen. However, the usage of the secure keypad functions does not yet prevent an attacker to
write a “Public World” sniffer which could grab keypad data that is intended for the “Private
World”. Therefore, a secure keypad Application needs to be combined with a secret that is stored
in the “Private World”. Nevertheless, such solutions assist to provide the individual with input and
output in an even more secure manner than all other presently existing SEs, and can add privacy-
and identity-management-enhancement to these.

TEEs and Secure Storage of User Data
TEEs can provide convenient functions to encrypt/decrypt data without an additional need for
implementing proprietary key handling. Applications in the “Private World” can leverage such
specific keys which are derived from the SoC’s individual master key. These keys can then be
used to protect secure objects that are maintained in the “Private World” and shall never be
exposed to the “Public World”. These keys enable the protection of Application specific data and
help to implement secure storage in the “Private World” for highly private and identity-
management-relevant data sets. Hence, the TEE empowers the management of different, partial
identities and privacy when communicating based on these.

Flexibility of the Front-end
In order to remain highly flexible and adaptive to changes in the environment of Mobile Services
(see elaborations in the sections above), TEEs strive for independency from the Rich-Operating
Systems (Rich-OS). This is particularly important as increasingly open Rich-OS systems diffuse
in the Mobile Devices, e.g. Google’s Android.12 Modern TEE approaches can be used on a wide
range of TrustZone systems, especially if they are equipped with a clean and easy to understand
integration interface to these. Here, reference drivers can be leveraged that help TEEs to integrate
with specific Operating Systems, such as, for example, Google’s Android.

Based on the above described characteristics of TEEs, chapter 3 explains the interaction between
Front- and Back-end:

12 Note: For this reason, the PrimeLife demonstrator of the “eCV scenario“ was developed on the base of Google’s Nexus 1
Mobile Phone and Giesecke & Devrients Secure µ SD Card.

19

Chapter 3

3.Integration of Front- and Back-end for
Secure creation of Dynamic Mobile
Services

3.1 The collaboration of Front- and Back-end for secure
and dynamic Mobile Services

To investigate how the Back-end of multi-domain web service provisioning can be identity- and
privacy-enhanced, the integration of technologies needs to be looked into. For example, business
software solution from market players such as SAP and Microsoft provide mechanisms that allow
an administrator to control who should have access to a data and who not. When dealing with an
environment where external online businesses (web / “Cloud”-based services, software-as-a
service-offers) are consumed, access control techniques via the Mobile Devices in the Front-end
may not be sufficient to specify how data should be handled. A user/administrator should be able
to express this in the form of a rule or policy and should be reassured that future use does not in
any way deviate from his/her original intention for the usage of the private data.

To facilitate such a system integration that respects the preferences/policies of users, a standard
policy language and engine should be utilized. For this, an extension of existing programming
practices and policy language such as the XACML standard applies. For example, the PPL
(PrimeLife Policy Language, see [TS10]) tension that is currently being developed in the
PrimeLife project may be leveraged.13

Herein, communication between the partners’ Applications in the Front- and Back-end adheres to
the structure of the language and uses some features of the policy engine, such as obligations, i.e.

13 See www.primelife.eu

20

a function that obliges a data consumer to adhere to a policy such as deletion of data within a
certain timeframe. The engine is also used to generate alerts to the user on policy conflicts with
the latter having an option to permit access to data in spite of a difference in a data handling policy
such as retention period. Interaction with the use can be enabled in a highly dynamic fashion, e.g.
through interaction via the “Private World” of the Mobile Device in the Front-end.

A scenario may illustrate the above explained interaction between Front-and Back-end (also see
[PU11]):

In the PrimeLife project, an “eCV-scenario” was designed. In this scenario, there are two sides
representing the Front- and the Back-end:

 A user (i.e. a job applicant, Mobile Device, Front-end) creates an electronic CV (eCV) that
contains up-to-date information on his personal details, work experience and academic
qualifications. The personal information, such as the person’s gender, age or race, are entered
by the user or provided by an official authority service. The other types of information may
include university degrees, recommendation letters and previous or existing employer details,
and they could be provided by the corresponding organization/data provider as a signed
digital document or as a reference. For example, a university can certify qualifications
attained and a recommendation is usually provided by an academic and/or employer. The user
of the eCV portal has a Mobile Application on his Mobile Device. The Application is stored
in the “Private World” and can only be accessed via entering the “Privacy PIN” of the
individual person. The keys in the “Private World” de- and encrypt any communication the
end user wants to have with the eCV portal and the policies managed in it.

 On the data consumer side (i.e. a headhunter, service side, Back-end), we have an eCV portal
which executes a job broker service. This service collects offerings proposed by job providers
or recruiter services and matches them with the data of the individual job applicant. The
service contains clear rules on data usage, potentially under different conditions. For instance,
the Back-end will not pass information to other parties, or will retain the data only for a pre-
agreed period of time. If the interaction between a job applicant and a suitable job offer calls
for exceptions regarding the pre-agreed data policy, the job portal can communicate with the
job applicants Application on her / his private Mobile Device to ask for exceptions to the
agreed data policy, based on specific circumstances. Hence, most of the data is stored in the
Back-end and integration with the Front-end is possible via the eCV Application in the
“Private World” (i.e. on the Secure µ SD card or the TEE).

 In this eCV scenario between the Front- and the Back-end, each contributory data provider
(i.e. job applicant) could have a rule or sticky policy attached to the data that outlines how the
data will have to be handled when used between the data producer (i.e. the job applicant), the
data consumer (i.e. job broker leveraging the Back-end) or a third party. The parts of the eCV
profile that contain the essential information about the privacy policy can only be altered by
the job applicant himself. For this, the job applicant can log-in at the Back-end (e.g., an eCV
portal) when she / he wants to change policy settings for the mid- to long-term.

 In cases where particularly interesting job opportunities arise, but the data needed to execute
the matching between the job and the applicant exceeds the normal data policies stored in the
Back-end, the eCV portal can make the applicant aware of the opportunity via the eCV
Application in the “Private World” on the Mobile Device. For example, a policy will only
allow using a recommendation letter for a certain period of time or it may be the case that the
applicant does not allow a certain country, like the United Kingdom, to see his race. If this is a
prerequisite to further process the matching of a particularly interesting opportunity, though,
the applicant might want to make an exception and “overrule” his own policy for at least a
limited amount of time. He can do so via the “Private World” by logging-in to the eCV
Application on the Mobile Device, amending the policy preferences and thus lifting the “lock”
on the Back-end process through his direct, secure, private and identity-related interaction
with the Back-end.

21

 In essence, the electronic CV is composed of two parts, namely, the composition of data
emanating from the different sources and the corresponding aggregated policies. The policy
composition may contain conflicts, for example, the applicant may allow his personal contact
details to be viewed by all services whereas the company he is working for states that it will
not permit disclosure of where the employee works for security reasons. Conflicts can be
resolved automatically or manually by the issuing of alerts to the user or by interference via
the “Private World” of the Mobile Device of the job applicant.

On a general level, beyond the eCV scenario and its Application in the PrimeLife project, the
interaction between Front- and Back-end has the following characteristics: A portal (i.e. a Back-
end server) manages potential privacy- and identity management-related conflicts and sends
requests that contain conflicts to the “Private World” of a user’s Mobile Device. The user then
decides whether he / she wishes to use the requesting service or not, based on logging-in to her /
his “Private World” (via the Privacy-PIN) in the Secure Element (e.g. Secure µSD Card or TEE)
on the Mobile Device.

3.2 The mobile Front-end as service delivering environment

In the above explained scenario of the eCV, the Mobile Device and the “Private World” in the SE
on it allow for the following interactions which all together establish the Secure Dynamic Mobile
Service:

Open „Private
World“ on SE via

Privacy-PIN

„Private World“-
keys decript
data: Secure,

private, identity-
related.

Manage policies
in the „Private

World“- encrypt
before sending to

Back-end

Overview of
„Private

Activities“

Receive Identity-
and Privacy-

enhanced
request.

Figure 7: Interaction via the “Private World” of the Mobile Device: Example from the eCV
Demonstrator.

 The “Private World” on the Mobile Device can “freeze” the Back-end if the end user / job
applicant does not accept a policy mismatch.

22

 The “Private World” on the Mobile Device can deactivate the data set on the Back-end for a
selected time period, e.g. if the job applicant does not want his private data to be visible for
others online because he does not want to be approached by any job offering entity.

 The “Private World” on the Mobile Device can directly interact with the Back-end in a secure
manner (e.g. via a Virtual Private Network or via encrypted communication) for data control
in the future.

 The “Private World” on the Mobile Device holds the essential service keys for numerous
privacy- and identity-management enhanced services and is therefore the privacy and identity-
controlling device in the palm of each end consumer.

 The “Private World” on the Mobile Device provides a secure compartment / the TEE in which
customizable services are empowered and in which additional data can be stored, e.g.
additional certificates to enhance the eCV even more in selected cases.

 The “Private World” on the Mobile Device can “glue” other Secure Elements such as the
SIM, the SD card and others together, if these are needed as sources of partial identities to
provide more complete identity sets for particular services.

Hence, for example, an individual that does not agree with the way in which the Back-end
requests to use private data (i.e. a policy mismatch in the Back-end because of which the server
sends a privacy-enhanced request to the Front-end to ping the individual to decide how to solve
the situation) can decline the request of the Back-end. The Mobile will then “freeze” any further
data handling of the Back-end. Alternatively, the Front-end Mobile Device / the individual person
could accept the request and “free” or even add further data for the subsequent processing via the
Back-end.Also, one could overwrite policies that were initially stored in the Back-end, if, for
example the individual user wants to change these policies because a policy mismatch has made
him aware of a setting for which he has changed his preferences in the meantime. Also, the
Mobile Device could trigger the complete deletion or temporary hiding of Back-end stored data if
the individual decides that this data shall not be available to be seen by others via the Back-end.
This interaction is secured and privacy is assured because the Front- and the Back-end need to
hold the corresponding key. The interaction can also be encrypted through additional keys in order
to assure that the channel between the Back-end and the Front-end is secured.

Further, the Front-end on the Mobile Device can be structured in such a manner that the TEE
“glues” partial identities together. For example, one set of data (i.e. a partial identity) can be
residing on the UICC whilst another partial identity is embedded on the SD card. Combined with
the knowledge of the TEE about the existence of these two partial identities, the TEE can provide
a combined identity to a Back-end service provider for highly security and privacy-relevant
services.

3.3 The server Back-end as service processing counterpart

The Back-end for Secure Dynamic Mobile Services is embedded into a web-based platform (e.g.
the Back-end of the eCV scenario). The server-side and the Mobile Device hold keys to empower
the overall service. This enables a distribution of the private control of data between to two ends
of the privacy and identity-management enabled solution, in a secure and highly dynamic manner.
PrimeLife has specifically looked at this in a specific deliverable (see [PU11]). The Back-end for
Secure Dynamic Mobile Services is embedded into a web-based platform (e.g. the Back-end of the
eCV scenario). The server-side and the Mobile Device hold keys to empower the overall service.
This enables a distribution of the private control of data between to two ends of the privacy and
identity-management enabled solution, in a secure and highly dynamic manner.

On the Back-end, one junction point towards the Front-end on the Mobile Device is a job broker
service that is called headhunter. The headhunter takes actions for seeking for appropriate

23

applicants on behalf of an employer. This is basically done by handing out the job offer including
a service policy from the employer to a service that is called eCV portal.

The eCV portal let applicants register themselves and create profiles including their personal data,
their CV, and their claims from former employers, universities, etc. Every user of the eCV portal
is also kindly requested to define its privacy preferences, e.g., for what purpose its private data
may be used and for what time period it may be stored by a third party like a headhunter or an
employer.

The eCV portal, having a job offer and the related service policy from the employer, will match
for suitable applications, taking not only the job offer’s requirements and the applicant’s skills into
account but also considering the privacy policies from the user side and the service side, e.g. the
employer. Only applications that are compliant in both terms are to be selected as suitable
applications and are given to the headhunter as a response of its former job offer.

So far we left one participant of the eCV scenario’s Back-end out: the domain expert. Domains
experts are valuable experts on certain domains and offer assessing job applications regarding to
their particular domain as a service to others. This service is to be used be the headhunter, if such
a party is present like in our eCV scenario, as it would be too much overhead for an employer to
interact with domain experts directly. In such a case where a domain expert is needed, the
headhunter will also examine the policies of the available domain experts and will choose a
compliant domain expert w.r.t. the application’s sticky policy.

As the eCV portal as well as the headhunter are actively matching user policies against service
policies, these are the junction points for the interaction with the “Private World” of the Mobile
Device in case of a privacy policy mismatch. In such a case, these will trigger the “Private World”
of the Mobile Device by sending it a text message which is consumed by the Front-end tool on
that device only. Subsequently the Font-end tool will fetch necessary details about the mismatch
using a secured web connection to the Back-end, and will show the user a notice about the
mismatch occurrence. The user is now able to allow an exception of his privacy policy by
“accepting” that mismatch or to freeze the application process by “rejecting” the mismatch.

3.4 Future legal requirements for secure and Dynamic
Mobile Services

Within the envisioned scenarios of using TEEs14 in Front-end devices in coordination with larger
Back-end mechanisms, a number of new legal challenges might arise. These challenges can only
be estimated with a detailed look at the descriptions of the business models and the underlying
technological descriptions, as a concrete legal evaluation is highly reliant on the specific use cases.
In particular, detailed knowledge of these facts would be required for the evaluation whether the
processing of certain personal data is necessary in the sense of Article 7 (a)-(f) of the Data
Protection Directive (DPD)15 and the balancing test between the legitimate interests of a data
controller and the data subjects rights and freedoms as required by Art. 7 (f) DPD.16
For weighing the interests of data subjects and data controllers, also other elements must be taken
into account such as the type of data processed in particular when special categories of data are
concerned, but also the context in which the personal data will be processed or might appear must
be considered. On a more generic level it is possible to have a first view on the potential benefits

14 See chapter 3.1 above.
15 Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with

regard to the processing of personal data and on the free movement of such data, avialable online: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML.

16 See Carey (2009), p. 71.

24

TEEs may have for privacy-enhancing technologies and how they could help to comply with
existing legal requirements.

3.4.1 Considering security and privacy protection goals

Recent research17 in the area of privacy from a legal, sociological and technological perspective
has shown that the traditional security protection goals18 of integrity, availability and
confidentiality19 should be extended by specific privacy-related protection goals.

The security protection goals integrity, availability and confidentiality20 share the commonality to
address and ensure an appropriate level of data security primarily from the perspective of the
organisation processing these data, e.g., service providers processing customer data, governmental
authorities processing citizen data or employers processing employee data. While dealing with
integrity, availability and confidentiality in a suitable way is a necessary prerequisite for effective
privacy protection, these protection goals do not cover all aspects needed. To this end, additional
complementary protection goals “intervenability”, “transparency” and “unlinkability” have been
proposed that strengthen the data subject’s perspective on data processing.21 In Germany similar22
privacy protection goals have even been incorporated into the data protection law of the federal
state of North Rhine-Westphalia, § 10 DSG NRW,23 and intentions exist to incorporate such
privacy protection goals in other German federal states as well.24

Technologies such as the here presented Secure Elements, including the upcoming TEEs, may aid
to implement these protection goals into current and future technology and thus help to provide
enhanced privacy and user control as well as compliance to data protection law. The individual
security and privacy protection goals are not independent from each other, and in each case it has
to be analysed beforehand to which extent, on which layer and by which means the respective
protection goal should be implemented into processes or IT systems. Possible tensions or even
conflicts between protection goals have to be resolved: For instance, the security protection goal
“integrity” aims at protecting data from manipulation. This could be understood in a way that
prevents later deletion of records out of an existing database – all entries would be kept forever
together with time stamps and information on their validity. However, this would not only
contradict the data minimisation principle, but also it might be at conflict with the identified
privacy protection goal “intervenability”. “Intervenability” means that it is possible to intervene in
the data processing. This encompasses the possibility of redress or the data subject’s rights to
rectify data or to revoke consent for processing with the consequence that data must be blocked
for further processing or preferably deleted, cf. Art. 12 DPD.25

17 See e.g. Rost/Pfitzmann (2009); Rost (2010); Konferenz der Datenschutzbeauftragten des Bundes und der Länder (2010)
18 Also called “control objectives”.
19 See chapter 2 above.
20 See chapter 2 above.
21 Rost/Pfitzmann (2009); Rost (2010).
22 The privacy objectives in § 10 DSG NRW are partly different and comprise: Authenticity, requiring that information on the

origin of personal Data must be available. Auditability requiring that it must be possible to assess who processed which
personal data at which time an in which manner. Transparency requiring that procedures of data processing must be
documented in a complete and up-to-date manner. (Translations by the author).

23 Gesetz zum Schutz personenbezogener Daten (Datenschutzgesetz Nordrhein-Westfalen), available online:
https://recht.nrw.de/lmi/owa/pl_text_anzeigen?v_id=3520071121100436275.

24 Konferenz der Datenschutzbeauftragten des Bundes und der Länder, Ein modernes Datenschutzrecht für das 21. Jahrhundert,
chapter 3. For Schleswig-Holstein available online: https://www.datenschutzzentrum.de/sommerakademie/2010/sak10-
gundermann-bedarf-novellierung-ldsg.pdf.

25 Note: See section 3.2 with the outlook on user scenarios and a potential “freeze” of data handled in the back-end via a Front-
end device such as a mobile phone.

25

From the perspective of a data subject she / he should even be enabled to delete the data – after all
they are her personal data – directly in the database of the organisation or respectively block the
data when there are conflicting duties of the organisation to retain the data.26 The organisation
might want to restrict the direct access to the internal database to as few people as possible and
thus may not be willing to provide data subjects this access possibility, but still support them in
exercising the legally demanded data subject rights by offering comfortable ways to request
changes or erasure of their data and inform them quickly on the outcome of their requests.
This illustrates that balances between conflicting protection goals have to be sought. In this
context TEEs may be used to help implement “intervenability” while limiting the risk to the
integrity of the data stored.27 TEEs can be used to restrict access to the stored data strictly to the
data subject entitled to these access rights, for example via a private Personal Identification
Number (PIN) or code (e.g. biometrics such as voice or fingerprint recognition), or her designated
delegates28 including a secure and provable authentication of the person acting.29
To proceed along this line of argumentation, further research is conducted at present in the legal
and policy domain, including an ongoing discussion on the terminology of the privacy objectives.

3.4.2 Other legal requirements

Every processing of personal data must meet the legal requirements set forth in the DPD, the e-
Privacy Directive30 as well as national laws transposing these directives. Within PrimeLife a
detailed analysis of the legal framework was done for data protection in service oriented
architectures (SOAs).31 In general the requirements derived from the legal framework for SOAs
apply for communications between Front- and Back-end in Mobile Services as well.
TEEs may reveal a special potential for enforcing compliance with policies on the Back-end
respectively organisation part. Requirement 34 reads: “It should be possible to guarantee
compliance with communicated policies.” This requirement may be enforced by Digital Rights
Management (DRM) and also by Certification of the TEEs for specific Applications, e.g. for
banking and payment services. Similar to the DRM technologies deployed by the music and film
industry such technology might limit the processing of stored personal data to purposes and uses
stipulated in the previously communicated privacy policy.32 While this may not make abuse
impossible it may nevertheless hinder unintended and accidental disclosure of personal data. The
administration of the rights and the control over data usage and exceptions may by these means be
transferred to the user where the management tools could then reside well protected as part of the
TEE.

26 Note: See Chapter 4 with the outlook on user scenarios and a potential dynamic policy composition and also Front-end

triggered deletion of back-end stored data via, e.g., a mobile phone.
27 Note: TEEs as described in Chapter 2.
28 As for requirements related to delegation of privacy related rights in general and data subjects rights in particular see: Hansen /

Raguse / Storf / Zwingelberg (2010), p. 27 et seq.
29 Note: From a business perspective, such interaction can be perceived as “Act of Will”. From a legal standpoint, however, there

is a strong opinion amongst DPA and lawyers to strictly differenciate between authentication / identificaton on one hand, and
“Acts of Will” on the other. According to that opinion, the latter may only be proven by digital signatures according to the
signature directive / German SigG etc.

30 Directive 2002/58/EC of the European Parliament and of the Council of 12 July 2002 concerning the processing of personal
data and the protection of privacy in the electronic communications sector (Directive on privacy and electronic
communications), avialable online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:EN:HTML.
See also Directive 2009/136/EC amending the e-Privacy Direcive, available online: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:337:0011:0036:En:PDF. Directive 2009/136/EC must be transposd
into national law by 25 May 2011 and may not be binding in all European jurisdictions until then.

31 Meissner / Schallaböck (2009).
32 See also Tóth (2004).

26

However, a set of requirements for a particular use case cannot be developed unless an exact use
case description for the deployment of the SEs is available that explains in detail the types of data
processed and data flows.

27

Chapter 4

4.Outlook and Conclusions: A Roadmap
for SE-based Privacy in Secure and
Dynamic Mobile Services

4.1 A Roadmap of solved and open issues for SE-based
privacy

The above elaborated status quo of Secure and Dynamic Mobile Services with Secure Elements
has drawn an up-to-date picture of the technical capabilities and the unprecedented integration of
Front- and Back-end achieved in the PrimeLife project.

Based on the initial overview of security / trust, identity and privacy (including anonymity)
capabilities of the various technologies, the following roadmap for further developments can be
drawn:

 The requirement for highly dynamic adaptation to the ever changing market and technology
environments can be tailored for through the different SE alternatives. The less dynamic the
SEs need to be, the more one can expect that existing solutions will be leveraged. The more
dynamic Mobile Services shall be designed, the more likely emerging SEs such as Secure
µSD cards and TEEs will be used.

 The Security / trust requirement is inherently solved by the usage of SE technologies.

 The requirement for numerous, partial identities is predominantly addressed by the emerging
SEs, such as Secure µSD cards and TEEs. It can be expected that Mobile Devices will
leverage multiple SEs in the future (see figure 1), each hosting different partial identities.

 Privacy, as in the secure communication between predefined communication partners that
relate to the respective partial identities (e.g., secure one-to-one communication between the
end user and the eCV portal, between the end user and a banking / payment entity, or between
the end user and a selected loyalty program provider such as an airline), can be assured
through the emerging SE technologies.

28

 Anonymity, as in the unlinkability of the end user to its respective actions, remains an open
issue. Here, technologies such as Identity Mixer and Direct Anonymous Attestation can prove
very valuable if they would be combined with the above mentioned SEs. These could
counteract the present unique identity of Mobile Devices (e.g. via their Subscriber Identity)
and the linkability of this identity to the usage profile in Applications that still largely reside
in the “Public” instead of the “Private” world.

Trust:
A Trusted Secure

Element / Environment

Identity:
A specific

communication channel
for the partial identity

TEESticker µSD

Yes Yes Yes

No Yes Yes

Partially Yes Yes

Possibly Possibly Possibly

Privacy:
Secure communication,
only for the individual

Anonymity:
Unlinkeablility of the

interaction to the
individual

Highly dynamic No Partially Yes

Different SEs expected
to co-exist, as existing
and future applications

will vary strongly.

New SEs expected to
be preferred if privacy
shall be stronger than
in existing solutions.

Next step beyond
security, privacy and
identity: Anonymity.

Partial identities either
pre installed of ad hoc,

dynamic.

The SE concept
inherently solves the

trust issue.

Figure 8: A Roadmap of Topics for secure, private and identity-related Mobile Services.

In essence, the here explained integration of Front- and Back-end technologies for Secure and
Dynamic Mobile Service is a significant step into the direction of providing more (partial)
identity-related and privacy-empowered Mobile Services. Nevertheless, open points such as
anonymity remain to be solved.

4.2 Conclusion and outlook towards future research

The above presented findings draw attention to the following future directions of innovation in the
area of Secure Dynamic Mobile Services, especially when distributed between Front- and Back-
end domains.

For an overarching view, the eCV scenario (see [PU11]) of PrimeLife can assist to envision to
collaboration between Front- and Back-end:

Conceptually, the following directions for future innovation in the field can be summarized (see
figure 9):

Firstly, present Front-end technologies are adequate for static and increasingly flexible
provisioning of privacy and identity management-enhanced Mobile Services. However, with the
dynamics in the surrounding ecosystem of Mobile Service will increasingly call for even more
highly adaptive solutions. Here, Trusted Execution Environments can provide highly dynamic and
secure “Private Worlds”.

29

Secondly, Back-end systems need to be integrated with the upcoming capabilities in Front-end
Mobile Devices. Here, interfaces, modularization, standardization and certification will be
important stepping stones for consistent overall solutions. Taking the concept further that the
Mobile Device could “freeze” an ongoing process in the Back-end, future research could be
directed towards analyzing whether the Front-end Mobile Device could also be used as an
essential “token” through which all online data and identity could be managed, encrypted if
needed and deleted if wanted.

Thirdly, shared capabilities between Front- and Back-end with one overarching vision are
necessary towards Secure Dynamic Mobile Services and a strict modularization / interface
creation along the Value Chain to empower scalability.

Fourthly, further clarification of the legal implications at the interfaces between the individual
user, the Mobile Device, the Back-end and any Third Parties wanting to access and leverage
private data are needed.

E.g.: Microsoft WCF Services
Microsoft BizTalk Server 2009

E.g.. SAP NetWeaver

Claims
Issuer 2
Claims
Issuer 2

E.g. G&D Secure Element

Po
lic

y m
ism

at
ch

Figure 9: The full Integration of Front-end and Back-end for Secure Dynamic Mobile Services

Fifthly, the anonymity perspective of privacy is not yet solved by the latest technologies and the
integration of Front- and Back-end technologies. Here, additional work needs to be done.

The perspectives laid out in this paper by referencing to the work of Giesecke & Devrient,
Microsoft and SAP in the PrimeLife project can serve as a first indication for future research. The
above mentioned points remain as future work.

30

References

[BM09] Bergfeld, M.-M. H. (2009): Global Innovation Leadership: The strategic development of
worldwide innovation competence. BOD, Norderstedt, 2009.

[BM10] Bachfeld, D. and Mulliner, C. (2010): Risiko Smartphone: Spionageangriffe und Abzocke

auf Android und iPhone. In: c’t 2010, Heft 20, pp. 80-85.

[BHS08] Bergfeld, M.-M. H., Hinz, W. and Spitz, S. (2008): Infrastructure for Trusted Content,

Deliverable 6.2.1 of the PrimeLife Consortium,
http://www.primelife.eu/images/stories/deliverables/d6.2.1-
infrastructure_for_trusted_content-public.pdf, accessed: October 15th 2010.

[CK05] Kim Cameron’s Identity Blog (2005): URL:

http://www.identityblog.com/stories/2004/12/09/thelaws.html, accessed: December 6th
2010.

[ES06] Electronic Storage (2006): Removable memory cards: not just a flash in the pan, URL:

http://www.oto-online.com/pdf/oto_download/2006/06/OTO_June_P5254_
MemoryCards.pdf, accessed: December 6th 2009.

[GA08] GSM Association (2008): GSMA calls for Pay-Buy-Mobile handsets, URL:

http://gsmworld.com/newsroom/press-releases/2008/2090.htm#nav-6, accessed: January
12th 2010.

[GP10] GlobalPlatform Device Technology TEE Client API Specification, Version 1.0, Public

Release, July 2010, Document Reference: GPD_SPE_007.

[HRSZ10] Hansen, M., Raguse, M., Storf, K. and Zwingelberg, H. (2010): Delegation for Privacy

Management from Womb to Tomb – A European Perspective, in: Proceedings for IFIP /
PrimeLife Summer School 2009 held in Nice, France, September 7-11 2009, pp. 18-33.

[KD10] Konferenz der Datenschutzbeauftragten des Bundes und der Länder (2010): Ein modernes

Datenschutzrecht für das 21. Jahrhundert - Eckpunkte, Stuttgart, http://www.baden-
wuerttemberg.datenschutz.de/service/gem-materialien/modernisierung.pdf, accessed
November 15th 2010.

[MF09a] Mobey Forum (2009a): Global Overview of commercial implementations and pilots of

NFC payments during 2009. Article for globalsmart.com – Smart Card Technology
International, http://mobeyforum.org/, accessed: February 5th 2010.

[MF09b] Mobey Forum (2009b): Why aren’t banks rushing for NFC payments? Article for

globalsmart.com – Smart Card Technology International, URL: http://mobeyforum.org/,
accessed: February 5th 2010.

[MF10] Mobey Forum (2010): Alternatives for Banks to offer Secure Mobile

Payments.Whitepaper of the MobeyForum, http://mobeyforum.org/Press-

31

Documents/Press-Releases/Alternatives-for-Banks-to-offer-Secure-Mobile-Payments,
accessed: December 5th 2010.

[IS08] iSuppli (2008): Mobile Handset Shipments with micro SD / Micro SDHC, in: Data Flash

Market tracker Q3/2008, supplied via SD Association.

[PU11] Pinsdorf, U. (2011): Infrastructure for Privacy for Life,

http://www.primelife.eu/images/stories/deliverables/d6.3.2-
infrastructure_for_privacy_for_life-public.pdf, accessed: April 15th 2011.

[RC10] Rütten, C. (2010): Ausgespäht: Sicherheit von Apps für Android und iPhone. In: c’t, Heft

20, pp. 86-91.

[RJ10] Rosen, J. (2010): The Web Means the End of Forgetting, in: New York Times (2010),

http://www.nytimes.com/2010/07/25/magazine/25privacy-
t2.html?pagewanted=1&_r=4&hp, accessed October 1st 2010.

[RP09] Rost, M. and Pfitzmann, A. (2009): Datenschutz-Schutzziele – revisited, in: Datenschutz

und Datensicherheit (DuD) 2009, pp. 353-358,
http://www.maroki.de/pub/privacy/DuD0906_Schutzziele.pdf, accessed: October 20th
2010.

[RM10] Rost, M. (2010): Datenschutzziele neu definiert, in Datenschutz-Berater (DSB)

July/August 2010, pp. 22-25, http://www.datenschutz-
berater.de/CONTENT/default.aspx?_p=1004211&_t=pdfft&_s=361156, accessed:
October 22nd 2010.

[SD10] SD Association (2010): SD Association celebrates 10 years of innovation at CES,

http://www.sdcard.org/press/SD_Celebrates_10_Years_of_Innovation_at_CES_2010.pdf,
accessed: January 10th 2010.

[SSP08] Swoboda, J., Spitz, S. and Pramateftakis, M. (2008): Kryptographie und IT-Sicherheit:

Grundlagen und Anwendungen - eine Einführung, Vieweg & Teubner, Wiesbaden.

[TG04] Tóth, G. (2004): DRM and privacy - friends or foes? - An introduction to Privacy Rights

Management (PRM), online: http://www.indicare.org/tiki-read_article.php?articleId=45,
accessed: October 22nd 2010.

[TS10] Trabelsi, S. (2010): Second Release of the Policy Engine,

http://www.primelife.eu/images/stories/deliverables/d5.3.2-
second_release_of_the_policy_engine-public.pdf, accessed: March 5th 2011.

[VL10] Van den Berg, B. and Leenes, R. (2010): Audience segregation in social network sites, in:

Proceedings for SocialCom2010/PASSAT2010 (Second IEEE International Conference
on Social Computing/Second IEEE International Conference on Privacy, Security, Risk
and Trust), 20-22 August 2010 in Minneapolis (Minnesota, USA). IEEE, pp. 1111-1117.

[WV10] Weber, V. (2010): Zwickmühle: Der Streit um Blackberry-Sicherheit. In: c’t, Heft 20, pp.

144-161.

33

Appendix A

A.TEE Client API Description

Note: The below attached text is a direct quote from the text published by GlobalPlatform in
[GP10]. G&D’s activities in contributing to the below mentioned standardization results were
coordinated with G&D’s activities in PrimeLife.Parts of G&D’s standardization efforts in the
field were financed by PrimeLife.

[Quote]

A.1 Overview of the TEE Client API as standardized in
Global Platform

This specification defines a communications API for connecting Client Applications running in a
rich operating environment with security related Trusted Applications running inside a Trusted
Execution Environment (TEE). For the purposes of this document a TEE is expected to be a
trusted environment within the main device system-on-a-chip, which complements traditional
security environments such as a UICC SIM card, although this is not a requirement of the API. A
TEE provides an execution environment with security capabilities, which are either available to
Trusted Applications running inside the TEE or exposed externally to Client Applications. A TEE
may, for example, host a GPD/STIP runtime [5], but may also be based on other technologies such
as a small operating system executing native code Applications.

See the Open Mobile Trusted Platform (OMTP) Advanced Trusted Environment TR1
specification [4] for a requirements analysis of Trusted Execution Environments in mobile
devices.

A.2 Scope of the standardization of the TEE Client API in
Global Platform

Instead of trying to standardize a single monolithic API which covers a significant proportion of
the interactions between a Client Application and the TEE-hosted functionality, the approach of
the Global Platform standardization effort is modular. The TEE Client API covered by this
specification concentrates on the interface to enable efficient communications between a Client
Application and a Trusted Application running inside the TEE. Higher level standards and

34

protocol layers may be built on top of the foundation provided by the TEE Client API – for
example, to cover common tasks such as secure storage, cryptography, and run-time installation of
new Trusted Applications – but these interfaces are outside of the scope of this specification.

A.3 TEE Client API Architecture

The relationship between the major system components described in this specification are outlined
in the block architecture below.

Figure 10: TEE Client API System Architecture as standardized in Global Platform

Some implementation-defined support is required to provide separation between the rich
environment and the TEE. The mechanisms used to achieve this, and the level of security these
mechanisms provide, are outside of the scope of this specification.

Within the trusted environment this specification identifies two distinct classes of component: the
hosting code of the TEE itself, and the Trusted Applications which run on top of it. There is no
definition of the expected implementation of these blocks in this specification; they are only used
as logical concepts inside this document.

Within the rich environment this specification identifies three distinct classes of component:

 The Client Applications which make use of the TEE Client API.

 The TEE Client API library implementation.

 The communications stack which is shared amongst all Client Applications, and whose role is
to handle the communications between the rich environment and the trusted environment.

As before, there is no mandated architecture for these components and they are only used as
logical constructions within this specification document. Note that the TEE Client API may be
exposed to either, or both, the privileged or user layers of the rich environment. If exposed in the
privileged layer, then drivers or any other privileged components may be considered to take the
place of Client Applications.

35

A.4 TEE Client API Principles and Concepts

This section explains the underlying principles and concepts of the TEE Client API in detail,
explaining how each class of features should be used.

A.4.1 TEE Client API Design Principles

The key design principles of the TEE Client API are:

 C language

o C is the common denominator for practically all of the Application frameworks
and operating systems hosting Client Applications.

o It is accepted that alternative language bindings – such as a Java API – may be
needed in the future, but these are outside of the scope of this specification.

 Blocking functions:

o Most Client Application developers are familiar with synchronous functions
which block waiting for the underlying task to complete before returning to the
calling code. An asynchronous interface is hard to design, hard to port in rich OS
environments, and is generally difficult to use for developers familiar with
synchronous APIs.

o In addition it is assumed that multi-threading support is available on all target
platforms; this is required for Implementations to support cancellation of
blocking API functions.

 Source-level portability:

o To enable compile-time and design-time optimization, this standard places no
requirement on binary compatibility. Client Application developers will need to
recompile their code against an appropriate implementation-defined version of
the TEE Client API headers in order to function correctly on that
Implementation.

 Client-side memory allocations:

o Where possible the design of the TEE Client API has placed the responsibility
for memory allocation on the calling Client Application code. This gives the
Client developer choice of memory allocation locations, enabling simple
optimizations such as stack-based allocation or enhanced flexibility using
placements in static global memory or thread-local storage.

o This design choice is evident in the API by the use of pointers to structures rather
than opaque handles to represent any manipulated objects.To enable compile-
time and design-time optimization, this standard places no requirement on binary
compatibility. Client Application developers will need to recompile their code
against an appropriate implementation-defined version of the TEE Client API
headers in order to function correctly on that Implementation.

 Aim for zero-copy data transfer:

o The features of the TEE Client API are chosen to maximize the possibility of
zero-copy data transfer between the Client Application and the Trusted
Application, provided that the host operating system and hardware
implementation can support it. This minimizes communications overhead and
improves software efficiency, especially on cached processors where data copies
are an expensive operation because of the cache pollution they cause.

o However, short messages can also be passed by copy, which avoids the overhead
of sharing memory.

36

 Support memory sharing by pointers:

o The TEE Client API will be used to implement higher-level APIs, such as
cryptography or secure storage, where the caller will often provide memory
buffers for input or output data using simple C pointers. The TEE Client API
must allow efficient sharing of this type of memory, and as such does not rely on
the Client Application being able to use bulk memory buffers allocated by the
TEE Client API.

 Specify only communication mechanisms:

o This API focuses on defining the underlying communications channel. It does
not define the format of the messages which pass over the channel, or the
protocols used by specific Trusted Applications. These must be defined in other
specifications.

A.4.2 TEE Client API Fundamental Concepts

This section outlines the behaviour of the TEE Client API, and introduces key concepts and
terminology:

A.4.2.1 TEE Contexts

A TEE Context is an abstraction of the logical connection which exists between a Client
Application and a TEE. A TEE Context must be initialized before a Session can be created
between the Client Application and a Trusted Application running within the TEE which that TEE
Context represents. The TEE Context should be finalized when the connection with the TEE is no
longer required, allowing resources to be released.

It is possible for a Client Application to initialize multiple TEE Contexts concurrently, either with
the same underlying TEE, or with multiple TEEs if they are available. The number of concurrent
contexts which may exist is implementation-defined, and may additionally depend on run-time
resource constraints.

A.4.2.2 Sessions

A Session is an abstraction of the logical connection which exists between a Client Application
and a specific Trusted Application. A Session is opened by the Client Application within the scope
of a particular TEE Context. The number of concurrent Sessions which may exist is
implementation-defined, depending on the design of the TEE and the Trusted Applications in use,
and may additionally depend on run-time resource constraints.

When creating a new Session the Client Application must identify the Trusted Applications which
it wishes to connect to using the Universally Unique IDentifier (UUID) of the Trusted
Application. The open session operation allows an initial data exchange to be made with the
Trusted Application, if this is required in the protocol between the Client Application and the
Trusted Application.

Connection Methods: Login

Some Trusted Applications may require the Implementation to identify or authenticate the Client
Application or the user executing it. For example, a Trusted Application may restrict access to the
data or functionality it provides based on the identity of the user running the Client Application in
the rich operating environment. When opening a Session the Client Application can nominate
which connection method it wants to use and hence which login credentials are presented to the
TEE or Trusted Application. It is likely that the connection method will form part of the protocol

37

exposed by the Trusted Application in use; attempting to open a Session with an incorrect
connection method may result in a failed attempt.

A.4.2.3 Commands

A Command is the unit of communication between a Client Application and a Trusted Application
within a Session. When starting a new Command the Client Application identifies the function in
the Trusted Application which it wishes to execute by passing a numeric identifier, and may also
provide an operation payload in accordance with the protocol the Trusted Application exposes for
that function. The Command invocation blocks the Client Application thread, waiting for an
answer from the Trusted Application. A Client Application may use multiple threads to have
multiple Commands which are outstanding concurrently. The number of concurrent Commands
which may exist is implementation-defined, depending on the design of the TEE and the Trusted
Applications in use, and may additionally depend on run-time resource constraints.

Operation Payload

An operation to open a Session or to invoke a generic Command can carry an optional payload,
the definition of which is passed inside a set of Operation Parameters (see section 3.2.5 of the
Global Platform document [GP10]) stored in the operation structure. In this version of the
specification up to 4 Parameters can be specified for each operation.

Each Parameter is either a Memory Reference or a Value Parameter and is associated with a
direction: it can be input, output, or both input and output. For Memory Reference Parameters, the
specified direction of data flow determines when the underlying memory buffers need to be
synchronized with the Trusted Application.

Memory Reference Parameters are used to exchange data through shared memory buffers. Value
Parameters carry a small amount of data in the form of two 32-bit integers without the burden of
sharing or synchronizing memory.

The format of the data structures held in the Memory References or Value Parameters is defined
by the protocol of the Trusted Application function in use, and hence outside of the scope of this
specification.

Temporary Shared Memory Registration

Memory References refer either to a Registered Memory Reference or a Temporary Memory
Reference:

 a Registered Memory Reference is a region within a block of Shared Memory (see section
3.2.4 of the Global Platform document [GP10]) that was created before the operation

 a Temporary Memory Reference directly specifies a buffer of memory owned by the Client
Application, which is temporarily registered by the TEE Client API for the duration of the
operation being performed

A Temporary Memory Reference may be null, which can be used to denote a special case for the
parameter. Output Memory References that are null are typically used to request the required
output size.

Return Codes and Return Origins

The answer to an open Session and a invoke Command operation always contains a Return code,
which is a 32-bit numeric value indicating success or the reason for failure, and an Return origin,
which is a 32-bit numeric value indicating the source of the return code in the Implementation.
The standard error codes and return origins are described in sections 4.4.2 and 4.4.3 of the Global
Platform document [GP10]..

38

When the return origin is TEEC_ORIGIN_TRUSTED_APP then the return code is defined by the
Trusted Application’s protocol. Note that, critically, this means that a Client Application cannot
just test against TEEC_SUCCESS, as the Trusted Application may use another code to indicate
success. To enable simpler error handling code in the Client Application it is recommended that
the Trusted Application developers choose „0” as their literal value of their success return code
constant.

Events and Callbacks

This specification does not define a primitive way for a Trusted Application to spontaneously
signal an event to the Client Application or perform callbacks to the Client code. However, these
types of usage patterns can be constructed using Commands. For example, event signals can be
implemented by having the Client Application send a Command which blocks inside the Trusted
Application until the event occurs inside the TEE. When the event occurs the Trusted Application
passes control back to the Client Application; the TEEC_InvokeCommand will return and the
Client Application can handle the event which was signaled.

A.4.2.4 Shared Memory

A Shared Memory block is a region of memory allocated in the context of the Client Application
memory space that can be used to transfer data between that Client Application and a Trusted
Application.

A Shared Memory block can either be existing Client Application memory which is subsequently
registered with the TEE Client API, or memory which is allocated on behalf of the Client
Application using the TEE Client API. A Shared Memory block can be registered or allocated
once and then used in multiple Commands, and even in multiple Sessions, provided they exist
within the scope of the TEE Context in which the Shared Memory was created. This pre-
registration is typically more efficient than registering a block of memory using temporary
registration if that memory buffer is used in more than one Command invocation.

Figure 11: TEE Client API Shared Memory Buffer Lifetime

39

Zero-copy Data Transfer

When possible the implementation of the communications channel beneath the TEE Client API
should try to directly map Shared Memory in to the Trusted Application memory space, enabling
true zero-copy data transfer. However this is not always possible; for example, the TEE may not
have access to the same physical memory system as the platform running the Client Application,
or may only be able to achieve zero-copy for some types of memory. As a result this specification
defines synchronization points where the TEE Client API Implementation is allowed to
synchronize the data in a Shared Memory block with the TEE to ensure data consistency. The
Client Application and Trusted Application must assume that the data is only synchronized when
within the scope of these synchronization points. Otherwise, data corruption may result. This
process is described in more detail in section A4.2.5.

Client Application developers should note that letting the TEE Client API allocate the memory
buffers using the function TEEC_AllocateSharedMemory maximizes the chances that it can be
successfully shared using a zero-copy exchange. If Client Application developers have the option
to use this type of allocated memory in their code, without needing an explicit copy from another
buffer, then they should aim to do so. However, it is not always possible to allocate memory
without a copy in the Client Application, and in these cases registration of the buffer using
TEEC_RegisterSharedMemory is the preferred option as there is still a possibility that it could be
zero copy. Note that for small amount of data, it is recommended to use a Value Parameter instead
of a Memory Reference to avoid the overhead of memory management.

Overlapping Blocks

The API allows Shared Memory registrations and allocations to overlap. A single region of Client
Application memory may be registered multiple times, or a block may be allocated and then
subsequently registered. The Client is responsible for ensuring that the overlapping regions are
consistent and meet any timing requirements when used by multiple actors; specifying an input
buffer to one Trusted Application which is concurrently used as an output for another can produce
undefined results, for example.

The rules which the Client must conform to when overlapping memory ranges are used
concurrently are described in the synchronization sub-section of section A4.2.5.

A.4.2.5 Memory References

A Memory Reference is a range of bytes which is actually shared for a particular operation. A
Memory Reference is described by either a TEEC_MemoryReference structure (see section 4.3.7)
or a TEEC_TempMemoryReference. It can specify:

 A whole Shared Memory block.

 A range of bytes within a Shared Memory block.

 Or a pointer to a buffer of memory owned by the Client Application, in which case this buffer
is temporarily registered for the duration of the operation. This type of Memory Reference
uses the structure TEEC_TempMemoryReference.

A Memory Reference also specifies the direction in which data flows for that particular command.
Memory References may be marked as input (buffer is transferring data from the Client
Application to the Trusted Application), output (buffer is transferring data from the Trusted
Application to the Client Application), or both input and output.

When a Memory Reference points to a Shared Memory block, the data flow direction must be
consistent with the set of flags defined by the parent Shared Memory block; for example, trying to
make an input Memory Reference with a parent Shared Memory block which has only the
TEEC_MEM_OUTPUT flag is invalid.

40

Synchronization

As the underlying communications system may not support direct mapping of Client memory into
the Trusted Application, it may be necessary to copy a portion of memory from the Client memory
space into the Trusted Application memory space. Memory References provide a token which
indicates what memory range needs to be synchronized, and their use within an operation
indicates the duration of the synchronization scope. The temporal states in this synchronization
process are indicated in the Figure below.

Figure 12: TEE Client API Memory Reference timing diagram

In this figure there are three temporal states for the Client Application (A, B, D) and one for the
Trusted Application (C), as well as two synchronization operations (1, 2).

When performing synchronization operation 1 – transitioning from state A to states B and C
(which exist in parallel in the two environments) – the Implementation needs to ensure that input
buffers are synchronized from the Client Application’s view of memory to the Trusted
Application’s view of it. When performing synchronization operation 2 – transitioning from states
B and C (which exist in parallel in the two environments) to state D – the Implementation needs to
ensure that output buffers are synchronized from the Trusted Application’s view of memory to the
Client Application’s view of memory.

The range of bytes referenced in a Memory Reference is considered live, for synchronization
purposes, the moment that the containing operation structure is passed in to either
TEEC_OpenSession or TEEC_InvokeCommand; this live period corresponds to the temporal
states B and C in the figure. A Memory Reference is considered to be no longer live when the
called API function returns. While a Memory Reference is live the Client Application and the
Trusted Application must obey the following constraints:

 For ranges within a Memory Reference marked as input only, the Client Application may read
from the memory range, but must not write within it (states B and C). The Trusted
Application may read from the memory range during state C.

41

 For ranges within a Memory Reference marked as input or input and output, the Client
Application must neither read nor write within the memory range (state B). The Trusted
Application may read and write to the memory range (state C).

If these synchronization rules are ignored by the Client Application or the Trusted Application
then data corruption may occur.

Overlapping Ranges

The API allows Memory References to overlap, either within a single operation or across multiple
operations. The Client is responsible for ensuring that the overlapping regions are consistent and
meet any timing requirements when used by multiple actors; specifying an input buffer to one
Trusted Application which is concurrently used as an output for another will produce undefined
results, for example.

It may be necessary for constraints on overlapping ranges to be defined as part of the Trusted

Application’s protocol. A Trusted Application which accepts an input buffer and an output buffer,
but which writes to the output buffer before using the input, cannot use the same memory for both
activities as writing the output will destroy the input.

Memory Reference Types

The specification supports the following types of Memory Reference which may be encoded in an
operation payload.

 TEEC_MEMREF_TEMP_INPUT, TEEC_MEMREF_TEMP_OUTPUT, or
TEEC_MEMREF_TEMP_INOUT: A temporary Memory Reference indicates that the
Parameter points to a buffer of memory to be shared rather than to a Shared Memory control
structure. This Client Application buffer will be temporarily shared for the duration of the
operation being performed. If the buffer pointer is NULL then no memory buffer is actually
referenced. Some Trusted Applications may associate a specific meaning with a null Memory
Reference, so for full details the Client Application developer must refer to the protocol
specification for the Trusted Application they are targeting. A null Memory Reference can
also be used to fetch the required size of an output buffer.

 TEEC_MEMREF_WHOLE: A whole Memory Reference enables a light-weight mechanism
of sharing an entire parent Shared Memory block without the need to duplicate the content of
the Shared Memory structure control fields inside the Memory Reference. When this memory
type is used the entire Shared Memory region is shared with the direction flags the parent
Shared Memory specifies.

 TEEC_MEMREF_PARTIAL_INPUT, TEEC_MEMREF_PARTIAL_OUTPUT, or
TEEC_MEMREF_PARTIAL_INOUT: A partial Memory Reference refers to a sub-region of
a parent Shared Memory block, allowing any region of bytes within that block to be shared
with the Trusted Application.

Note that an Operation Parameter can also be a Value Parameter, carrying two 32-bit integers.

Variable Length Return Buffers

In many cases the Trusted Application will want to write a variable length of data in to the Shared
Memory buffer. For buffers which are configured as an output buffer, the size of the Memory
Reference when starting an Operation on the TEE is the maximum size of the output data that the
Trusted Application may write into the referenced region. When the Trusted Application responds
it may reduce the size of the referenced memory region to reflect the actual number of bytes it
wrote into the output buffer. In this case the Implementation must update the size field of the
Memory Reference in the Client Application operation structure to indicate the number of bytes
which were used by the Trusted Application.

In these cases the Implementation only needs to synchronize the number of bytes which the
Trusted Application has modified when passing control back to the Client Application; other data

42

within the scope of the originally referenced memory range should be unchanged, although this
may depend on Trusted Application behaving correctly.

Note that output data can only be written in the lowest address in an output Memory Reference; it
is not possible to synchronize a high region in the buffer without synchronizing the lower parts of
the buffer.

In any scenario using variable length outputs there is the possibility that the output buffer provided
by the Client Application is not large enough to contain the entire output. In these scenarios the
Trusted Application is allowed to return the required output size to the Client Application. The
size field of the Memory Reference in the operation structure is then updated to reflect the
required size, but the Implementation does not synchronize any data with the Client Application,
as this is viewed as an error condition. It is recommended that a Trusted Application use the
defined “short buffer” error code TEEC_ERROR_SHORT_BUFFER to signal this type of
response to the Client Application.

This type of “short buffer” response is allowed for null Memory Reference, enabling a design
where a first invocation uses a null Memory Reference to fetch the required size of output buffer,
and then uses a second invocation with another non-null Memory Reference containing an output
buffer of the necessary size.

A.4.3 TEE Client API Usage Concepts

The section outlines some of the usage patterns which the design of the TEE Client API makes use
of:

A.4.3.1 Operation Instantiation

To enable reliable multi-threaded implementations of cancellation this specification defines the
concept of Instantiation – a mechanism which can be used to put TEEC_Operation structures in to
a known state. If an Operation may be cancelled by the Client Application then the Client
Application must set the started field of the structure to 0 before calling either the
TEEC_OpenSession or TEEC_InvokeCommand function. If a Client Application is single
threaded, or is multi-threaded but will never cancel the operation by design, then there is no need
for the started field to be initialized.

Atomicity of Field Access

To enable multi-threaded TEE Client API implementations to effectively use the started field
across multiple-threads without the need for OS level locking, the underlying processor
architecture must allow atomic operations – such as “test and set”, “swap”, or “exclusive load and
store” – to operate on the started field. For this reason the started field has been chosen to be 32-
bits, as this is a commonly supported data size for atomic operations on the processor architectures
of interest.

This atomicity requirement typically means that the started fields must be naturally aligned
(aligned on a 4-byte boundary); otherwise the atomic instructions in the processors will not
function correctly. This requirement is automatically met by compliant C code and toolchains, but
many toolchains allow extensions to the C language which allow packed and / or unaligned
structures. Client Applications must not use these extensions; TEE Client API implementations
are allowed to assume the started field can be read or written atomically.

A.4.3.2 Multi-threading

43

The TEE Client API is designed to support use from multiple threads concurrently, using a
combination of internal thread safety within the implementation of the API, and explicit locks and
serialization in the Client Application code. Client Application developers can assume that all of
the API functions can be used concurrently unless an exception is documented in this
specification. The main exceptions are indicated below.

Note that the API can be used from multiple processes, but it may not be possible to share
contexts and sessions between multiple processes due to rich OS memory separation mechanisms.

Behavior which is not Thread-safe

TEE Contexts, Sessions, and Shared Memory structures all have an explicit lifecycles defined by
pairs of bounding “start” and “stop” functions:

 TEEC_InitializeContext / TEEC_FinalizeContext

 TEEC_OpenSession / TEEC_CloseSession

 TEEC_RegisterSharedMemory / TEEC_ReleaseSharedMemory

 TEEC_AllocateSharedMemory / TEEC_ReleaseSharedMemory

These functions are not internally thread-safe with respect to the object being initialized or
finalized. It is not valid to call TEEC_OpenSession concurrently using the same TEEC_Session
structure, for example. However, it is valid for the Client Application to concurrently use these
functions to initialize or finalize different objects; in the above example two threads could
initialize different TEEC_Session structures.

In cases where global shared structures need to be initialized the Client Application must ensure
that the initialization of each structure only occurs once using appropriate platform-specific
locking schemes to ensure that this requirement is met.

Once the structures described above have been initialized it becomes possible to use them
concurrently in other API functions, provided that the TEE and Trusted Application in use support
such concurrent use. A Client Application can concurrently register two different Shared Memory
blocks using the same TEE Context, or invoke two Commands within the same Session for
example.

A.4.3.3 Resource Cleanup

The specification of the “stop” functions described in section 3.3.2 is stateful and requires clean
Client Application resource unwinding:

 when releasing Shared Memory, the Client code must ensure that it is not referenced in a
pending operation

 when closing a session, there must be no pending operations within it

 when finalizing a TEE Context there must be no open sessions within its
scopeTEEC_RegisterSharedMemory / TEEC_ReleaseSharedMemory

The Client Applications must ensure these conditions are true, using platform-specific locking
mechanisms to synchronize threads if needed. Failing to meet these obligations is a programmer
error, and will result in undefined behavior.

A.4.4 Security

This section outlines the security policies of the TEE Client API, and highlights some of the
design requirements which are placed on an Implementation:

44

A.4.4.1 Security of the TEE and Trusted Applications

The implementation of the TEE and any Trusted Applications must treat any input from the rich
environment as potentially malicious; Client Applications are running outside of the TEE security
boundary and as such it must be assumed that they may be compromised by attack or may be
purposefully malicious.

In particular the following details may be of interest to a TEE or a Trusted Application developer:

 when closing a session, there must be no pending operations within it

 when finalizing a TEE Context there must be no open sessions within its
scopeTEEC_RegisterSharedMemory / TEEC_ReleaseSharedMemory

Shared Memory is memory owned by the rich environment and mapped into the TEE memory
space. Code inside the TEE and Trusted Applications must assume that the content of Shared
Memory is both untrusted and volatile; data stored in Shared Memory may be changed
maliciously at any time with respect to the execution of code inside the trusted environment. Note
that a well formed Client Application must follow the conventions for sharing memory, as
described in section A.3.2.5, in order to run with defined behavior.

Login Connection Methods

This specification defines a number of connection methods which allow an identity token for a
Client Application to be generated by the Implementation and presented to the Trusted
Application. This identity information is generated based on parameters controlled by some
trusted entity inside the rich operating system, such as the OS kernel, and as such it is a valid
security model for these login tokens to be generated by a trusted process within the rich operating
system rather than by the TEE itself. Trusted Application developers must therefore note that the
validity of this login token is therefore bounded by the security of the rich operating system, not
the security of the TEE.

A.4.4.2 Security of the Rich Operating System

In most implementations the TEE is a separate operating system which exists in parallel to the rich
operating system which runs the Client Applications. It is important that the integration of a TEE
alongside the rich operating system cannot be used to weaken the security of the rich operating
system itself. The implementation of the TEE Client API, the TEE, and the Trusted Application
must ensure that Client Applications cannot use the features they expose to bypass the security
sandbox used by the rich operating system to isolate processes.

[Quote Ends]

Note: The above represented text is a direct quote from the text published by GlobalPlatform in
[GP10]. G&D’s activities in contributing to the below mentioned standardization results were
coordinated with G&D’s activities in PrimeLife. More detailed specifications and sample code
can be found in the Chapters 4ff of [GP10].

