
Privacy and Identity Management in Europe for Life

Infrastructure for Privacy for Life

Editors: Ulrich Pinsdorf (EMIC)
Reviewers: Dieter Sommer (IBM)

Karel Wouters (K.U.Leuven)
Identifier: D6.3.2
Type: Deliverable
Version: 1.0
Class: Public
Date: January 31, 2011

Abstract

This report presents results from our research on privacy for Service Oriented Architectures.
It consists of two parts that mutually influenced each other in course of the project. The
first part gives a generalized overview of privacy-friendly data handling in cross-domain service
compositions. We sketch a generic framework that describes the general processing steps to
achieve privacy compliance and proper data handling. The framework abstracts from concrete
technologies and policy languages and is thus intended to support implementation based on
arbitrary technologies for service-oriented architectures. The second part shows the exemplary
implementation of a job application scenario. We used this scenario both to generate and test
ideas for the abstract privacy framework. Moreover, the demonstrator is the showcase for real
integration and test of the PrimeLife Policy Language (PPL). The scenario has been jointly
implemented by EMIC, SAP, and GD. We give technical insight in architecture and design of
this demonstrator.

project PrimeLife.

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 216483 for the

Members of the PrimeLife Consortium

1. IBM Research GmbH IBM Switzerland

2. Unabhängiges Landeszentrum für Datenschutz ULD Germany

3. Technische Universität Dresden TUD Germany

4. Karlstads Universitet KAU Sweden

5. Università degli Studi di Milano UNIMI Italy

6. Johann Wolfgang Goethe - Universität Frankfurt am
Main

GUF Germany

7. Stichting Katholieke Universiteit Brabant TILT Netherlands

8. GEIE ERCIM W3C France

9. Katholieke Universiteit Leuven K.U.Leuven Belgium

10. Università degli Studi di Bergamo UNIBG Italy

11. Giesecke & Devrient GmbH GD Germany

12. Center for Usability Research & Engineering CURE Austria

13. Europäisches Microsoft Innovations Center GmbH EMIC Germany

14. SAP AG SAP Germany

15. Brown University UBR USA

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is
given that the information is fit for any particular purpose. The below referenced consortium members
shall have no liability for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials subject to any liability which is
mandatory due to applicable law. Copyright 2010 by Unabhängiges Landeszentrum für Datenschutz,
Johann Wolfgang Goethe - Universität Frankfurt am Main, Giesecke & Devrient GmbH, Europäisches
Microsoft Innovations Center GmbH, SAP AG.

2

List of Contributors

Contributions from several PrimeLife partners are contained in this document. The
following list presents the contributors for the chapters of this deliverable.

Chapter Author(s)

Executive Summary Ulrich Pinsdorf (EMIC)

Chapter 1 Ulrich Pinsdorf (EMIC)

Chapter 2 Ulrich Pinsdorf (EMIC)

Chapter 3 Laurent Bussard (EMIC), Ulrich Pinsdorf (EMIC)

Chapter 4 Laurent Bussard (EMIC), Ulrich Pinsdorf (EMIC)

Chapter 5 Laurent Bussard (EMIC), Ulrich Pinsdorf (EMIC)

Chapter 6 Laurent Bussard (EMIC)

Chapter 7 Ulrich Pinsdorf (EMIC), Stuart Short (SAP)

Chapter 8 Fatih Gey (EMIC), Ulrich Pinsdorf (EMIC), Stu-
art Short (SAP)

Chapter 9 Fatih Gey (EMIC)

Chapter 10 Stuart Short (SAP)

Chapter 11 Ulrich Pinsdorf (EMIC)

3

4

Chapter Author(s)

Appendix A Laurent Bussard (EMIC). We would like to thank
Claudio Agostino Ardagna (Uni Milano), Gregory
Neven (IBM), Franz-Stefan Preiss (IBM), Slim
Trabelsi (SAP), Mario Verdicchio (Uni Bergamo),
and Rigo Wenning (W3C), who kindly accepted
to review the evaluation with their expertise on
respective systems.

Appendix B Fatih Gey (EMIC), Ulrich Pinsdorf (EMIC)

Executive Summary

This report presents results from our research on privacy for Service Oriented Archi-
tectures. It consists of two parts that mutually influenced each other in course of the
project.

The first part gives a generalized overview of privacy-friendly data handling in cross-
domain service compositions. We sketch a generic privacy policy framework that de-
scribes the general processing steps to achieve privacy compliance and proper data han-
dling. The framework abstracts from concrete technologies and policy languages and
is thus intended to support implementation based on arbitrary technologies for service-
oriented architectures.

The second part shows the exemplary implementation of a job application scenario.
We used this scenario both to generate and test ideas for the abstract privacy framework.
Moreover, the demonstrator is the showcase for real integration and test of the PrimeLife
Policy Language (PPL). The scenario has been jointly implemented by EMIC, SAP, and
GD. We give technical insight in architecture and design of this demonstrator.

This report offers three main takeaways:

1. First, it gives very precise, yet technology agnostic hints how to build a privacy
friendly service-oriented architecture. These findings are very generic and can be
applied on a wide range of concrete implementations. We describe the abstract
privacy policy framework in Chapters 3 to 5.

2. The second takeaway is the detailed analysis of existing privacy-enhancing tech-
nologies against the abstract privacy policy framework. We compare to what ex-
tend today’s solution fulfill or not fulfill the technical demands of a privacy-friendly
SOA. We present a summary in Chapter 6 and an extended evaluation in Appendix
A.

3. Thirdly, this report gives details about design and architecture of a privacy-friendly
SOA application. This eCV (electronic curriculum vitae) is also a showcase for the
PrimeLife Policy Language (PPL). Chapters 7 to 10 and Appendix B give details.

Although we present the two parts in the given order, both the theoretical aspect and
the practical implementation have continuously cross-fertilized each other. The imple-
mentation took advantage from the abstract privacy policy framework, while it provided
interesting use cases.

5

Contents

1 Aims of this document 15

2 Privacy in SOA 17
2.1 Service Oriented Architectures . 17
2.2 Design Goals . 18

I Abstract Privacy Policy Framework 21

3 Overview 23
3.1 Requirements . 25
3.2 Outline . 26
3.3 PII Provider . 29
3.4 PII Consumer . 29
3.5 PII Store . 29
3.6 Preferences Store . 29
3.7 Policy Store . 30
3.8 Sticky Policy Store . 30

4 A Closer Look at PII Provider Role 31
4.1 Service Discovery . 33
4.2 PII Lookup . 33
4.3 Policy Matching . 33
4.4 PII Selection . 34
4.5 Change Preferences . 34
4.6 Sticky Policy: Mutual Commitment . 34
4.7 Attach Sticky Policy . 34
4.8 Domain Specific Languages . 35

5 A Closer Look at PII Consumer Role 37
5.1 Provide Metadata . 38
5.2 Check Sticky Policy . 39
5.3 Authorization Decision . 39
5.4 Local Use . 39
5.5 Data Sharing . 39
5.6 Composing Sticky Policies . 39
5.7 Obligation Enforcement . 40
5.8 Action Hander . 40

7

8

5.9 Event Handler . 40
5.10 Log and Audit . 41
5.11 Trust Model . 41

6 Comparison of Privacy Policy Technologies in SOA 43
6.1 Scope of the Evaluation . 43

6.1.1 Evaluated Technologies . 43
6.1.2 Evaluation Criteria . 44

6.2 Results and Conclusion . 50

II eCV Demonstrator 53

7 eCV Scenario 55
7.1 Roles and Workflows . 55
7.2 End-to-End Workflow . 57
7.3 Showcases . 59
7.4 Joint Implementation . 61

8 Architecture 63
8.1 Conceptual Properties . 63

8.1.1 Development Environments . 63
8.1.2 Application Structure of Participants 64

8.2 Structure and Behavior of the eCV Scenario 64
8.2.1 Headhunter Tool . 64
8.2.2 Employer Tool . 68
8.2.3 Domain Expert Tool . 68
8.2.4 eCV Portal Tool . 68

8.3 Mapping eCV Scenario and Abstract Privacy Framework 69

9 Implementation Details on Data Controller Part 73
9.1 Implemented Parts of eCV Scenario . 73

9.1.1 Limited Scaleablilty and Concurrent Processing 73
9.1.2 Simplified Employer Tool and Domain Expert Tool 74
9.1.3 Controller Parts Considers Policy Obligations Only 74
9.1.4 Local PII Storages . 74
9.1.5 Integration of Enforcement Engine 75

9.2 Service Interfaces . 75
9.2.1 Headhunter Tool . 75
9.2.2 Domain Expert Tool . 76
9.2.3 Employer Tool . 77

9.3 Complex Features Explained . 77
9.3.1 Privacy Policy Visualization: The PPL Policy Editor 77
9.3.2 Headhunter and User Interaction via Secure Mobile Device 78
9.3.3 Dynamic Binding using WCF Service Discovery 79
9.3.4 Integration of OEE . 80

9

10 Implementation Details on Data Subject Part 81
10.1 Introduction . 81
10.2 eCV Scenario . 81
10.3 Web Services descriptions . 84

10.3.1 Claim Issuer . 84
10.3.2 ECV Claim Handler . 85
10.3.3 Job Handler . 86
10.3.4 Profile Handler . 87
10.3.5 Application Handler . 88

10.4 Technology Used . 89
10.4.1 Introduction . 89

11 Conclusions 91

A Detailed Comparison of Privacy Policy Technologies in SOA 93
A.1 PII Provider’s Preferences (Sect. 3.3) . 93

A.1.1 Simple Syntax . 93
A.1.2 Can Express Access Control . 95
A.1.3 Can Express Expected Data Handling 96
A.1.4 Can Express Expected Downstream Access Control 98
A.1.5 Can Express Expected Downstream Data Handling 99
A.1.6 Can Take Downstream Path into Account 100
A.1.7 Can Retrieve Applicable Preferences (Sect. 3.6) 102

A.2 PII Consumer’s Policy (Sect. 3.4) . 103
A.2.1 Simple Syntax . 103
A.2.2 Can Express Claims (Credentials) 105
A.2.3 Can Express Data Handling . 106
A.2.4 Can Express Downstream Claims (Credentials) 107
A.2.5 Can Express Downstream Data Handling 109
A.2.6 Can Retrieve Applicable Policy (Sect. 3.7) 110

A.3 PII Store (Sect. 3.5) . 111
A.4 Privacy-Aware Service Discovery (Sect. 4.1) 113
A.5 PII Lookup (Sect. 4.2) . 114
A.6 Policy Matching (Sect. 4.3) . 115

A.6.1 Has Logic Foundations . 115
A.6.2 Takes Data Handling into Account 117
A.6.3 Takes Obligations into Account . 118
A.6.4 Takes Downstream Properties into Account (One Hop) 120
A.6.5 Supports Recursive Downstream 121

A.7 PII Selection (Sect. 4.4) . 122
A.8 Change Preferences (Sect. 4.5) . 124

A.8.1 Can Show Mismatches . 124
A.8.2 Can Suggest Modifications . 125

A.9 Sticky Policy (Sect. 4.6) . 126
A.9.1 Optional Sticky Policy . 126
A.9.2 Can be Expressive . 128

10

A.9.3 Supports Signature or Commitment 129
A.9.4 Can Change Sticky Policy . 130
A.9.5 Can Store and Retrieve Sticky Policy (Sect. 3.8) 132

A.10 Attach Sticky Policy (Sect. 4.7) . 133
A.11 High-Level Policy Language (Sect. 4.8) . 134

A.11.1 Same Language for Preferences and Policies 134
A.11.2 Language Expressiveness . 136
A.11.3 Clear Separation of Obligations and Rights 137

A.12 Check Sticky Policy (Sect. 5.2) . 138
A.13 Authorization Decision (Sect. 5.3) . 140

A.13.1 Enforces Local Use, e.g. Purpose (Sect. 5.4) 140
A.13.2 Enforces Access Control when Sharing (Sect. 5.5) 141
A.13.3 Checks Downstream Data Handling when Sharing 142
A.13.4 Attach (New) Sticky Policy when Sharing 144

A.14 Composing Sticky Policies (Sect. 5.6) . 145
A.15 Obligations (Sect. 5.7) . 146

A.15.1 Supports Enforcement of Obligations 146
A.15.2 Checks Rights of Enforcing Obligations 148
A.15.3 Specifies Action Handler (Sect. 5.8) 149
A.15.4 Specifies Event Handler (Sect. 5.9) 151

A.16 Log and Audit (Sect. 5.10) . 152
A.17 Trust Model (Sect. 5.11) . 153
A.18 Protocol independent (HTTP, WS) . 155
A.19 Policy for Implicit PII (e.g. IP address) 156

B Demonstrator 159
B.1 Policy Mismatching Schema . 159
B.2 Example Messages of eCV Demonstrator 160
B.3 Screenshots of eCV Demonstrator . 164

Bibliography 174

List of Figures

1 Comparison of privacy policies in client/server architectures and in service-
oriented architectures. 24

2 Privacy-related aspects in Service Oriented Architectures 25
3 Overview of the generic privacy lifecycle in SOA applications 27
4 Generic privacy lifecycle in SOA applications in detail 28

5 Roles and communication paths in the eCV scenario 56
6 Showcases of the eCV Scenario . 59

7 Architecture of the eCV scenario . 65
8 Service Discovery of Domain Experts at eCV scenario’s headhunter tool . 66
9 eCV scenario’s headhunter tool as state machine 67
10 Sample Deployment of the eCV scenario 69
11 Mapping between the eCV Scenario and our generalization for privacy in

SOA . 71

12 eCV UI, PPL Editor . 77

13 eCV Scenario Overview . 82
14 Sequence Diagram eCV Scenario with focus on Data Subject 83
15 Claim Issuance . 84
16 eCV Profile . 85

17 Employer tool showing a job offer . 165
18 User interface of the headhunter tool . 166
19 Emulator for SAP’s eCV portal tool . 167
20 eCV portal tool emulator showing user’s privacy preferences as sticky

policy. The user does not allow downstream usage control. 168
21 eCV portal tool emulator showing user’s privacy preferences as sticky

policy. The user allows downstream usage control. 169
22 Headhunter tool UI showing the communicated sticky policy 170
23 Headhunter tool after having received assessed applications from the do-

main expert . 171
24 Domain expert tool’s user interface . 172
25 Employer tool showing a received job application 173
26 PPL Editor user interface. 174
27 Headhunter tool’s UI signaling that applicant does not allow downstream

data sharing . 175

11

12 List of Figures

28 Headhunter tool that needs to contact the applicant to resolve policy
matching conflict . 176

List of Tables

2 Instantiations of the abstract framework 45

3 Generic roles in the scenario . 60

4 Web Service Interface of HHT . 75
5 Web Service Interface of DET . 76
6 Web Service Interface of EPT . 77

13

Chapter 1
Aims of this document

Service-oriented architectures (SOA) is a technology-independent architecture concept
adhering to the principle of service-orientation. It aims at enabling the development and
usage of applications that are built by combining autonomous, interoperable, discover-
able, and potentially reusable services. Meissner et al. [MS09] collected in a PrimeLife
report a list of 39 requirements for privacy-friendly data handling in SOA. This report
tries to come up with a technical suggestion how SOA should be built, so that they
leverage the privacy of the end-users.

This document describes our research results from two different points of view. Part
I presents the condensed lessons learned on privacy policies in service oriented archi-
tectures. We describe these results in a technology agnostic way, so that they can be
applied on a large variety of technologies. In Part II we summarize our implementation
of a privacy-friendly service-oriented architecture. The Appendix contains more details
about both views on the topic.

The detailed structure of the report is as follows. Chapter 2 gives some background
on service-oriented architectures and introduces the privacy issues these systems imply.
Next, we give in Chapter 3 an overview of our abstract framework for privacy policies in
distributed systems. The concepts introduced there will be described in more detail in
Chapters 4 and 5. Chapter 4 focuses in the data provider’s while Chapter 5 concentrates
the data consumer. A comparison of the abstract framework with existing technologies
in Chapter 6 concludes Part I. This comparison shall validate our abstract approach and
show that the abstraction is sound enough to cover different implementations. Chapter
7 opens Part II and introduced the eCV scenario and the ideas why this setting was
chosen. Next, we describe the architecture of the whole eCV demonstrator in Chapter 8.
The two following Chapters highlight details of the two main parts of the demonstrator.
Chapter 9 features the “upstream” part of the demo, implemented by SAP, while Chap-
ter 10 emphasizes the “downstream” part of the demo, implemented by EMIC. Chapter
11 concludes the whole reports and summarizes the key-takeaways. Moreover, the re-
port features two Appendicies. Appendix A gives a very detailed explanation on the
evaluation of different technologies against the abstract framework for privacy policies.
Here goes special thanks to a number of external experts and reviewers who helped us to

15

16 Aims of this document

come up with this detailed reasoning. Finally, Appendix B offers XML schemas, example
messages, and screenshots from the eCV application.

The structure of this report offers different ways to read it. The two parts are self-
contained, i.e. the reader can understand each part without reading the other. We
suggest various aspects of the document for the different target audiences:

• Readers interested in a generalized approach for privacy in SOA should concentrate
on Chapters 3 to 6.

• Software Developers looking for an example showcase how to make an existing
SOA privacy-friendly should read Chapter 3, Chapters 7 to 10, and Appendix B.

• Researchers with interest to compare existing privacy-enhancing technologies should
refer to our comparison in Chapter 6 and Appendix A.

• Software Architects and Researchers interested in an exemplary integration of the
PrimeLife Policy Language into an existing application should refer to Chapter 9
and the PPL-related part in Appendix A.

• Related research projects which want to take up the idea of the eCV scenario will
find details on that in Chapters Chapters 7 to 10 and Appendix B.

This report does not contain an evaluation of the abstract framework for privacy
policies against the requirements for privacy-friendly data handling in SOA [MS09]. This
is because PrimeLife will produce a dedicated report on that. This document focuses
more on establishing a link between the abstract architectural considerations and the
experience we got from building a privacy-friendly SOA demonstrator application.

Chapter 2
Privacy in SOA

This chapter explains the term Service Oriented Architecture, the type of infrastructure
we want to apply privacy measures at.

2.1 Service Oriented Architectures

SOA is a technology-independent architecture concept adhering to the principle of service-
orientation. It aims at enabling the development and usage of applications that are built
by combining autonomous, interoperable, discoverable, and potentially reusable services.
These services jointly fulfill a higher-level operation through communication. They fall
in the class of distributed systems [CDK05].

One core principle of SOA is the so-called loose coupling of partial services: Single
services are not permanently bound to each others, but their binding happens only at
run-time enabling a dynamic composition of services [CK05]. Moreover, it is even feasible
to dynamically bind services hosted in different security domains and by different legal
entities. We refer to this as “cross-domain service composition” [BNP09]. One prominent
example for this are services rendered via so-called “service chains” that comprise of
several partial services offered by different organizations. To facilitate the use of such
services, usually one legal entity might serve as single point of contact for (potential)
customers. In times of the Internet, places of business of organizations providing partial
services for one high-level service can be widely distributed around the globe.

In many cases, a SOA might involve the processing of personal data and thus pose
risks for the privacy of data subjects concerned. Two specific risks can be identified
with regard to cross-domain service composition. The first concerns transparency of
processing of personal data: The involvement of different legal entities may lead to
the situation that data subjects are no longer aware of what data relating to them
are handled by what entity for what purpose. This is particularly true if services are
bound dynamically at run-time. In case a high-level service delivery involves different
organizations, but is exposed by only one of them, customers even might not be aware
of the involvement of further legal entities at all. The second risk concerns the issue

17

18 Privacy in SOA

of linkability of data: The use of standardized formats and interfaces within an SOA
facilitates linkage of systems and data sets. Without the implementation of appropriate
technical and organizational measures, organizations could be able to link different sets
of personal data and generate profiles on data subjects.

However, the implementation of an SOA also provides some options to achieve a
high level of privacy for the data subjects concerned. First, one can realize that each
single service that forms part of an SOA usually serves a specific purpose (e.g., au-
thentication, payment). In combination with privacy-compliant logging techniques, this
circumstance can be used to implement an automated review of adherence to the privacy
principle of purpose limitation. Second, tailoring of single services to specific purposes
simplifies determination of personal data that are really needed for the implementation
of the respective service. This circumstance facilitates adherence to the privacy princi-
ples of collection, use, and disclosure limitation as well as obeisance to the principle of
data minimization. Third, SOA provides some possibilities for the implementation of
an automated data protection management. This results from the fact that technical
integration of a SOA nowadays typically is taking place on the basis of web services and
XML. As the same holds true for existing and emerging standards for an automated data
protection management, these standards could easily be applied within an SOA.

This document aims at generalizing privacy-friendly data handling in multi-domain
service compositions. We sketch a generic framework that describes the general process-
ing steps to achieve privacy compliance and proper data handling. The framework is
designed in a way that it addresses multi-step data sharing by repeated application of
the same principle. Hence, we use the SOA design principle idea to chain services by
chaining our protocol to achieve proper data handling in a multi-domain service compo-
sition. The framework abstracts from concrete technologies and policy languages and is
thus intended to support implementation based on arbitrary technologies.

2.2 Design Goals

The abstract framework for privacy handling in SOA we are describing in this document
shall follow certain design principles.

Generalization. The framework shall be generic in a way that the reader can apply
the principles and protocols to any service-oriented scenario regardless of the technology
that is actually being used. Hence, rather than giving advise on specific technologies
(policy languages, communication protocols, etc.), we will stay quite abstract. However,
Chapter 6 gives an idea how the principles would be adopted with different technologies.

Abstraction from Scenario. The framework’s principles have to be general enough
that they can be applied to any service-oriented scenario. That means we cover variations
in the producer-consumer relations in a service chain, allow for arbitrary communication
patterns between the services, and do not assume or impose certain trust relationships1.

1In fact, the only trust assumption we make is that any communication partner adheres to agree-
ments it establishes with other communication partners. That means we do not enforce privacy by
technical measures, but motivate proper data handling for communication partners that would suffer

Section 2.2: Design Goals 19

The principles can be applied to applications where each service belongs to the same trust
domain as well as applications with services from different trust domains. We support
static and dynamic binding of subsequent services, which has an impact on the privacy
policies as well. Finally, we support variations in the business relationships between two
services, i.e. which service can or cannot impose execution conditions on the other, i.e.
which party selects the service level2.

Modular and iterative pattern. Service-oriented architectures take great strength
from the design principles of modularity and iteration of the same pattern. It makes sense
to follow the same approach here. The framework should be modular and self-contained
enough such that it involves only two parties, data provider and data consumer. At the
same time the principle shall be applicable in an iterative way. That means a former
data consumer may become the data provider in a next communication step of the SOA.
In that way our protocol may be used end-to-end throughout the service chain.

Non-invasive protocol. Building on iterative patterns, the framework should be com-
plementing the existing service communication but not impose that any service in the
service chain must use it. With that requirement our protocol can be used only in parts
of the service chain. It is up to any two communicating services if they follow the protocol
or not.

Late adoption. We support late adoption of the protocol. That is, any existing SOA
application shall be able to be enhanced even after deployments. Certainly, that may
cause invasive correction in the current implementation of the services, deployment of
new components, and mutual agreement of data provider and data consumer to support
this protocol. However, the protocol could be adopted only for parts of the service chain
as pointed out above.

Extensible with other privacy-enhancing technology. The protocol we suggest in
this document shall be complementing other privacy-enhancing technologies, such as data
encryption schemes, anonymous credentials, communication anonymization, trustworthy
user interfaces etc.

An explicit non-goal of our approach is to cover privacy-enhancing technologies like
anonymous credentials, privacy-aware queries, user interfaces, or provide concrete im-
plementations of the protocol. The reader may refer to Chapter 6 for comments on how
this protocol would be implemented with state-of-the-art technologies, but for sake of
general applicability we do not intend to go any further than that.

These goals set the guideline for an abstract framework addressing the lifecycle of
privacy policies in distributed systems. Meissner et al. [MS09] collected in a PrimeLife
report a list of 39 requirements for privacy-friendly data handling in SOA. It builds on

from a privacy incident at their company. In fact, the protocol we are suggesting creates evidence at
different parties’ sides about whom data was handled to, for which purpose, and under which data
handling constraints. In case of a privacy incident this information would make it easy to point out the
misbehaving party.

2cf. lazy binding in [BNP10]

20 Privacy in SOA

earlier research done in [BGS+07]. This list is more scenario-oriented and addresses both
technical and legal aspects. The list complements the design goals we give above.

Part I

Abstract Privacy Policy Framework

21

Chapter 3
Overview

This section gives a generalized overview of privacy-friendly data handling in cross-
domain service compositions. We sketch a generic framework that describes the general
processing steps to achieve privacy compliance and proper data handling. The framework
is designed in a way that it addresses multi-step data sharing by repeated application
of the same principle. Hence, we use the SOA design principle idea to chain services
by chaining our protocol to achieve proper data handling in a multi-domain service
composition. The framework abstracts from concrete technologies and policy languages
and is thus intended to support implementation based on arbitrary technologies for
service-oriented architectures. This approach allows for both an abstract consideration
of privacy implication and a late adoption. Late adoption means that any existing SOA
application shall be able to be enhanced even after deployment. Certainly, that may
cause invasive correction in the current implementation of the services, deployment of
new components, and mutual agreement of data provider and data consumer. Finally,
this framework focuses on the lifecycle of privacy policies and can be complemented by
other privacy-enhancing technologies that are described throughout this document, such
as data encryption, anonymous credentials, anonymous communication, trustworthy user
interfaces etc.

We introduce the idea for an abstract policy framework with a description of the
simplest possible scenario, a client-server interaction. Client-server technology can be
seen as the ancestor of service-oriented architectures, yet it is still the nucleus of each
service-oriented architecture pattern, since even the most complicated service interaction
can be broken down to individual interactions between two entities, which represent a
client and a server.

Figure 1(a) shows the usual scenario for privacy policies, which is also applicable
to client/server systems. The service exposes a privacy policy (e.g., P3P [W3C06])
expressing how it will handle collected data. The user has privacy preferences (e.g.,
APPEL [W3C02]) that reflects her expectations in terms of privacy. By comparing
privacy preferences and privacy policies, the user (or user agent) determines whether it
is suitable to share data.

Service-oriented architectures can be seen as applying client/server communication

23

24 Overview

PII

PII Provider PII Consumer

(a) PII exchange in Client-Server scenario

PII1

PII Provider
(of PII1, PII2, PII3)

PII Consumer (of PII1, PII2, PII3)
PII Provider (of PII1, PII3)

PII1, PII3

discovery

PII Consumer (of PII3)
PII Provider (of PII4)

PII2, PII3

aggregation

splitPrefA PolB SPB

PolE

PolD

PolC

SPE

PolF SPFPII1

PII3

PII4

PII Consumer (of PII1, PII3)
PII Provider (of PII1, PII3)

PII Consumer (of PII1)

PolG

PrefG

SPG

(b) PII exchange in Service Oriented Architecture

Figure 1: Comparison of privacy policies in client/server architectures and
in service-oriented architectures.

in a recursive way. The user invokes a single service. The service does not perform
the full operation itself, but invokes one or many other services to perform parts of the
task. These invoked services act likewise and in turn invoke other services. The result
is a tree1 of service invocation where each node represents a service. We can apply the
same recursive pattern to privacy policies that are communicated between the individual
services in a SOA.

Data is collected by a service (data controller) that may share it with third parties.
When third parties act on behalf of the data controller, they are referred as data proces-

1In theory the service invocation would even form a directed graph containing loops. But for sake of
simplicity and based on the common practice we assume the invocation graph is a tree.

Section 3.1: Requirements 25

sors. When third parties are in a different trust domain, they are referred as downstream
data controllers. In the latter case, the policy of the third party is taken into account
when deciding whether data can be shared.

3.1 Requirements

Figure 2 shows the complexity of privacy in cross-domain service compositions. We
observe the following privacy-related aspects:

Figure 2: Privacy-related aspects in Service Oriented Architectures

Downstream data are collected by services (data controller) that may share it with
third parties. When third parties act on behalf of data controllers, they are referred
to as data processors. When third parties are in a different trust domain, they are
referred as downstream data controllers [BNP10]. In the latter case, the policy of
third parties is taken into account by users (data subjects) when deciding whether
data can be shared.

Provider and Consumer stakeholders can have both PII Provider and PII Consumer
roles. For instance a service collecting customers’ e-mail addresses acts as a PII
Consumer but when this same service shares collected data with another (down-
stream) service, it acts as PII Provider.

Downstream accessibility A data subject can indirectly (i.e. downstream) interact
with a third party and subsequently have a direct interaction with this one.

26 Overview

Users can be PII Consumer in basic scenarios, users only provide data. However, a
human being can also collect personal data and act as a PII Consumer. In this
case the user must have a privacy policy expressing how he/she handles collected
data and must accept sticky policies (e.g. license in Enterprise Right Management
[Mic09]) attached to data (e.g. documents).

Aggregation collected data can be aggregated. Mechanisms to compute the privacy
constraints on the aggregation are necessary.

Split collected data can be split. Mechanisms to compute the privacy constraints on
each piece of data are necessary.

Privacy-aware service discovery privacy impact may be taken into account when
discovering services. Services may be ranked or filtered out based on privacy con-
straints.

Targeted disclosure PII selection (including Identity Selection) may require generat-
ing claims for a given party, or disclosing personal data to a group.

Distributed enforcement the enforcement of data handling (including access control
when sharing data) is done by each party getting access to a piece of data.

Distributed audit traces may be generated by all parties getting access to data. Mech-
anisms to federate the analysis of the audit traces are necessary.

3.2 Outline

We will now describe an abstract protocol that takes into account the complexity issues
for privacy that are arising from SOA. The protocol is technology agnostic, which has
the advantage that may be implemented in various ways. It is, hence, a blueprint how
to build privacy-enhancing SOA applications or – in case of late adoption – a blueprint
how to make an SOA application more privacy-preserving.

Figure 3 shows the abstract framework from a high-level perspective. It shows a PII
provider on the left and a PII consumer on the right side. This interaction can be applied
recursively on all segments in a service chain of a SOA application. A PII consumer will
then take the role of a PII provider as explained earlier, when it invokes other services.

The PII provider side consists of three building blocks: the PII provider behavior,
the PII store and the preferences store. The structure of the PII consumer side matches
and extends the structure of the PII provider, which is an enabler for switching the roles
from PII consumer to PII provider. The consumer part consists of the PII consumer
protocol, the PII store, the policy store (which is comparable to the preference store),
and an additional sticky policy store.

PII Store is the database for storing personal data. Depending on scenarios, this can
be a local database (e.g., on client machine), a service in the same trust domain (SQL
server at data collector side), or a service offered by a trusted third party (e.g., cloud
storage with appropriate trust model), a local credential store (certified PII), a remote
credential store (e.g., Security Token Service), or a combination of them. Preferences
Store is storing all privacy constraints. The Preferences Store keeps track of constraints

Section 3.2: Outline 27

PII Provider (P)

PII store

Pref store

piis GetPII(desc)

EditPII(newPII)

prefs GetPref(piiRef)

EditPref(newPref)

PII Consumer (C)

piiTypes GetAPI()

policies GetPolicy(piiType)

Request(piisP-C, SPP-C)
PII store

SP store

Policy store

StorePII(pii)

pii GetPII(piiRef)

StoreSP(sp, piiRef)sp GetSP(piiRef)

EditPolicy(newPolicy)

policy GetPolicy()

PII Provider sidePII Provider side PII Consumer sidePII Consumer side

Figure 3: Overview of the generic privacy lifecycle in SOA applications

that are locally defined (and can be overwritten) and committed (and must be enforced).
Policy Store is the information necessary to describe how data will be handled when sent
to this PII consumer. A policy can be statically defined or derived from the business
process. A policy can be generic or specific to a user (i.e. depending on authentication).
Moreover, a policy can be local or can depend on external policies (e.g., the policies
of downstream services). SP Store (sticky policies store) stores the policies that were
agreed between PII provider and consumer for a specific piece of information. The sticky
policy is a result from matching the PII provider’s preferences with the PII consumer’s
policy.

PII Provider and PII consumer communicate via a simple three-step protocol.

1. Requested PII types First, the PII provider asks the consumer side for the PII
types that are needed for the service invocation. This request may have different
technical incarnations. It could be a specification in a web form, it could be a
service description such as WSDL2, but it could also be a dedicated method call to
request this meta-data about the service that the PII provider intends to access. In
any case the PII provider learns about the types of information that are requested
to perform this service.

2. Policy request In the second step the PII provider asks for the policy that shall be
applicable to the provided information. In other words, it requests a description
(in a formal language) of the PII consumer’s commitment on how collected data
are going to be handled.

3. Service invocation In the third step, the PII provider submits the requested PII
together with a sticky policy for each data item.

Internally this three-step protocol is backed up by many sub-procedures and de-
cisions. We will look into this individually for PII provider and PII consumer when
discussing Figure 4 below. From this high-level perspective it is important to under-
stand that the PII store provides the personal data that is shared in the third protocol
step. The preference store allows to retrieve and edit stored information. The preference

2WSDL stands for web service description language.

28 Overview

store participates in the creation of a sticky policy for the submitted data items. The
privacy policy provided by the PII provider side is compared with the preferences for
this specific piece of information. The result of this matching process is a minimal policy
that considers both the PII provider’s preference and the PII consumer’s policy.

The internals on the PII provider’s side look very similar. The policy store allows
retrieving and editing policies, which are sent in the second protocol step. The PII store
is needed to store the received PII from the PII provider. While the PII is kept in
the PII store, the sticky policy is stored in the sticky policy store. However, a linking
mechanism, e.g., a dedicated link table in a database, keeps a relation between the piece
of PII data and the sticky policy.

This high-level protocol could be embedded in an existing application interaction.
The last protocol step is usually the service invocation of any given SOA application.
All we do is adding an interaction step that requests the required information before
the actual invocation. Service discovery mechanisms provide this information anyway,
but usually only on a data type level. For instance, a WSDL description clearly states
that a function call calculatePension(date) requires the parameter to be a data type
encoding a date. Today the service description is usually on a syntactical level. That
means the service description does not state that the submitted data has to be the user’s
date of birth. However, semantic web technologies even do specify this. Mechanisms
for requesting policies are widely used for Service Level Agreements (SLA). Hence, both
protocol steps 1 and 2 are special ways of meta-data lookups. The additional step when
adopting our scheme is that the service does this privacy-specific meta-data lookup before
the real service invocation.

PII Consumer

PII Provider

PII Lookup

Policy Matching

PII SelectionChange Pref

Mutual
Commitment

Attach SP

Handle service
response

PIIs + SPs

Service
Discovery

History

Check sticky
policy

Obligation
enforcement

Data Sharing
(act as

PII Provider)

Authorization
enforcement

Events Handler

Actions handler

Store

Local Use

PII Store

Pref Store

PII Consumers
Metadata
Provider

Pol StoreMetadata request

PII Consumer

SP Store

PII Store

Figure 4: Generic privacy lifecycle in SOA applications in detail

Figure 4 shows the Abstract Privacy Framework in more detail. The figure contains
again the top-level components for the PII Provider and the PII Consumer (dashed
boxes). Furthermore it shows the iterative approach by chaining from the PII Consumer

Section 3.3: PII Provider 29

to another PII Consumer. Each top-level component contains a best-practice workflow.
This workflow is an ideal, scenario-independent view on data handling in a composed
service. Moreover, the workflows introduce more components that should be part of each
role’s technical representation. The next sections describe all top-level components from
Figure 4. Chapters 4 and 5 go into more details for the PII Provider and resp. the PII
Consumer.

3.3 PII Provider

PII Provider P is the role of entities sharing personal data with PII Consumers. In most
scenarios, the user (or data subject) is acting as PII provider. Sharing personal data
with another party is generally restricted by privacy constraints (access control and/or
expected data handling). Those privacy constraints can be locally specified (e.g. a data
subject can specify privacy constraints on her data), can be external i.e. provided by
another party (e.g. a data controller sharing collected data with a third party has to
enforce constraints imposed by the data subject), or can be a combination of local and
external constraints. The PII Provider’s role is essentially about deciding whether it is
worth sharing pieces of personal data in order to get services from PII consumers.

3.4 PII Consumer

PII Consumer C is the role of entities collecting personal data provided by PII Providers.
In most scenarios, a service (or data controller) is acting as PII Consumer. PII consumers
are in charge of enforcing agreed data handling on collected data. Data handling is im-
posed by the PII Provider and can be refined by the PII Consumer. The PII Consumer’s
role is essentially about 1) checking whether actions are authorized before acting on
collected personal data and 2) enforcing obligations regarding those data.

3.5 PII Store

PII Store PII P is the database containing all personal data pii ∈ PII P of PII Provider
P . This database can be hosted by the PII Provider (e.g. part of the user agent) or
kept remotely (e.g. cloud storage). When personal data are signed credentials, the PII
Store can be a local credential store or a remote credential issuer (e.g. Security Token
Service).

3.6 Preferences Store

Preferences Store PrefsP contains all preferences of PII Provider P regarding any of
her personal data pii ∈ PII P . Preferences define how personal data has to be handled
by other parties. The PII Provider has preferences for each personal data she is ready
to share: ∀pii ∈ PII P · PrefsP [pii] 6= ∅. No preference would mean that no rights are
provided and all possible obligations are expected. Where Prefs[pii] is the subset of
preferences in Prefs that applies to pii . Preference Store can be local (e.g. part of the

30 Overview

user agent) or remote (e.g. provided by a trusted third party or by a group). At anytime,
a PII Provider can create or modify her preferences.

3.7 Policy Store

Policy Store PolsC contains privacy policies of data controller C regarding collected data.
Policies define how collected data are handled. The data controller has a policy for each
parameter param of each interface api collecting personal data: ∀api ∈ APIC ·∀param ∈
api ·PolsC [param] 6= ∅. Policies can be statically defined or derived from business process.
They may depend on the PII Consumer, e.g. when this one is authenticated. Moreover,
policies can be local or can depend on external policies (e.g. the policies of downstream
data controllers).

3.8 Sticky Policy Store

Sticky Policy Store SPC is very similar to Preferences Store (see section 3.6). It contains
sticky policies of each collected data piiC stored in PIIC , i.e. each instantiation of a
parameter param with a personal data pii ∈ PII P . Sticky policies are defined for each
collected data ∀piiC ∈ PIIC · PrefsC [piiC] 6= ∅.

Chapter 4
A Closer Look at PII Provider Role

This section provides more insight on components necessary to fulfill the “PII Provider”
role in Figure 4.

This sections illustrates the general steps a PII provider has to undertake internally
in order to support a privacy preserving protocol we described in the last section. The
figure is intended to be a block diagram, so it is neither just a workflow nor a collection
of software components, but rather a mixture of both.

The Service Discovery step refers to a mechanism to find and select one or more Data
Controllers to be used and get their meta-data, such as functionality, credentials, SLA.
Bringing together PII Provider and PII Consumer is necessary before any interaction.
We call this phase service discovery even if, in some scenarios, it can be initiated by the
PII Consumer. In our picture, requesting required PII and requesting privacy policies
are covered in two separate steps, but they could technically be merged into a single
meta-data request.

PII Lookup is a mechanism to determine whether the PII Requirements can be met
by the personal data in the PII store. It aims at finding all combinations of personal data
that may satisfy the request of the PII Consumer. The PII Provider can have different
personal data that match one element of the request and can even load or create new
personal data (enter a date in a form, attach a picture) with no a priori attributes. The
PII Consumer may accept different types of personal data (e.g., name and age), may
specify different attributes of PII (e.g., signed by a given third party), and may accept
special combinations of personal data (e.g., credit card number and expiry date must
come from the same credit card credential).

The Policy Matching mechanism decides whether personal data can be shared ac-
cording to its privacy constraints and the preference of the PII consumer. The selected
PII must not only match the requested PII in type and semantic, but also the privacy
preferences associated with the individual PII data items. Privacy preferences settings
are always specific to a given personal data. This can be the combination of different
privacy preferences. For instance, an e-mail address can be subject to preferences related
to any address, to any e-mail address, and to this specific e-mail address. Moreover a
given piece of data can be subject to constraints (preferences and sticky policies) from

31

32 A Closer Look at PII Provider Role

different parties e.g., data issuer (for a credential), data subject, or data controller (local
preferences). The preferences of the selected PII must match with the privacy policy of
the service. The PII selection process may be very complicated since the selected PII
and its associated preference mutually influence each other and must comply with the
service policy. For instance, the user could have multiple credit cards with different pri-
vacy preferences. Hence, the user can influence the policy matching process by selecting
the specific piece of PII and by changing the policy preferences sticking to this PII. The
block diagram reflects this with a loop around PII selection, policy matching, and PII
selection.

PII Selection is a process which allows the user to pick the appropriate PII from the
PII store. PII selection can be seen as an extension to Identity selection (e.g. Identity
Selector such as CardSpace1) where not only minimal disclosure is taken into account
but also privacy policies.

The selection could be done automatically or in a manual process by the data con-
troller. It is already challenging finding a suitable solution in the search space across
multiple user credentials, but it may be even more challenging to visualize this com-
plexity to the user. In case of more than one suitable solution the user must also be
empowered to understand what the best solution is. This needs proper user interface
support. Depending on the actual case the user may want to pick the solution that en-
forces the most restrictive privacy preference, the solution that shares the least amount
of data, or the solution which does not use a specific set of credentials.

As interesting as finding a valid combination of credentials with associated preferences
is thinking about the non-matching case. When there is no suitable option, the user needs
to understand the reason why there is no match and propose different options to proceed.
The user could simply stop the transaction and not invoke the service at all. Probably
he/she would repeat the service discovery step and pick another service that provides
a similar functionality. The user could also continue the processing and violate his/her
own preferences, respectively adapt the preference in the preferences store so that the
PII selection yields at least one match. In principle, the service could adapt its privacy
policy as well, e.g., if the user picks a more expensive service level (“premium service”
vs. “free service”).

When the user decides to amend his/her privacy preference in order to achieve a
match with the PII consumer’s policy, we cover this in the step change preferences. Note
that different types of updates can be envisioned ranging from adding a preference for
this specific case to changing the preferences that covers a larger group of PII Consumers
and/or personal data.

Finally, when the PII selection was made that matches the policy, we create a mutual
commitment between the PII provider and the PII consumer. We call this step com-
mitment rather than agreement, since we see a policy negotiation as an optional step.
In other words, we assume for most use cases the privacy policy of the PII consumer is
fixed and any adaptation will be made on the preferences of the data provider. Hence,
this leads to a mutual commitment, but not necessarily to a negotiation.

The agreement itself can be a sticky policy or just a Boolean response indicating an
acceptance of the PII Consumer’s policy. A more sophisticated technical implementation

1More details on CardSpace at http://msdn.microsoft.com/en-us/library/aa480189.aspx

Section 4.1: Service Discovery 33

could even foresee statement that is signed by both parties or witnessed by a trusted
party.

In case the agreement is expressed with a sticky policy, which we assume here without
loss of generality since it is the most expressive form of agreement, the sticky policy may
specify recursively usage control that must be enforced by the PII consumers (including
downstream). Indeed, usage control may specify access control towards downstream
services including downstream usage control.

The action to attach a sticky policy involves the communication of the requested PII
from the data provider to the data consumer together with the sticky policy. In other
words this step also involves the service invocation. When this step has been performed,
the PII consumer possesses the requested PII and the sticky policy. Technically the
communication of PII and sticky policy can be performed in a single service call or in
two separate calls. Moreover, one sticky policy may apply to multiple pieces of data. In
any case, it is necessary to keep the link between data and the related sticky policy. The
PII provider may keep track of this interaction in a history store. This is helpful e.g.,
when a trusted third party audits the PII consumer at a later point in time, when the
user wants to base a PII selection decision on earlier decisions, or when the user wants
to verify to whom a certain piece of data was disclosed under which conditions.

4.1 Service Discovery

Service Discovery is the process of listing potential PII Consumers. Service Discovery
takes into account functional properties as well as non-functional properties such as QoS
and privacy. This returns a set of discovered interfaces API disc with privacy policies
defined for each parameter param ∈ api ∈ API disc . Note that optional parameters also
need a policy. For instance, a PII Consumer asking for param1 ∨ param2 where param1

= birth date and param2 = proof of majority, has to provide privacy policy for both
parameters even if the PII Provider will only assign one of them.

4.2 PII Lookup

PII Lookup aims at finding all combinations of personal data that satisfy PII Consumers,
i.e all discovered interface API disc . A PII Consumer may accept different types of
personal data (e.g. confirmation by e-mail or by SMS), may specify different attributes
on personal data (e.g. claim signed by a given third party), and may accept different
combinations of personal data. The result of the lookup is a set of possible personal data
PII param for each param in each api ∈ API disc . Preferences must exist for each personal
data. When personal data is created on the fly (e.g. when filling HTML Forms), generic
preferences are used or new preferences are created.

4.3 Policy Matching

Policy Matching aims at deciding whether privacy expectations PrefsP [pii] regarding
personal data pii are satisfied by privacy promises PolsC [param] regarding a parameter
param before assignment param ← pii .

34 A Closer Look at PII Provider Role

We say that privacy constraint p2 is a valid enforcement of p1 when p1 is more permis-
sive than p2, denoted as p1�p2, i.e. p1 specifies more rights and/or less obligations than
p2. We use this operator to implement matching as PrefsP [pii]�PolsC [param]. Match-
ing is mainly checking that all privacy constraints defined in preferences and policies can
be satisfied.

4.4 PII Selection

PII Selection aims at selecting (or creating) a suitable piece of personal data pii sel for
each parameter paramsel that has to be instantiated. ∀(paramsel ← pii sel)·PrefsP [pii sel]�
PolsC [paramsel]. When the PII Provider is the data subject, she can decide to override
a mismatch and modify her preferences (see Sect. 4.5).

PII Selection is a complex task that may combine service selection, minimal disclosure
(selection and combination of individual pieces of data), identity selection (when personal
data are claims), mismatches solving (based on metrics to compare mismatches), impact
of released data [ADF+10], and history of previously released data.

4.5 Change Preferences

In case of mismatch, i.e. ∃(paramsel ← pii sel) · PrefsP [pii sel] 6 �PolsC [paramsel], the
PII Provider may decide to modify her preferences. Change Preferences aims at re-
placing preferences PrefsP by Prefs ′P so that ∀(paramsel ← pii sel) · Prefs ′P [pii sel] �
PolsC [paramsel].

A usual example is to extend generic preferences (e.g. by default any bookseller
can use my e-mail address to confirm order) with a specific exception (e.g. a specific
bookseller can also use my e-mail address for advertisement).

4.6 Sticky Policy: Mutual Commitment

The Sticky Policy sp expresses the agreement between the PII Provider and PII Con-
sumer. The enforcement of the sticky policy has to be an acceptable enforcement
of the PII Provider’s preferences, i.e. PrefsP � sp. Behavior of the PII Consumer
has to be a valid enforcement of the sticky policy, i.e. sp � PolsC . More precisely:
∀(param ← pii) · PrefsS [pii] � spparam←pii � PolsC [param]. Generating a sticky policy
is about finding an instance that satisfies all privacy constraints defined in preferences
and policies.

Depending on the use case, the sticky policy may have to be signed by one or both
parties to ensure integrity, authentication of origin, and non-repudiation.

4.7 Attach Sticky Policy

The link between the sticky policy and the data it applies to has to be preserved when
communicated, when stored in databases, and when the data is shared further (i.e.
downstream). Depending on the trust model, different mechanisms can be used. For

Section 4.8: Domain Specific Languages 35

instance, Enterprise Right Management [Mic09], could bind sticky policies (licenses) to
personal data (document).

4.8 Domain Specific Languages

Multiple representation of a policy language can be envisioned: XML representation,
English assertions, predefined options (check boxes), or graphical. Those representations
have to be translated to the underlying language. Retrieved policies and results from
reasoning (e.g. sticky policy, mismatching information) need a valid translation to the
representation chosen by the PII Provider [Rah10].

Chapter 5
A Closer Look at PII Consumer
Role

This section provides more insight on components necessary to fulfill the “PII Consumer”
role in Figure 4.

This section illustrates the general steps a PII consumer has to undertake internally
in order to support a privacy-preserving protocol we described in Section 3. Again, this
figure is intended to be a block diagram, so it is neither just a workflow nor a collection
of software components, but rather a mixture of both.

The Metadata Provider is the matching part to the meta-data request on the PII
provider side. It provides the requester with a functional description of the service and
optionally with the SLA. In this context it is important that meta-data states information
about certification, the PII requirements, and the privacy policy. The information is
gathered from the service implementation itself, e.g., could be part of a WSDL document,
and from the policy store. The meta-data can be static, which means each caller gets
the same information, or the meta-data can be dynamic, in which case (part of) the
information is specific to the context of the request. For instance, different callers (PII
providers) may get different privacy policies because the PII consumer shares individual
legal agreements with the various PII providers. Another example is that the policy
depends on the geographical region of the caller.

Now, the PII provider digests this information, selects the right PII data, matches
preferences and policies. Finally, the PII provider invokes the PII consumer’s service
and thus submits the requested PII and a sticky policy. The PII provider must verify
that the sticky policy indeed matches its policy. This check is necessary to avoid service
errors or even legal implications through a wrong sticky policy. The sticky policy could,
for instance, disregard the PII consumer’s policy and define arbitrary obligations for the
PII consumer.

Since we consider sending the PII and the sticky policy as a single step, the PII
consumer’s answer is the result of the service invocation.

During the execution of the service or thereafter the PII Consumer may store the
data and likewise the sticky policy. Moreover the PII consumer needs to establish a link

37

38 A Closer Look at PII Consumer Role

between both data items. That is, the service provider needs to remember which PII is
associated with which sticky policy and vice versa. The PII is stored in the PII store,
the sticky policy is kept in the SP store. The link between both goes either as a reference
to both stores to allow a bidirectional mapping or is kept in a dedicated data structure
that holds references to the respective entries in PII store and SP store.

Even after the service invocation, the PII consumer may want to take advantage of
the collected PII and use this data for an allowed purpose. We distinguish two ways
to use these data: it might be used for local purposes or it might be passed on to a
third party. Local use means that the data is used inside the trust domain of the PII
consumer, e.g., by a second service that operates on the same PII store. In this case the
PII consumer has to verify if the data is allowed to be used for the given purpose. A
different case is passing on the data to a third party, i.e. a PII consumer in a different
trust domain. This is the moment when the PII consumer switches its role to become a
PII provider. In both cases the verification access rights to stored PII is performed by
an access control engine, which enforces the authorization. The sticky policy associated
with each piece of PII helps the authorization engine to decide whether the user agreed
to this purpose or not.

But besides guarding collected data whenever it is accessed, the PII consumer has
to follow-up on obligations that were agreed with the PII provider. It has to react to
events (scheduled or relevant) and execute appropriated actions. We foresee two types
of infrastructure component in a PII provider-side obligation enforcement engine. First,
there are action handlers. The action handlers are the link to the legacy systems in the
PII provider’s IT infrastructure, e.g., a database or mail server. Their duty is to execute
actions on legacy applications such as sending notification, logging, or deleting data.
The second component type is the event handler. It is responsible for handling events
from legacy systems that are relevant from a privacy point of view. Typical events are a
time-based events and data access events from the legacy system.

An interesting extension is the logging of all obligation enforcement actions and access
control decisions. A formalized logging would allow that a trusted third party, such as a
accredited auditor, compares these logging data with the obligations in the sticky policy.
An automated matching process would enable the auditor to see which obligations were
kept by the PII provider and certify the PII consumer accordingly.

5.1 Provide Metadata

Each PII Consumer C must provide metadata about it’s service. This paper only fo-
cuses on data collected as parameters param of an interface apiC and associated policy
PolsC [param]. The PII Consumer has to enforce its policy, i.e. PolsC �BehaviorC . In
other words, the PII Consumer has to 1) check that its policy is enforceable, e.g. not
committing to delete data within one day when some specific execution may require one
week, and 2) enforce (sticky) policies.

Section 5.2: Check Sticky Policy 39

5.2 Check Sticky Policy

When personal data pii is assigned to parameter param with sticky policy spparam←pii,
the PII Consumer C has to check that this is a valid sticky policy, i.e. spparam←pii �
PolsC [param]. Otherwise, a malicious PII Provider may provide sticky policies with
insufficient rights or with too strict obligations. This check can be part of a mutual
commitment protocol.

5.3 Authorization Decision

Checking authorization before using collected personal data is often necessary. This
step can be skipped in static settings where policies do not evolve and service execution
cannot violate the policy. Authorization decision regarding action a on data pii results
in checking sppii � Behavior(a, pii). There are mainly two types of actions: 1) using
locally (within PII Consumer’s trust domain) collected data and 2) sharing collected
data with a third party.

5.4 Local Use

Local Use refers to the use of personal data within the trust domain of the PII Consumer
for a given purpose. This also covers data controller sharing data with a data processor
under its control.

5.5 Data Sharing

Data Sharing is the action of sharing collected data with a third party (downstream PII
Consumer). In this case the data controller C (formerly acting as PII Consumer) acts
as a PII Provider and the third party acts as a PII Consumer C ′. The main difference
between P providing pii to C and C sharing pii with C ′ is that P can override her
preferences PrefsP [pii] to have a match with PolC [param] while C cannot override
SPparam←pii.

5.6 Composing Sticky Policies

Personal data can be merged and extracted. Computing the policy of resulting personal
data is not straightforward and is out of the scope of this paper.

When combining data pii1 with sticky policy sp1 and data pii2 with sticky policy
sp2, we have pii1,2 = f(pii1, pii2) and corresponding sticky policy sp1,2 where sp1�sp1,2
and sp2�sp1,2. Note that this does not apply when the resulting data pii1,2 is structured
and makes it possible to refer to initial data (e.g. pii1) and different sticky policies can
thus be applied to different part of pii1,2.

When data piib (e.g. street name) is extracted from piia (e.g. address) with sticky
policy spa, the sticky policy spb to apply to piib = g(piia) must satisfy spa � spb. In
other words, composing data cannot increase permissiveness.

40 A Closer Look at PII Consumer Role

5.7 Obligation Enforcement

A set of well-defined obligations has to be available to let PII Provider and PII Consumer
agree on the PII Consumer’s obligations. We define an obligation as a pair (a, T), where
a is an action and T = (t1, t2, . . . , tn) is a set of triggers, meaning “Do action a when
triggers ∈ (t1, t2, . . . , tn)”. The element “action” defines the action to execute in order to
fulfill the obligation and elements “triggers” specify the events and conditions requiring
the execution of this action. For instance data retention of one year could be expressed
as (Delete(thisPII), (AtT ime(now, now + 365d))).

5.8 Action Hander

Action Handler is a mechanism to implement the enforcement of actions to execute in
order to fulfill obligations. Different actions can result from an obligation: logging,
deleting data, notifying data subject, etc. Since it is not possible to define an exhaustive
list of actions, domain-specific extensions should be possible.

For instance, in PPL [Pri10a], the following actions are predefined:

• ActionSecureLog(integrityLevel, confidentialityLevel, nonRepudiationLevel, timeS-
tampingLevela, availabilityLevel): the action of logging specific events related to
personal data.

• ActionDeletePersonalData: the action of deleting personal data.

• ActionAnonymizePersonalData: the action of removing identifiers from personal
data

• ActionNotifyDataSubject(media, address): the action of notifying data subject
about specific events related to personal data.

5.9 Event Handler

Event Handler is a mechanism to trigger actions in order to fulfill obligations. Different
events can trigger an obligation: scheduler, access decision, action on data, sharing data,
request from data subject, violation of an obligation, etc. Since it is not possible to
define an exhaustive list of triggers, domain-specific extensions should be possible.

For instance, in PPL [Pri10a], the following triggers are predefined:

• TriggerAtTime(start, maxDelay): executes once the associated action at some time
between start and start + maxDelay.

• TriggerPeriodic(start, end, maxDelay, period): executes once per period the asso-
ciated action.

• TriggerPersonalDataAccessedForPurpose(purpose, maxDelay): executes the asso-
ciated action each time the personal data is used for specified purposes.

Section 5.10: Log and Audit 41

• TriggerPersonalDataDeleted(maxDelay): executes the associated action when the
personal data is deleted.

• TriggerPersonalDataSent(thirdParty, maxDelay): executes the associated action
when the personal data is shared with a third party.

• TriggerDataLost(maxDelay): executes the associated action in case of major issue
leading to data theft.

• TriggerOnViolation(obligation, maxDelay): executes the associated action in case
of violation of the referenced obligation.

5.10 Log and Audit

When each privacy-relevant action is logged, an internal or external auditor can verify
that the behavior observable in trace Behaviorlog is compliant to the policies. In other
words ∀pii ∈ PIIC · ∀bpii ∈ Behaviorlog[pii] · SPC [pii] � bpii where bpii is a behavior
related to data pii. When data are shared with third parties, it is necessary to take their
policy into account or to perform a distributed audit.

5.11 Trust Model

The abstract framework presented in this paper requires that PII Consumer enforces
(sticky) policies. This trust model can be implemented with different mechanisms: 1)
PII Provider may know that PII Consumer cannot afford decreasing its reputation, 2)
PII Consumer may be audited and certified, and 3) PII Consumer may prove that it is
relying on trustworthy hardware (e.g. TPM) and software.

Chapter 6
Comparison of Privacy Policy
Technologies in SOA

The Abstract Privacy Policy Framework (see Chapter 3) defines an ideal setting to en-
force privacy policies in Service Oriented Architectures (SOA). In this chapter, the ab-
stract framework is instantiated with concrete technologies in order to compare them.
More precisely, criteria emerging from the abstract framework are used to compare ex-
isting privacy policy technologies and to evaluate their relevance to implement privacy
policies in SOA.

6.1 Scope of the Evaluation

Several parts of the abstract framework are covered by existing privacy-enhancing tech-
nologies. Table 2 summarizes the evaluation of five privacy policy technologies (APPEL
+ P3P, PrimeLife Policy Language, SecPAL for Privacy, remote configuration of access
control, and PRIME data handling policy) with around fifty criteria derived from compo-
nents of the abstract framework. We have chosen criteria corresponding to key features
of the eCV scenarios, possible extensions, and its generalization as abstract privacy pol-
icy framework. The list of criteria covers major issues when applying privacy policies
to service oriented architecture but could be extended with other aspects of privacy or
more detailed criteria. Each cell of this table is briefly described in Appendix A. This
appendix provides for all evaluation criteria: 1) a short description of the criterion, 2) a
description of each defined value for the evaluation of the implementation, 3) a descrip-
tion of each defined value for the evaluation of possible extensions, 4) an evaluation of
each technology according to those criteria.

6.1.1 Evaluated Technologies

This section briefly describes each privacy policy technology that is (or may be) evalu-
ated, i.e. each column of Table 2.

43

44 Comparison of Privacy Policy Technologies in SOA

The first instantiation of the abstract framework is based on a combination of two
well-known standards: privacy preferences are expressed with APPEL (A P3P Preference
Exchange Language) [W3C02] and privacy policies are expressed with P3P (the Platform
for Privacy Preferences Project) [W3C06]. Enforcement may rely on other technology
such as EPAL (Enterprise Privacy Authorization Language) [AHK+03].

The second instantiation of the abstract framework is based on PrimeLife Policy
Language (PPL) [Pri09a, Pri10a] an extension of XACML [Ris10] with support for data
handling. This technology is well aligned with the evaluation criteria since a large part
of them were informally taken into account during its design. PPL is also the language
used in the prototype demoing privacy in service oriented architecture (see Chapter 8).

The third instantiation of the abstract framework is based on SecPAL for Privacy
(S4P) [BMB10] an extension of logic-based authorization language SecPAL [BFG09].
Logic foundations makes it possible to reason on the causes of mismatches and further-
more to propose modification of preferences and/or policies thanks to abduction queries
[BMD09].

The fourth instantiation refers to remote management of access control policies (AC)
by the Data Subject at the Data Controller. In this setting, the data subject uploads her
data to a data controller and configures the access control policy that must be enforced
by this data controller. The evaluation assumes an expressive access control language,
i.e. XACML [Ris10]. This approach can be considered as “inadequate” [KA10] to enforce
privacy but is largely used. For instance OAuth [HL10] and User-Managed Access (UMA)
[Kan] offer remote management of access control policies.

The fifth instantiation is based on the PRIME Data Handling Policy (PDH or
PRIME-DHP) [ACDCdVS08]. This language is focusing on privacy policies but lacks
important features to enable multi-hop data handling.

In this evaluation, we decided not to address technologies related to Usage Con-
trol and Right Expression such as eXtensible rights Markup Language (XrML) [Con02],
Obligation Specification Language (OSL) [PSSW08], MPEG-21 REL [Wan04], or Open
Digital Rights Language (ODRL) [ODR02]. Even if those technologies could be used to
express and enforce privacy constraints on personal data, the way constraints are agreed
upon is fundamentally different than what is required to implement privacy in service
oriented architectures. Indeed, in usage control and rights management, constraints
are imposed by the author (i.e. the data subject) without preliminary protocol with
the party receiving the data. As a result key features such a preferences, policies, and
matching algorithm are out of scope.

6.1.2 Evaluation Criteria

This section describes all criteria used to evaluate relevence of privacy policy technologies
in SOA, i.e. all rows of Table 2.

PII Provider’s Preferences (Sect. 3.3)

- Simple Syntax : Privacy preferences are expressed in a human-readable language.
Syntax and semantics are well defined and can be processed by machines. See
details in Appendix A.1.1.

Section 6.1: Scope of the Evaluation 45

Abstract features / Concrete technologies A+P PPL S4P AC PDH
PII Provider’s Preferences (Sect. 3.3)
- Simple Syntax G# G# # # G#
- Can Express Access Control G# G# # # G#
- Can Express Expected Data Handling G# G# # # G#
- Can Express Expected Downstream Access Control G# G# # # G#
- Can Express Expected Downstream Data Handling G# G# # # #
- Can Take Downstream Path into Account G# G# G# G# # # #
- Can Retrieve Applicable Preferences (Sect. 3.6) # G# G# # # # G#
PII Consumer’s Policy (Sect. 3.4)
- Simple Syntax G# G# G# # G# G#
- Can Express Claims (Credentials) G# G# #
- Can Express Data Handling G# G# #
- Can Express Downstream Claims (Credentials) G# G# G# #
- Can Express Downstream Data Handling G# G# # # G# G#
- Can Retrieve Applicable Policy (Sect. 3.7) G# G# G# # #
PII Store (Sect. 3.5) # G# G# G# # #
Privacy-Aware Service Discovery (Sect. 4.1) # G# # # G# # # #
PII Lookup (Sect. 4.2) # G# G# # G# G# # G#
Policy Matching (Sect. 4.3)
- Has Logic Foundations # G# # G# # # G#
- Takes Data Handling into Account G# G# # # G#
- Takes Obligations into Account G# G# G# # # G#
- Takes Downstream Properties into Account (One Hop) G# # G# # # #
- Supports Recursive Downstream # # G# # # #
PII Selection (Sect. 4.4) # # # # G# G#
Change Preferences (Sect. 4.5)
- Can Show Mismatches # G# G# G# # # # #
- Can Suggest Modifications # G# G# G# # G# # # #
Sticky Policy (Sect. 4.6)
- Optional Sticky Policy # # G# G#
- Can be Expressive # # #
- Supports Signature or Commitment # # # # G# #
- Can Change Sticky Policy # # G# # G# # #
- Can Store and Retrieve Sticky Policy (Sect. 3.8) # # G# # G#
Attach Sticky Policy (Sect. 4.7) # # G# # G# G#
High-Level Policy Language (Sect. 4.8)
- Same Language for Preferences and Policies # # G# G# # # #
- Language Expressiveness # G#
- Clear Separation of Obligations and Rights # # G# G#
Check Sticky Policy (Sect. 5.2) # # # #
Authorization Decision (Sect. 5.3)
- Enforces Local Use, e.g. Purpose (Sect. 5.4) # # G#
- Enforces Access Control when Sharing (Sect. 5.5) # G# #
- Checks Downstream Data Handling when Sharing # # # # # #
- Attach (New) Sticky Policy when Sharing # # # # G# G#
Composing Sticky Policies (Sect. 5.6) # G# # G# # G# G# # #
Obligations (Sect. 5.7)
- Supports Enforcement of Obligations # G# G# G#
- Checks Rights of Enforcing Obligations # # # G# # G# G#
- Specifies Action Handler (Sect. 5.8) # G# # G# G#
- Specifies Event Handler (Sect. 5.9) # G# # G# G# G#
Log and Audit (Sect. 5.10) # G# G# G# # G# G# G#
Trust Model (Sect. 5.11) # # # G# G# G# # G#
Protocol independent (HTTP, WS) # G# G#
Policy for Implicit PII (e.g. IP address) G# # # #

Table 2: Instantiations of the abstract framework. Features are rated as
completely implemented , partially implemented G#, or not implemented
#. The second column refers to features that could be implemented without
breaking changes , that could be partially implemented G#, or that would
require important changes #.

46 Comparison of Privacy Policy Technologies in SOA

- Can Express Access Control : The language used to express privacy preferences
supports access control, i.e. the data subject can specify which (or what kind of)
data controllers can get a given type of personal data. See details in Appendix
A.1.2.

- Can Express Expected Data Handling : The language used to express privacy pref-
erences lets the PII Provider specify how collected data must be handled by the
PII Consumer. See details in Appendix A.1.3.

- Can Express Expected Downstream Access Control : The preferences can express
access control constraints on third parties. In other words, the preferences specify
with what kind of third parties the data controller is authorized to share collected
data. See details in Appendix A.1.4.

- Can Express Expected Downstream Data Handling : The preferences can express
data handling constraints on third parties. In other words the preferences specify
how third parties are expected to handle data they would get from data controllers.
See details in Appendix A.1.5.

- Can Take Downstream Path into Account : Privacy constraints that apply to data
controllers downstream depend on the path. In other words, it is possible to have
different privacy constraints for personal data d at service S when S is a data
controller directly collecting d, when S acts as downstream data controller and
gets d from data controller S1, or from data controller S2. See details in Appendix
A.1.6.

- Can Retrieve Applicable Preferences (Sect. 3.6): This technology provides a mech-
anism to get the privacy preferences that apply to a piece of personal data. This
mechanism supports different types of personal data: retrieved from a PII Store
(e.g. a database), dynamically created by the user (e.g. free text in a HTML
Form), or certified (e.g. attributes of credentials). See details in Appendix A.1.7.

PII Consumer’s Policy (Sect. 3.4)

- Simple Syntax : Privacy policies are expressed in a human-readable language. Syn-
tax and semantics are well defined and can be processed by machines. See details
in Appendix A.2.1.

- Can Express Claims (Credentials): The policy language can describe trust level
and certification of PII Consumers. For instance, it is possible to link Public Key
Infrastructure to the policy. See details in Appendix A.2.2.

- Can Express Data Handling : Privacy policies can express proposed data handling
in terms of purpose, obligations, etc. In other words, PII Consumers express how
collected data will be handled. See details in Appendix A.2.3.

- Can Express Downstream Claims (Credentials): The policies can express creden-
tials of third parties. In other words the policy specifies with what kind of third
parties the data controller may share collected data. See details in Appendix A.2.4.

Section 6.1: Scope of the Evaluation 47

- Can Express Downstream Data Handling : The policies can express proposed data
handling of third parties. In other words the policy specifies how third parties
would handle data they may get from the data controllers. See details in Appendix
A.2.5.

- Can Retrieve Applicable Policy (Sect. 3.7): There is a mechanism to get or generate
the policy applicable to a given parameter, e.g. one “label” of an HTML Form, one
parameter of a Web Service, or one claim of a requested credential. See details in
Appendix A.2.6.

PII Store (Sect. 3.5)

- Personal data are stored in a database and can be queried according to attributes
such as the type of data (e.g. e-mail address) or its certification (e.g. name in
identity card). See details in Appendix A.3.

Privacy-Aware Service Discovery (Sect. 4.1)

- This technology provides mechanisms to discover services based on functional prop-
erties and on non-functional properties such as privacy. See details in Appendix
A.4.

PII Lookup (Sect. 4.2)

- This technology offers mechanisms to gather pieces of personal data that are re-
quired by a given interface of the PII Consumer. See details in Appendix A.5.

Policy Matching (Sect. 4.3)

- Has Logic Foundations: The evaluation whether privacy policies do fulfill privacy
preferences has logic foundations. See details in Appendix A.6.1.

- Takes Data Handling into Account : Expected data handling is expressed by the
PII Provider and proposed data handling is expressed by the PII Consumer. Both
aspects are taken into account during match. See details in Appendix A.6.2.

- Takes Obligations into Account : Expected obligations are expressed by the PII
Provider and proposed obligations are expressed by the PII Consumer. Both as-
pects are taken into account during match. See details in Appendix A.6.3.

- Takes Downstream Properties into Account (One Hop): Not only the privacy policy
of the data controller is taken into account during match but also the policy of
third parties, which may get subsequently access to the personal data. See details
in Appendix A.6.4.

- Supports Recursive Downstream: Complex chains of downstream data sharing can
be expressed in privacy policies and preferences and can be taken into account
during match. See details in Appendix A.6.5.

PII Selection (Sect. 4.4)

48 Comparison of Privacy Policy Technologies in SOA

- Privacy-aware identity selection is supported by the protocol (i.e. privacy policies
are specified for all expected claims and privacy preferences are associated with all
issued claims) and by the user interface (i.e. the selection of claims takes privacy
into account). See details in Appendix A.7.

Change Preferences (Sect. 4.5)

- Can Show Mismatches: In case of mismatch, the root causes of the mismatch can
be identified and highlighted. See details in Appendix A.8.1.

- Can Suggest Modifications: Privacy preferences can be automatically updated to
get a match next time a similar case occurs. Previous changes, and similarity of
preferences can be taken into account. See details in Appendix A.8.2.

Sticky Policy (Sect. 4.6)

- Optional Sticky Policy : Instead of creating a sticky policy describing agreed privacy
constraints on personal data, a Boolean response can be used to state that the
privacy policy is acceptable and must be enforced. The Boolean response can be
implicit, e.g. agree by sending personal data. See details in Appendix A.9.1.

- Can be Expressive: The sticky policy can express complex constraints with condi-
tions. See details in Appendix A.9.2.

- Supports Signature or Commitment : The sticky policy can be signed by one or
more parties to ensure non-repudiation of agreed privacy constraints. See details
in Appendix A.9.3.

- Can Change Sticky Policy : There is a mechanism to let data subjects modify sticky
policies associated with their own personal data when such an action is authorized.
See details in Appendix A.9.4.

- Can Store and Retrieve Sticky Policy (Sect. 3.8): There is a mechanism to store
sticky policies and to query the sticky policy associated with a given piece of
personal data. See details in Appendix A.9.5.

Attach Sticky Policy (Sect. 4.7)

- Mechanism to attach the sticky policy to data on the wire and in databases. Mech-
anisms such as Enterprise Rights Management (e.g. [Mic09]) would be an example
where personal data cannot be decrypted without acknowledging the sticky policy
(i.e. licenses). See details in Appendix A.10.

High-Level Policy Language (Sect. 4.8)

- Same Language for Preferences and Policies: Privacy preferences, policies, and
sticky policies are expressed in a common language that avoid semantics mis-
matches. See details in Appendix A.11.1.

- Language Expressiveness: The common language is expressive and allows the spec-
ification of conditions, nested or recursive policies, and variables. See details in
Appendix A.11.2.

Section 6.1: Scope of the Evaluation 49

- Clear Separation of Obligations and Rights: Obligations and rights are clearly
expressed to handle, for instance, the right to store personal data 3 months, the
obligation of storing data 3 months, and the obligation of deleting data within 3
months. See details in Appendix A.11.3.

Check Sticky Policy (Sect. 5.2)

- When a sticky policy is pushed to a PII Consumer, this one can check whether the
sticky policy is acceptable, i.e. more permissive than the related policy. See details
in Appendix A.12.

Authorization Decision (Sect. 5.3)

- Enforces Local Use, e.g. Purpose (Sect. 5.4): Before using collected data, the PII
Consumer can verify that actions are authorized according to sticky policies. See
details in Appendix A.13.1.

- Enforces Access Control when Sharing (Sect. 5.5): Authorization of sharing data
with a third party takes into account the sticky policy and attributes (e.g. certifi-
cates) of the third party. See details in Appendix A.13.2.

- Checks Downstream Data Handling when Sharing : Authorization of sharing data
with a third party takes into account the sticky policy of the personal data and
the privacy policy of the third party. See details in Appendix A.13.3.

- Attach (New) Sticky Policy when Sharing : A new sticky policy is created when
the personal data is shared with a third party. The rights and obligations of a
third party may be different than the rights and authorizations of the initial data
controller. See details in Appendix A.13.4.

Composing Sticky Policies (Sect. 5.6)

- Possibility of computing the resulting sticky policy sp1,2 of personal data pii1,2
resulting from the combination of multiple personal data. In other words, defining
each sp1,2 = F (sp1, sp2) for each way of combining pii1,2 = f(pii1, pii2). See details
in Appendix A.14.

Obligations (Sect. 5.7)

- Supports Enforcement of Obligations: There are mechanisms to automatically en-
force obligations that can be specified in (sticky) policies. See details in Appendix
A.15.1.

- Checks Rights of Enforcing Obligations: Mechanisms to define lower bound and
upper bound of behavior. See details in Appendix A.15.2.

- Specifies Action Handler (Sect. 5.8): There are mechanisms to parse and execute
actions associated with obligations. It is possible to extend the set of actions that
are handled. See details in Appendix A.15.3.

50 Comparison of Privacy Policy Technologies in SOA

- Specifies Event Handler (Sect. 5.9): There are mechanisms to parse triggers and
react to specific events (time, event) leading to the execution of an action. It is
possible to extend the set of triggers that are handled. See details in Appendix
A.15.4.

Log and Audit (Sect. 5.10)

- There are mechanisms to log privacy-relevant events such as: use of personal data,
authorization decisions, obligation enforcement, etc. Audit can be based on those
traces. See details in Appendix A.16.

Trust Model (Sect. 5.11)

- Support for different trust models such as certification, audit, reputation, and/or
trusted hardware. This makes the link between the committed behavior and the
actual behavior. See details in Appendix A.17.

Protocol independent (HTTP, WS)

- It is possible to use the evaluated language and associated mechanisms with differ-
ent communication protocols (Web Services, HTTP, etc.) and to define separately
protocol-specific aspects (e.g. cookies). See details in Appendix A.18.

Policy for Implicit PII (e.g. IP address)

- It is possible to specify how PII Consumer handles personal data that are implicitly
collected (e.g. IP address). See details in Appendix A.19.

6.2 Results and Conclusion

Results of the evaluation are summarized in Table 2 and detailed in Appendix A.
It appears that using P3P [W3C06], APPEL [W3C02], and EPAL [AHK+03] together

is not suitable to tackle complex scenarios. First those technologies do not support multi-
hop data handling, which is quite common in SOA. This is mainly due to the fact that
those technologies were mainly targeting Web 1.0 scenarios. Second the use of three
different languages for expressing privacy preferences, privacy policies, and enforcement
leads to semantics mismatches and difficulty to use them recursively.

Letting data subjects specify access control on their data (e.g. OAuth [HL10], UMA
[Kan]) is not sufficient even when obligations can be specified (e.g. XACML [Ris10]).
The main limitation is due to the fact that remote setting of access control only covers
a small subset of data handling. One advantage of this approach is to limit the number
of copies of personal data and to centralize their management.

PRIME-DHP [ACDCdVS08] provides more features than P3P but does not address
the preference side and complex downstream cases.

S4P [BMB10] offers promising features but only provides the core functionality (eval-
uation of queries) and lacks implementation of tools for creating sticky policies, for en-
forcing policies, and for auditing execution traces.

Section 6.2: Results and Conclusion 51

Finally PPL [Pri09a] supports a large part of the abstract privacy policy framework.
This is not surprising since notions of the abstract privacy policy framework were al-
ready taken into account when designing PPL (PrimeLife Work Package 6.3 on SOA
and Activity 5 on Policies are working together from the beginning). PPL mainly lacks
homogeneity and logic foundations to enable reasoning on the policies.

Part II

eCV Demonstrator

53

Chapter 7
eCV Scenario

PrimeLife experimented with a demonstrator prototype in order to evaluate the chal-
lenges in turning a common SOA application into a privacy-preserving SOA application.
Moreover, the demonstrator scenario was shaped in a way that it gives room to show-
case many privacy-enhancing extensions, especially w.r.t. the PPL policy engine from
Activity 5 [Pri09a]. The electronic CV scenario was already presented it in PrimeLife
reports H6.3.1 [MS09] and D6.1.1 [Pri09b]. At the point of writing the latter report
we could only present concepts and early technical designs. This document gives much
more insight into the whole technical implementation and details such as protocols and
applied technologies.

This chapter describes the “eCV scenario” we selected for this kind of demonstration
and explains the privacy enhancements from a conceptual point of view. The next
chapters will go into more technical detail on both aspects.

7.1 Roles and Workflows

Inga Vainstein is 46 years old and is currently working as journalist.1 As a part of her
job she is traveling to various countries. Inga makes heavy use of online applications for
new job opportunities. She uses a platform called “eCV” to get job offers and apply for
new positions in a convenient and easy way. In fact, this is one of her main motivations
to collect all certificates and testimonials (also) in electronic form.

She uses this platform to collect all her digital certificates and documents. She
attends professional trainings on a regular basis. For each completed course she gets a
certification. Moreover she collects testimonials from former employers. Last year she
won an award for her outstanding press story on identity theft.

The eCV platform allows to create many profiles based on these claims, e.g. one profile
with an emphasis on her academic achievements and another profile with journalistic
achievements. For each job offer she can decide which profile to send to the employer.

1The persona of Inga is taken from the list of PrimeLife personas [KWWD08]. Personas are fictional
characters created to represent the different user types.

55

56 eCV Scenario

Figure 5: Roles and communication paths in the eCV scenario

Altogether the eCV scenario features five roles, which we will describe in more detail
now. Please notice that only the roles of User and Employer are needed to showcase the
scenario. The remaining roles act more or less autonomously, as we will see in Chapter
8.

Claims Issuer. The claims issuer certifies an attribute to the user. This attribute
comes in the form of a digital claim to the user and is accompanied by a privacy policy.
This policy is crafted by the claims issuer and defines how long the claim is valid and
what rights and obligations are associated with it. The claim policy is expressed in
the PrimeLife Policy Language (PPL). For instance, a former professor might write a
recommendation letter (claim), but express the obligation that the user may not use it
for an application outside this university. A former employer could state for another
letter of recommendation that this latter may not be used for an application at the
employer’s main competitor. The claims come in the form of a “sticky policy” attached
to the claims. This attaching is done by means of an API or schema that features two
slots, one for the claim and one for the policy.

User. Main goal for the user is to enjoy the benefits of a privacy-friendly online job
application portal. For this purpose she collects claims from the claims issuers. She stores
these in the portal and combines them to profiles. One profile consists of a collection
of claims, additional information, and a privacy policy. The eCV portal composes this
policy from all individual polices attached to the claims. Moreover the user can scope

Section 7.2: End-to-End Workflow 57

this automatically generated policy further down. She can add more obligations or grant
fewer rights.

Employer. The employer generates a job offer. The intention of the employer is to hire
somebody for an open position. Thus, the employer generates a description of the open
position. The employer communicates through the headhunter with the eCV portal.
That means, the employer gives the open position to the headhunter and leaves it to him
to find a suitable candidate. The headhunter in turn uses the eCV portal (potentially
as one of many means) to find this candidate. This setting allows us to simulate and
experiment with a longer chain of downstream data controllers. Besides a description of
the open position, the job offer document features a policy that the employer promises to
adhere to in course of this hiring transaction. It is thus a service provider policy. Unlike
the general PPL scenario this policy is not submitted via a kind of web service meta-data
request, but is attached to the job offer document and communicated upstream through
the headhunter to the eCV portal.

Headhunter. The headhunter is the central turning point in this scenario. The reason
to introduce this extra layer of communication in the scenario is to make the scenario
richer in terms of downstream data usage. Moreover, the user is not aware of this
instance, which creates some interesting use cases for the reasoning on policies. The
headhunter receives a job offer (with an attached sticky policy) from the employer and
forwards it to the eCV portal. The portal in turn sends a job application to the head-
hunter. The headhunter is now responsible to evaluate the capabilities of the applicant
on behalf of the employer. We assume that this evaluation needs domain-specific knowl-
edge. Hence, the headhunter dynamically looks up a suitable domain expert service and
hands over the job application for evaluation. Of course, the headhunter needs to make
sure that the domain expert complies with the policy attached to the job application.

eCV Portal. The eCV portal is the interface to the user. It allows for requesting
claims, administrating issued claims, creating of profiles, and definition of user’s privacy
policy. Furthermore it utilizes policy composition and policy matching.

Domain Expert. The domain expert receives a job application from the headhunter.
Its job is to evaluate the skills of an applicant according the skill set demanded by the
employer. It stores the data as maximally as long as the obligation allows it to. Primary
objective is to showcase the automatic execution of obligations.

7.2 End-to-End Workflow

The general workflow in the eCV scenario looks as follows:

1. Policy Composition Phase

(a) User requests claim from claim issuer

(b) Claim issuer generates claim, defines policy and attaches it to the claim

58 eCV Scenario

(c) Claim issuer sends claim with attached sticky policy back to the user

(d) User stores claim and policy

(e) User creates a profile and adds a subset of her claims to it.

(f) eCV portal calculates the most permissive privacy policy from all claims poli-
cies. The user can scope this generated policy further down

2. Matching Phase

(a) Employer creates a job offer and attaches privacy policy of employer

(b) Employer sends both job offer and privacy policy to headhunter

(c) Headhunter forwards both job offer and employer’s privacy policy to the eCV
portal

(d) eCV portal matches periodically all job offer against the users’ profiles. It
performs a profile matching (requested skills vs. claimed skills) and a policy
matching. The policy matching compares the sticky policy of the job offer
(created by the employer) with the sticky policy of the profile (created by the
user)

(e) eCV portal signals a successful match between offer and profile back to the
user. The user decides to send out a job application

3. Downstream Phase

(a) eCV portal generates a job application from the profile and the job offer. It
attaches the sticky policy that results from the comparison between job offer
policy and user profile policy. Two samples of such a policy are shown at
listings B.3 and B.4 of section B.2.

(b) eCV portal sends the job application with the attached sticky policy as shown
at listing B.2 (section B.2) to the headhunter.

(c) The headhunter needs to find a domain expert to evaluate the job application.
It looks up the privacy policies of all available domain experts.

(d) If the headhunter finds a domain expert whose privacy policy complies with
the job application’s sticky policy, it sends the job application to the domain
expert. If it does not find such a domain expert, it initiates a policy conflict
resolution on the user’s interface (e.g., mobile phone). If both is not possible,
the execution of the workflow stops here.

(e) Domain expert evaluates the proposal and stores the data. It triggers the
obligation enforcement engine that will follow-up on any obligation the domain
expert agreed to

(f) Domain expert sends an evaluation back to the headhunter

(g) In case this evaluation is positive, the headhunter communicates the user’s
job application on to the employer

(h) The employer visualizes the result, esp. the policy

Section 7.3: Showcases 59

7.3 Showcases

The eCV demonstrator was shaped in a way that it features various privacy showcases.
We describe now the general privacy scenarios, c.f. Figure 6.

Figure 6: Showcases of the eCV Scenario

Sticky policies on claims. At various places throughout the scenario we communicate
the actual data together with the policy. Most prominently, when the claim issuer
submits claims to the user with policies attached. But also when the job application is
communicated downstream together with a sticky policy reflecting the user’s preferences,
the claim issuers’ policies, and the service policy of the employer.

Policy composition. In the data subject part of the demo we combine various doc-
uments (claims) into a single document (profile resp. job application). The policies
sticking at the claims will be condensed into one single policy for the profile resp. job
application. This composed policy can be further scope down by the privacy preferences
of the user.

Policy matching with PPL. The demonstrator shows PPL policy matching at two
places. Matching of rights is used inside the eCV portal. It compares the resulting sticky
policy of a applicant’s profile with the service policy of the employer. The focus is on
the matching of rights. The obligation part of the PPL policy engine is used in the
headhunter. Here, the eCV portal compares the sticky policy of the job application with

60 eCV Scenario

the service policies of the domain experts. The focus is on the obligation part, i.e. if the
domain expert is willing to execute the obligations demanded by the user.

Downstream policy matching. Downstream matching shows the fact that an entity
that has just acted as data consumer has to fulfill the due of a data provider from the
very moment that it receives PII and a policy from a data provider.2

Dynamic policy-based binding. This part of the demo mimics the fact that data
might be shared with entities that are not know a priori. We employ a dynamic service
lookup and service binding of the domain expert service instances. The actual binding
is based on policy meta-data which is exposed by the domain expert services.

Obligation Matching with PPL. The headhunter needs to find a matching policy
service. For this reason the headhunter needs to compare the sticky PPL policy against
the service policies of multiple domain experts. We focus here on the obligation part of
the PPL language.

Obligation Enforcement with PPL. The domain expert stores the job applications
for a certain time and accepts to fulfill any obligations expressed in the sticky policy, as
long as it is compliant with its service policy. We implemented an obligation enforcement
engine, that keeps track of such promises and executes them. That means, that data
will be automatically deleted from the database after a given time.

Scenario Entity Privacy-specific Role
Claims Issuer Data Subject
User Data Subject and Data Controller for the Claims Issuer
Headhunter Data Controller
Domain Expert Downstream Data Controller, ad-hoc bound
Employer Downstream Data Controller, a priori known

Table 3: Generic roles in the scenario

Another way to look at the scenario is by considering the roles the various stake-
holders take w.r.t. privacy. Table 3 summarizes them. Claims issuer and user are acting
as data subject. Thus, they could be seen as one entity in the demo. In general, the
user is the entity that shares data and whose privacy rights need to be supported. The
downstream part starts with the headhunter and all subsequent services. The scenario
is shaped in a way, that it features not only covers the disclosing of PII to a third party
(User → Headhunter), but even a multi-hop data disclosure from headhunter to em-
ployer and from headhunter to domain expert. The data sharing via the headhunter to
the employer is somewhat expected from the user’s perspective. The user gets to see
the service policy that was crafted by the employer and communicated upstream via
the headhunter. However, the second data disclosure from headhunter to domain expert

2Refer to Chapter 3 for a detailed definition of data provider and data consumer in this context.

Section 7.4: Joint Implementation 61

is unexpected and maybe even unintended by the user. It is very likely that the user’s
policy does not allow to share the job application with another entity besides headhunter
and employer, or that the domain expert has a policy that does not fit at all with the
user’s sticky policy on the job application document.

7.4 Joint Implementation

The implementation of the eCV scenario was done jointly by PrimeLife partners Euro-
pean Microsoft Innovation Center, SAP Research and Giesecke & Devrient. SAP was
responsible for the data subject part of the scenario. That includes claims issuing, the
user’s experience of the portal, collection of claims, and the generation of a common
policy (policy composition). Microsoft took over responsibility for the downstream data
handling part, i.e. investigated the data controller part. This includes dynamic binding
of the domain experts, the overall workflow, evaluation of policy conflicts, policy editor
and policy visualization, user experience at the employer, and connection to the mo-
bile device. Giesecke & Devrient built a mobile eCV application that allows the user
to override her own policy in case of a policy mismatch (Data subject policy mismatch
interaction) This work is described in greater detail in D6.3.1 [Pri11]. We will shed some
light on the communication between Headhunter and the mobile device in Chapter 8.

Chapter 8
Architecture

In this chapter we will describe the eCV scenario, which was introduced in Chapter 7,
in a technical sense and will focus on its architecture. That is, how the structure of
the scenario can be described, which participants are communicating with whom, and
what their dependencies are. We will also move a bit deeper in details and show how
every single participant acts at the particular phases of that scenario. We will discuss
the implementation details in subsequent chapters.

8.1 Conceptual Properties

Before explaining the eCV scenarios architecture in detail, we will first introduce some
conceptual properties that are related to all participants.

8.1.1 Development Environments

As outlined in Chapter 3, the development of the eCV demonstrator was split into two
main parts to accommodate the parallel work of the particpating partners, namely SAP
and EMIC. The following explains the technologies used by the aforementioned parties
and how this fits into the overall scenario.

For the data subject side of the scenario, SAP decided to build the applications
using SAP Netweaver Compostion Environment(CE) 7.1 in order to learn from applying
European project concepts to industrial software. The SAP Netweaver CE platform
allows for the building and running of applications based on Service-Oriented (SOA)
principles and enables the development, modelling and design of web services (Java EE),
user interfaces(Web Dynpro) and business process management (Process Composer).

On the data controller side, EMIC used standalone applications based on web service
(WS-*) protocols and using Microsoft .NET WCF technology to build the web services
endpoints. This standalone-applications-approach is meant for demonstration purposes.
For scalability reasons EMIC recommandeds migrating this work to an application en-
vironment like Microsoft Biztalk.

63

64 Architecture

8.1.2 Application Structure of Participants

SAP used Web Dynpro which is the SAP NetWeaver programming model for user in-
terfaces and provides support when developing the Web representation of business ap-
plications. The Web Dynpro model is based on the Model View Controller paradigm
[SUN], and has the following features that build on the standard dynpro model: clear
separation of business logic and display logic, uniform metamodel for all types of user
interfaces, execution on a number of client platforms, extensive platform independence
of interfaces.

EMIC created the participants with a rapid development approach by building them
as console applications at first. Subsequently, these console applications were enhanced
by an additional graphical user interface. The applications’ logic was extracted from
console applications to libraries and used them to build console and graphical user in-
terface applications. They kept the console applications still maintained as it facilitated
debugging the applications.

By extracting the common logic to libraries, they ensured that the ongoing develop-
ment covers both (all) types of applications that run the eCV scenario. Furthermore, it
allows for an easier generation of additional application types, like server applications,
e. g. using Windows Service, or even add-ins into an application server like Microsoft
BizTalk.

8.2 Structure and Behavior of the eCV Scenario

Figure 7 shows the architecture of the eCV scenario. The participants eCV portal,
headhunter, domain expert, employer, the secure mobile device, as well as the policy
engines PME and PEE, that already have been introduced in the previous chapter, are
presented in its structural details in the following sections.

8.2.1 Headhunter Tool

In this section, we go into details of the headhunter’s tool (HHT), explaining the com-
munication structure and features first, and describing its internal behaviour next.

Talking to almost every other participant, the HHT has a central position in our
schema. It provides a web service interface to receive either a job offer from the em-
ployer’s tool (EPT) or a job application from the eCV portal’s tool (ECVPT). It also
does web service calls to forward the job offer to the ECVPT, to forward application to
a domain expert’s tool (DET) or to send assessed applications to the EPT.

Multiple domain experts are considered by the HHT: Depending on the sticky policy
attached to the application, HHT will automatically detect and choose a DET that is
compliant to that policy and is therefore authorized to process the application’s PII. We
call this detection process dynamic binding, as it technically discovers and binds available
services according to a given policy.

In order to be able to reach the data subject in case of user-assistance-needed mis-
match via a secure mobile device (SMD), HHT provides additional web service interfaces
over SOAP [W3C07] and REST [Fie00], that can be used from the SMD to get informa-
tion about particular mismatches and react on these. The REST interface is additionally

Section 8.2: Structure and Behavior of the eCV Scenario 65

Headhunter
Tool (HHT)

Domain Expert
Tool (DET)

Policy
Matching Engine (PME)

Employer Tool
(EPT)

eCV Portal
Tool

(ECVPT)

Policy
Enforcement Engine

(PEE)

Service Endpoint: REST

PII Data Store

PII Data Store

Service Endpoint: WS-*/SOAP

Service Endpoint:
WS-*/SOAP

Service Endpoint: WS-*/SOAP

Service Endpoint: WS-*/SOAP

Service Endpoint: WS-*/SOAP

 Data Subject User Interaction
 via Secure Mobile Device

SMS Gateway
(extern. provider)

 Policy-based Service Discovery

+

Service Endpoint: WS-*/SOAP

Web Interface:
HTTP GET / HTTP POST

PII Data
Store

Claim
Issuer
Claim
Issuer
Claim
Issuer

Figure 7: Architecture of the eCV scenario

provided to simplify the access for mobile devices to our eCV scenario. A SMD cannot
be expected to be online and polling permanently for mismatches due to limited energy
resources. To trigger a SMD, the headhunter tool therefore needs to send SMS messages
via an external SMS gateway provider.

Looking at its internal behaviour, the HHT can be described best in a state machine
as shown in figure 9.

At initialization, which is described as state Pre-Init in the figure, the HHT will trig-
ger the dynamic binding facility to discover all available DET service instances. Figure
8 shows such a service discovery process. As this process requires waiting for a time-out,
it is considered as fairly expensive and is therefore executed automatically only once,
at the initial phase. But it still can be triggered manually while processing an applica-
tion, e.g. in case when DETs are expected to join or leave after the HHT has started.
However, the actual binding to a DET is processed in a separate step at the time when
an application is being processed and cannot be done beforehand as it depends on the
particular application’s sticky policy.

Having done the initialization once, the HHT will switch to the Idle state and will
wait for incoming job offers to resume its work. Job offers are received on a thread,

66 Architecture

Show known DEs

[activate 'scan for DEs']

Scan for DEs

[wait for timeout]

Figure 8: Service Discovery of Domain Experts at eCV scenario’s headhunter
tool

different from the main thread on which the HHT runs. This enables the feature that
job offers can be received at any time and are being queued until the headhunter state
machine is ready to process one after the other.

Having been received at least one job offer, the HHT will switch to its next state Job
offers available.

Clicking then on the button no 1, which says Send job offer to eCV portal, the HHT
will send the oldest job offer of its job offer queue to the ECVPT and changes to the
Waiting for application state, waiting for applications from the ECVPT.

After having received suitable applications from the ECVPT, the HHT will do the
actual dynamic binding before it is able to get the applications assessed by a DET. That
is, it will ask every known DET service for its privacy policy and will match this policy
against the job applications’ sticky policy. For doing the policy matching, the PME
is consulted as a service. In case of matching, the PME will respond positively and in
case of a mismatch, it will provide a quite expressive mismatch description included in its
negative response. If no DET service is available, which means that the service discovery
of DETs from the initialization failed to find at least one DET, then HHT will jump to
the Stop state. Also if the sticky policy of the application does not allow any downstream
usage of the PII, further investigation of policies is no more necessary and the HHT will
jump to the Stop state as well. There are two more cases to consider in this dynamic
binding process: Either at least one DET fulfills the privacy policy of the application, in
that case HHT will just pick one of them randomly, or no DET can be found to do so.
In case of the latter, we will trigger applicant’s secure mobile device (SMD) by sending
a SMS message and will present the mismatch of its privacy preferences with the first
domain expert that HHT has asked for its policy. Please note that it would certainly be

Section 8.2: Structure and Behavior of the eCV Scenario 67

Idle

exit/Send Job Offer to eCV portal

Job offers available
Waiting for
applications[#Joboffers >= 1]

[click on button (1)]

[receive application from eCV portal]

exit/Check known DEs for appropriate policy wrt application

Application received from eCV portal

[click button (2)]

[Downstream allowed AND policy does not match]

[No DEs available or downstream not allowed]

[Downstream allowed AND policy matches]

entry/Send and Receive appl. to/from domain expert

Assessed applications received

[click button (3)]

entry/Send assessed application to employer

Application to employer sent

entry/Send SMS to SMD

SMD triggered
[User responds:

Do not ignore mismatch]

Stop

[User responds:
Do ignore mismatch]

[click
'quit current process'

button]

[click
'quit current process'

button]

exit/Check for available domain experts

Pre-Init

Figure 9: eCV scenario’s headhunter tool as state machine

better to choose the DET with the closest-to-match policy but as such a metric is not
available in PPL yet, we simply take the first mismatching DET. The user can now allow
the usage of that DET anyway by accepting the mismatch, meaning: click on accept at
the SMD application, or disallow it by ignoring the action request or actively rejecting
the mismatch, that is, clicking on reject at the SMD application. The SMD will then do
a REST web service call on the HHT to submit the user’s response.

If the user gave the permission to transfer its PII to that DET, the HHT will proceed
to its next state, otherwise it will jump to the Stop state. Being at the next processing

68 Architecture

state, HHT will send the applications to the dynamically bound DET, who will instantly
– HHT doing a synchronous call to DET – assess the applications and return a set of
approved applications. Afterwards HHT will send the approved applications to the EPT
and return to the Idle or Job offers available state, being ready for processing upcoming
job offers.

8.2.2 Employer Tool

Next we would like to introduce technical details of the employer’s tool (EPT). The
EPT sends its job offers to the HHT using web service client calls on the one hand, and
receives assessed job applications from the HHT via its own web service endpoint on the
other hand. As the latter implies that applicants’ PIIs are transmitted to the EPT and
are stored in a local database for further usage, the EPT therefore also requires policy
handling.

By that stage, when the EPT receives an application, we assume that the applicant’s
privacy preferences are compliant with the EPT’s policy. In fact, the sticky policy of
the application is the agreed policy between the two parties. In order to get the agreed
privacy policy enforced, the EPT connects to the Policy Enforcement Engine Service
(PEE) immediately when it receives the PII. It then registers the sticky policy at the
PEE and stores the PII in its local database. The PEE is in charge of acting on the
privacy policy that has been registered and is able to trigger actions on the related PII
directly.

8.2.3 Domain Expert Tool

The domain expert tool (DET) is similar to the EPT from a technical privacy point
of view, as it also receives the application’s PII with a sticky policy that should be
compliant to its own policies or at least the applicant agreed on DET’s policy using the
SMD user interactions. Therefore DET only needs to take care of the enforcement by
using the PEE service. Figure 7 shows the connection from DET to the same PEE as
was used by the EPT.

Please note that this illustrates the architectural view on the eCV scenario and does
not inherently mean to deploy only one instance of PEE for all components. As sensitive
data is transferred between the PME and PEE services and their consumers, every trust
domain should have its own instance deployed. Please see Figure 10 for deployment
recommendation.

8.2.4 eCV Portal Tool

The eCV portal tool (ECVPT) is build on Java and runs on SAP NetWeaver Application
Server. In Figure 7 the ECVPT is drawn as a single entity. Actually, the ECVPT consists
of multiple parts as described in section 7.1. But as the Figure 7 has the intention to
show the eCV scenario from a privacy architecture perspective, the ECVPT is simply
represented as a data subject entity.

The ECVPT creates users and application profiles of users at its initialization. After
starting up, the ECVPT is waiting for incoming job offers to process. These offers
are received by ECVPT through its web service end point from the HHT. Afterwards a

Section 8.3: Mapping eCV Scenario and Abstract Privacy Framework 69

Job Offer

Job Applications

Job Offer

Job Applications

Job Applications
to be Assessed

Passed
Job Applications

Headhunter

Headhunter
Tool

Policy
Matching Engine

SMS-Gateway

Employer

Employer
Tool

Policy
Matching Engine

Policy
Enforcement Engine

PII Data Store

Domain Expert

Domain Expert
Tool

Policy
Enforcement Engine

PII Data Store

eCV Portal
Tool

eCV-Portal

Policy
Matching Engine

Figure 10: Sample Deployment of the eCV scenario

matching application profile is looked up at the ECVPT’s user database and also checked
for a privacy preference that is compliant to the policy that is given by the HHT. To
perform the policy matching the PME service is used. Please note again, that only one
instance of PME is shown in our architectural schema which does not imply that the
HHT, the EPT and the ECVPT should share a single instance of PME. Please refer to
Figure 10 for a sample deployment setup. Finally, the ECVPT will call the HHT using
a web service to transmit the matching and policy-compliant applications.

8.3 Mapping eCV Scenario and Abstract Privacy Frame-
work

In part II of this deliverable, we will generalize findings on privacy in service oriented
architectures and describe a technology-agnostic architecture to design privacy-enhancing
SOA applications. In this section we anticipate this knowledge and show how the eCV
architecture maps to the abstract privacy framework (cf. Chapter 3).

This mapping may happen w.r.t. various technical views. In our case, the eCV

70 Architecture

scenario maps (at least) w.r.t. the components (cf. deployment diagram, Figure 10) and
w.r.t. the application behavior (cf. state diagram, Figure 9).

Figure 11 shows the state diagram and the deployment diagram side-by-side with the
abstract privacy framework schema. The red arrow indicates exemplary places where the
eCV architecture maps to the abstract framework. We look at the abstract architecture
from the perspective of the headhunter during the evaluation phase. That is, the head-
hunter is the data provider, while the domain expert is the data consumer. One specialty
of the eCV implementation is that the headhunter has no dedicated PII store nor Pref
store, because it just passes through PII it receives from the eCV Portal. In other words,
the process memory is the PII store and Pref store. The preferences are specified by the
sticky policy attached to the job application document.

We are following now roughly the workflow of the PII provider. Service discovery
is visualized in the state diagram. As described earlier, the headhunter uses a dynamic
binding mechanism to discover and bind the domain expert service. Next, also expressed
in the headhunter’s state diagram, it retrieves the policy of each domain expert. The
policy matching engine used by the headhunter is used for the policy matching step; we
visualize it in the deployment diagram. Finally, the headhunter sends the job application
together with the attached sticky policy. Due to the fact that the headhunter and the
eCV portal proxy the user, there is no dedicated PII selection step in this scenario. Or to
express it in other words: the PII, which is the job application, is automatically selected
since there is no choice. The applicant’s data is then stored in the PII store of the domain
expert. We store PII and sticky policy in a joint data store, which is again visualized in
the deployment diagram.

This short example illustrates what the abstract privacy framework could be used for.
Our reasoning from the abstract privacy framework was partly deduced from observations
and technical discussions we had in course of implementing the eCV scenario. So it is
fair to say that the eCV scenario and the abstract privacy framework mutually fertilized
each other. We will go into the details in Chapter 3.

Section 8.3: Mapping eCV Scenario and Abstract Privacy Framework 71

Idle

exit/Send Job Offer to eCV portal

Job offers available
Waiting for
applications[#Joboffers >= 1]

[click on button (1)]

[receive application from eCV portal]

exit/Check known DEs for appropriate policy wrt application

Application received from eCV portal

[click button (2)]

[Downstream allowed AND policy does not match]

[No DEs available or downstream not allowed]

[Downstream allowed AND policy matches]

entry/Send and Receive appl. to/from domain expert

Assessed applications received

[click button (3)]

entry/Send assessed application to employer

Application to employer sent

entry/Send SMS to SMD

SMD triggered
[User responds:

Do not ignore mismatch]

Stop

[User responds:
Do ignore mismatch]

[click
'quit current process'

button]

[click
'quit current process'

button]

exit/Check for available domain experts

Pre-Init

Headhunter
Tool

Policy
Matching Engine

SMS-Gateway

Headhunter

Policy
Matching Engine

Policy
Matching Engine

eCV-Portal

Policy
Matching Engine

Policy
Enforcement Engine

Employer
Tool

Employer

PII Data Store

Policy
Enforcement Engine

Domain Expert
Tool

Domain Expert

PII Data Store

Job Offer

Job Applications

Job Offer

Job Applications

Job Applications
to be Assessed

Passed
Job Applications

PII Consumer

PII Provider

PII Lookup

Policy Matching

PII SelectionChange Pref

Mutual
Commitment

Attach SP

Handle service
response

PIIs + SPs

Service
Discovery

History

Check sticky
policy

Obligation
enforcement

Data Sharing
(act as

PII Provider)

Authorization
enforcement

Events Handler

Actions handler

Store

Local Use

PII Store

Pref Store

PII Consumers
Metadata
Provider

Pol StoreMetadata request

PII Consumer

SP Store

PII Store

Figure 11: Mapping between the eCV Scenario and our generalization for
privacy in SOA

Chapter 9
Implementation Details on Data
Controller Part

In this chapter we will present implementation details at the data controller part of the
eCV scenario. More specifically, this will cover the HHT, EPT, and DET.

9.1 Implemented Parts of eCV Scenario

In chapter 8 we have described the eCV scenario at its full implementation level. But,
demonstrating a proof of concept, our actual implementation focuses on the privacy-
relevant functional parts of the demonstrator. This section will describe limitations that
result from skipping less privacy-relevant parts for the implementation.

9.1.1 Limited Scaleablilty and Concurrent Processing

The eCV scenario is working on job finding tasks (JFTs) initiated and triggered by a job
offer. As the scenario allows to have multiple job offers and JFTs simultaneously, and it
deals with multiple participants, all the participants should be able to handle multiple
JFTs in parallel. That is, keeping track of current states of different JFTs, picking and
proceeding the correct one, when being requested to do so.

As this feature is mainly required in real-life scenarios and is not necessary to showcase
the privacy enhancements in SOA environments, we reduced the ability of participants
to handle multiple JFTs to a minimum.

In HHT, this means, that although multiple job offers received from the employer
are queued, only a single job offer can be processed at a time. The HHT can therefore
only accept applications from the ECVPT in a particular state where it has sent the
job offer to ECVPT right before. Received applications are then, of course, associated
with the current job offer that is being processed. The communication between HHT
and the DET is not affected by this limitation as the HHT runs a synchronous call on
the DET. That is, HHT initiates the action from DET and waits until DET has finished
and returns its response. This limitation also makes no difference at the EPT, as the

73

74 Implementation Details on Data Controller Part

EPT is at the end of the processing-chain and will not process received job applications
any further.

While this limitation has no impact on our showcases, it will prevent the eCV scenario
from scaling up, because it can effectively process one JFT at a time. For real-life
usage of that scenario, the feature of processing JFTs concurrently is necessary and can
be implemented using an appropriate scaling infrastructure like application servers, for
example Microsoft BizTalk Server.

9.1.2 Simplified Employer Tool and Domain Expert Tool

We simplified the EPT and the DET. The EPT does not store job offers in a history.
Once a job offer has been sent and a new one has been created, the former is lost. The
EPT does also not use the PME and the PEE as we show their integration using HHT
and DET

The DET has been simplified in the way it assesses the applications. As we did
not want to implement a complex algorithm to assess applications, we decided to have
approve-all or approve-none mechanism in place. At the graphical UI, the assess-modes
can be switched.

9.1.3 Controller Parts Considers Policy Obligations Only

One key goal of the eCV implementation is to evaluate the PrimeLife Policy Language
(PPL) in a complex distributed setting. The current implementation is based on the
“PPL Engine”, a set of tools and services supporting evaluation of PPL (e.g. match-
ing, generation of sticky policies) and enforcement of PPL (e.g. authorization decision,
obligation enforcement). More information on this engine can be found in [Pri09a] and
[Pri10a].

To showcase particular features of PPL, we split PPL usage among the scenario.
While the data subject part of the eCV scenario focuses on authorizations, the controller
part of the eCV scenario implementation considers the obligations part of PPL only.
That is, in data controller part, two PPL policies are compliant and will match if they
comply on their obligations. Thus we use the Obligations Matching Engine (OME) as
the Policy Matching Engine (PME) and the Obligations Enforcement Engine (OEE) as
the PEE.

9.1.4 Local PII Storages

The architecture of the eCV scenario defines local PII data storages at the EPT and the
DET. Implementing this architecture, we took an in-memory database (IMDB) as a data
storage. This fact has also impact on the access of PEE or OEE to that data. Working
on an IMDB as database, a PEE/OEE has to contact the hosts of these databases in
order to manipulate IMDB’s data. That is, whenever the OEE would like to modify or
delete the data that is stored at the DET’s IMDB, the OEE will have to call the DET
to do the job.

Section 9.2: Service Interfaces 75

9.1.5 Integration of Enforcement Engine

As introduced in the sections above, we used the Obligation Enforcement Engine (OEE)
as PEE and integrated it in the eCV scenario at the DET. Every time the domain
expert receives applications (PII data), it registers its privacy policy in relation to the
received data. The OEE will then in return call the DET, when it needs to modify
the IMDB where the PII data has been stored. Because we have no additional tool
to produce events that are relevant as obligation triggers, the TriggerAtTime1 trigger
is the only obligation trigger that makes sense to use in a showcase scenario. On the
communication back channel, that is, when OEE calls the DET, there is only the Action-
DeletePersonalData1 action of PPL obligations supported.

To sum it up, if the eCV scenario implementation with OEE integration is to be to
showcased, please make sure you are using the TriggerAtTime trigger and the Action-
DeletePersonalData action at the DETs policy.

9.2 Service Interfaces

As the eCV scenario is built in a service oriented architecture environment, its compo-
nents offer separate services. The service interfaces (APIs) are discussed in this section.

9.2.1 Headhunter Tool

Function Short description
void submitOpenPosition (OpenPosition op) Job offers are pushed from

EPT to HHT using this
method

void submitJobApplicationsPPL
(JobApplicationSetPPL ja)

Applications are pushed from
ECVPT to HHT with that
method

string GetMismatch(string mId) This method will give details
on a particular mismatch

void ProceedMismatchStickyPolicy (string
mId, PPL.PolicySet stickyPol)

This method can be called to
override a sticky policy in or-
der to solve a policy mismatch

void ProceedMismatchBoolean (string mId,
bool doAccept)

The same as above, but mis-
match can be accepted with-
out overriding the sticky pol-
icy

Table 4: Web Service Interface of HHT

1The triggers TriggerAtTime and TriggerPersonalDataAccessedForPurpose as well as the actions
ActionLog and ActionDeletePersonalData are part of the PrimeLife Privacy Language [Pri09a]

76 Implementation Details on Data Controller Part

Table 4 show the methods that are exposed from HHT in order to be called as a
web service. The first two functions are available via SOAP interface only. submitOpen-
Position is called by the EPT with its job offer as parameter. This way, HHT receives a
job offer and can start processing it. The function submitJobApplicationsPPL is to be
called from the other end of the processing chain, the ECVPT. It will add a parameter
of type JobApplicationSetPPL which is a list of job applications with a PPL policy, the
sticky policy, each.

The last three functions are also available via REST interface. The first of them,
GetMismatch, requires the mismatch ID as parameter and will return an EcvMismatch-
Data2 object as a serialized string. To use the REST interface to access this function,
a HTTP-GET call is required to http://base-url /Mismatch/mId . The next function,
ProceedMismatchStickyPolicy, is meant to be an response to a mismatch, if the user
is smart/feature-rich enough to modify the sticky policy to fix the conflict, and resend
that version back to HHT. The REST interface call would be a HTTP-POST call to
http://base-url /Mismatch/mId , sending the sticky policy in the request body. The
last function, ProceedMismatchBoolean, is semantically very similar to the one before
but can be used without being able to parse the mismatch object. Sending true as
boolean parameter will let HHT continue its process, not caring about the mismatch.
To call this function via REST, an HTTP-POST has to be performed at the former
URL, sending a boolean value as request body.

9.2.2 Domain Expert Tool

Function Short description
PPL.PolicySet getPolicy() This is called by the HHT as

part of the dynamic binding
AssessmentResult assessEcv
(JobApplicationPPL app)

Main function to be called
synchronously by HHT to get
applications assessed

void RemoveApplication (string appId) Database function to remove
stored application. Most
likely to be called by OEE

Table 5: Web Service Interface of DET

The DET provides three web service functions (see Table 5). The first one is required
by the HHT to know the privacy policies of all available DEs in order to be able to do
the dynamic binding. It takes no argument and will return a PPL policy. The next
function, assessEcv, will take an application as parameter and will return a positive
or negative approval on it. Please note that the return value of this function is also

2Data type (ID: http://www.primelife.eu/ecv/EcvMismatchData, see Listing B.1 in Appendix B)
that consists of an obligation mismatch (ID: http://www.primelife.eu/ppl/obligation/mismatch)
and additional information strings about the mismatch

Section 9.3: Complex Features Explained 77

its response, which means that this function needs to be called synchronously and will
take some (blocking) time to finish. The function RemoveApplication is to be called by
the OEE. It will remove the application from DET’s local storage that is identified by
function’s argument appId if there is such an application.

9.2.3 Employer Tool

Function Short description
void submitJobApplications
(JobApplicationSetPPL apps)()

Job offers are pushed from
EPT to HHT using this
method

Table 6: Web Service Interface of EPT

From a SOA point of view, the EPT is the most simple one. It only exposes one
function, that is submitJobApplications. This function is used to push applications
from HHT to EPT in the very last phase of a job offer processing.

9.3 Complex Features Explained

After having introduced the architecture and the limits of its implementation, in this
section, we discuss some complex features of the main components in detail.

9.3.1 Privacy Policy Visualization: The PPL Policy Editor

Figure 12: eCV UI, PPL Editor

The PrimeLife PPL language is fairly complex and therefore it is challenging to create
an easy-to-use UI that can be used to create, edit or view PPL policies. As in the data
controller part we consider the obligation part of PPL only, we limited the UI scope on
that and built a PPL editor component, which should be able create, modify, or display
a PPL policy. This component is used in EPT and DET but not in HHT as the HHT is

78 Implementation Details on Data Controller Part

about a forwarding and triggering state machine without actively creating or changing
policies.

Figure 12 is a screenshot of that PPL editor. It has basically two editing modes. The
basic-editing mode, that can be selected by clicking at the radio button at the top of the
upper grouping box, can be used to build or modify a very simple policy with one obli-
gation having one obligation trigger and one obligation action. The choice of triggers are
limited to TriggerPersonalDataAccessedByPurpose1 and TriggerAtTime1 and its ar-
guments can be set freely. The action can be chosen to be ActionDeletePersonalData1

and ActionLog1. The basic-editing mode should be sufficient to showcase our different
scenario cases which were described at Chapter 7.

To add more enhanced elements to the PPL policy, you need to switch to the full-
editing mode, which is active when the lower group box is selected. In this mode, you
can load the full PPL policy from a file and edit it freely in a text field.

The PPL editor also provides mechanisms to convert a PPL policy from basic-editing
mode to the full-editing mode and vice versa. For example, you can start off by creating a
PPL policy in the basic-editing mode and can click on the Basic » Full button to convert
your current policy into a full-editing-mode-accessible policy and then continue adding
further properties there. The conversion using the opposite direction is somewhat more
dangerous as the full-editing mode is expected to be more expressive than the basic one.
In case the policy of the full-editing mode is not more expressive than the basic-editing
mode can display, the conversion can be processed without objections. After a successful
conversion, the policy is cleared and is not longer available at the full-editing part of the
editor. Please note, that there is a text saying Policy loaded? right at the top the full-
editing mode’s group box, which indicates whether a policy is available in this editing
mode. If you are in the other case at that type of conversion, that is, a more expressive
policy has to be converted to a less expressive one, then the policy in the full-editing
mode will not be cleared after successful conversion and you are still able to go back
to the full-editing mode by reselecting the lower box without clicking at the conversion
buttons in the center. Please note, that this behavior of the PPL editor implies, that
there can be two different policies loaded at the same time. To prevent ambiguity, the
hosting application of that editor will always take the policy in the current activated
editing mode.

Beside the two editing modes, the PPL editor component can also be used in a
read-only view mode. That is the case at the EPT in the section where applications
are selected to get their details displayed. In view mode, PPL editor gets its input
policy from the hosting application and tries to display it in basic mode. However, the
full-viewing mode is always available to provide the full PPL policy as an XML structure.

9.3.2 Headhunter and User Interaction via Secure Mobile Device

In Chapter 8 we described the semantics about the interaction between the headhunter’s
tool (HHT) and the secure mobile device (SMD). Now, the technical details of that
interaction will be explained.

The interaction starts off with a policy obligation mismatch between the downstream
part of the application’s sticky policy and the domain expert’s policy. This mismatch
is noticed by and also stored from the HHT. It then will send a SMS message to the

Section 9.3: Complex Features Explained 79

applicant’s SMD using an external SMS provider that is contacted using a HTTP-GET
call. The content of the SMS is <PrimeLife>mID </PrimeLife> where mID is a 6-digit,
random identifier generated by HHT.

At the SMD, the SMS message is received and will be readable by the PrimeLife
application only which then will trigger a privacy mismatch notification. The user can
react on that notification by starting the PrimeLife application on that device and se-
lecting the particular mismatch case. In order to show some details on the mismatch, the
PrimeLife application on the SMD will then poll for the mismatch data at HHT using
the GetMismatch method via REST interface that was discussed in the former sections.
The mismatch details will be stored on the SMD for the purpose of showing a privacy
mismatch history at a later point in time. At the bottom of that mismatch details view,
there are two buttons allowing the user to choose either to ignore the mismatch and
allow the HHT to use its data anyway (accept button) or to stick to its privacy prefer-
ences (reject button). The user decision is then send to HHT’s ProceedMismatchBoolean
method using the REST interface.

9.3.3 Dynamic Binding using WCF Service Discovery

The privacy-aware dynamic binding feature of the eCV scenario has been introduced
at the architecture description of the HHT. We have defined this feature to have two
phases. The first phase, which is service discovery of DETs, is based on WCF and will
be discussed next.

The Windows Communication Foundation (WCF) brings a service discovery facility.
There are several types of discovery. The one we make use of is based on the service
interface. That is, when our web service consumer (e.g. HHT) knows the interface of its
desired service in advance and is using broadcast network messages to signal a search
of that particular type of service. The web service provider needs to prepare several
properties in order to respond and support the binding to that kind of discovery.

As this feature only makes sense in our scenario when having multiple instances
running at the same time, the service provider (DET) first needs to find a proper network
address and port to listen to dynamically. Planning to have all participants running on
the same machine, we decided to let DETs search for available ports but stay on the same
IP address. We also use the port number as an identifier of that DET instance. Next, the
DETs need to expose meta data about their service, this is, providing a WSDL file over a
regular HTTP-GET call. The last step needed is to switch the service discovery feature
on at the DETs. This will enable them to respond on the active service discoveries.

The service consumer has a configurable discovery timeout in which all consumer
instances (DETs) need to respond. After that service discovery timeout, all instances
are available as endpoint-proxy objects at the consumer side and therefore are ready to
get called.

HHT will do the service discovery phase once per start up automatically, as this is
considered expensive due to time(-out) consuming. Afterwards it will keep all known
DETs and ask them on every single JFT to hand-out their policy in order to process the
second phase of the privacy-aware dynamic binding.

80 Implementation Details on Data Controller Part

9.3.4 Integration of OEE

The domain expert’s tool (DET) is connected to the OEE such that it uses the OEE
web service to register its policy in relation to received applications on the one hand.
On the other hand, as DET uses an in-memory database, all actions of OEE on the PII
data result in a call of DETs’ web service from OEE.

The first type of use, in which the DET calls the web service of OEE, is the basic
usage of OEE and does not need further discussion. The communication in the oppo-
site direction is less trivial; this required additional integration work to get those two
components connected and it also covers a tricky technique.

We will give a short overview on the structure of OEE first. OEE registers PPL
policies including a PII-ID and will then listen for relevant events to trigger actions
that are listed in the registered PPL policies. For executing an action, OEE provides a
modular architecture to plug-in so called action handlers. If an action is to be triggered,
then all known action handlers are called to do the action. Every action handler should
then decide by itself if the current action and PII is relevant and whether it should
effectively execute some action or not.

This is where the integration with the eCV scenario comes into play. We have imple-
mented a separate OEE action handler (DET-AH) to communicate to DETs. Every time
the DET-AH is hit to execute an action, it invokes a service discovery process, which we
described in the section above, in order to distribute the action call to all DETs, telling
them the ID of the PII data that should be affected. This way of calling DETs ‘back’
seems very inefficient at first sight. But taking into account that OEE is a generic obliga-
tion enforcement engine that was not designed to store some kind of sender information
when registering policies, one would realize that there is no other way than detecting the
sender at the moment when it is needed (‘lazy’). But there is no extractable information
neither in the PPL policy nor in the PII-ID that could reveal the sender DET and could
be used for this purpose. Thus all DETs have to be contacted and requested to do the
certain action on a specific PII.

As the PII will always be stored at one DET only in our eCV scenario, all other
DETs need to check if the given PII-ID is known by them and proceed the request if this
is the case and ignore it otherwise.

Chapter 10
Implementation Details on Data
Subject Part

In this chapter we will outline details concerning the data subject part of the eCV
scenario. It includes the interaction between the eCV portal, the headhunter and claims
issuer (e.g. a proof that the applicant has attended a course) and the creation of job
applicant profiles.

10.1 Introduction

From the data subject perspective, we consider the eCV portal, a claim issuer and
interaction with the data controller. Integral to all these parts of the scenario are the
concepts of data handling policies, user preferences and sticky policies. The portal is
where job applicants create an electronic curriculum vitae, receive justifications that
they have a certain experience or qualification, specify how their data will be consumed,
receive job offerings, match jobs against their profile (verifying if there is or is not a
mismatch against their preferences/policies) and then apply for a job. The receiving of
available jobs and sending of an application, along with the corresponding policies in
both instances, are the communication points with the data controller.

In the following sections there is a step-by-step explanation of the eCV scenario,
including sequence diagrams with an emphasis put on the data subject side, along with
an explanation of the web services used. Finally we will describe the technologies used
during development.

10.2 eCV Scenario

1. Receiving available jobs

• Whenever any open job position is created, an employer creates the job vacancy,
fills the details, attaches a policy and sends to the Headhunter. Details can consist

81

82 Implementation Details on Data Subject Part

Figure 13: eCV Scenario Overview

of Job Description, Function Area, Job Position, Salary, Company, Location, Start
Date, End Date. Policies regulate the usage of data and in this instance we look
at Purpose, Recipients and Retention. Purpose refers to using data to perform
a specific task. The data that is collected by a service to do a certain task (e.g.
RESEARCH) must be used only for that purpose. Recipient specification allows
the data provider and the data consumer to be aware of the users or geographic
domains that have access to the data (e.g. EU, USA). An external service that is
consuming data is obliged to accept the data retention period which means that
the external service can’t access the data after this period (e.g. 90 days).

• The Headhunter receives the job application and forwards it to the eCV Portal.
A headhunter is a job recruiter who specializes in matching skilled professionals
with corporate clients. A headhunter might be an independent contractor or work
through an agency of headhunters where each agent specializes in particular areas
of employment and possibly also in geographic areas.

• The eCV portal collects, stores, manages and publishes the eCVs. It also has the
ability to store job searches and offers from the Headhunter. Using this information,
the eCV portal is able to perform internal searches on the candidates and find a
possible matching. The eCV portal is the actual service provider entity in the
architecture. Users have to register to the eCV portal in order to be able to
participate.

2. Claim Issuer

• User logs in to the eCV portal and requests the Claim Issuer for the claim which
can be either educational or work-related. Users can request for several claims at
a time.

The claim issuer is one that provides evidence, on request, for all or some of the
claimed experience and knowledge the user lists in his eCV. Issuers of the claim/doc-
ument are always an organization that is in a position to assert user’s statements, e.g.
employers, universities, training center, government, and other community members.

Section 10.2: eCV Scenario 83

Figure 14: Sequence Diagram eCV Scenario with focus on Data Subject

The user would typically verify the claim upon receipt and may then add a privacy
preference to it (which has to be more restrictive than the policy issued with the claim),
to further restrict access to the claim before publishing it. Both the user and the claim
issuer are concerned about how the information expressed in the claim will be used by
other entities in downstream and secondary usage.

3. Profile creation

• User creates the job profile on eCV portal, attaches the claims and then publishes
the profile. Users can further refine the policies at this stage either before or after
publishing the profile.

• Now the user can search for the jobs matching to his profile and apply for matching
jobs on the eCV portal. There can be a mismatch when policies of the available job
are not compliant with user’s privacy policy. If the user wants to apply for a job
that shows a mismatch, then he can go back to his profile and change his privacy
policy according to the Job requirement policy, republish his profile and then apply
again. Overriding a privacy policy may occur if an element in the available job is
of interest to the applicant, for example, if the salary or location is of interest. If
this action is done we can say that the user foregoes his original privacy preference.

• The final step is for the job applicant to send the CV to the headhunter along with
the policies and preferences.

84 Implementation Details on Data Subject Part

Figure 15: Claim Issuance

10.3 Web Services descriptions

10.3.1 Claim Issuer

The claim issuer web service contains methods that receive the claim request from the
eCV portal, check the validity of the requested claim and finally send a response back
to the eCV portal.

It contains the following methods: a) Receive Claim Request b) Check Claim Validity
c) Send Policy d) Send Claim e) Display Request

Receive Claim Request:
This method receives a claim requested by the user through the eCV portal. The

request contains the claim requested and the claim type (education or work experience),
the user’s name, institution from where this claim is being requested and the country of
this institution along with a transaction ID. This information is stored in the database
in the table "CLAIMREQ". It then returns the transaction ID.

Check Claim Validity :
This method receives the transaction ID and then retrieves the claim from the

CLAIMREQ table in the database using the transaction ID. It then checks the validity
of the claim by comparing against the claims tables in the database (WORKCLAIMS
and EDUCLAIMS). It then updates the CLAIMREQ table with the ClaimID and Claim
Type, if the claim is valid. Finally, if the claim is valid, it returns true or else it returns
false along with the transaction ID.

Send Policy:
This method takes the transaction ID as an input and retrieves the claim associated

with that request. It then retrieves the policy of the claim and sends it to the eCV portal

Section 10.3: Web Services descriptions 85

Figure 16: eCV Profile

for the user’s approval.
Send Response: This method receives the transaction ID and the approval status

(either a true or false). If it is true, i.e. if the policy has been approved, it retrieves the
claim (using the ClaimID and ClaimType from the CLAIMREQ table) and sends the
claim as a response along with the PPL policy attached to the claim. For this process it
retrieves the values from tables WORKCLAIMS, EDUCLAIMS and CLAIMPOLICY.
If the user does not agree to the policy, it returns null.

Display Request:
This method is used for the Claim Issuer UI, it retrieves the claim request from the

CLAIMREQ table and displays the status as recieved, invalid/valid and Issued.

10.3.2 ECV Claim Handler

The ECV Claim Handler web service contains methods that are used to send the claim
request from the eCV portal to the claim issuer, receive the policy of the claim, and if
the policy is accepted then claim is received and finally saved in the database of the eCV
portal.

It contains the following methods: Send Claim Request; Receive Claim Policy; Re-
ceive Claim; Save Claim; and Display Claim.

Send Claim Request:
This method sends a claim request by the user through the eCV portal. The request

contains the claim requested and the claim type (education or work experience), the
user’s name, institution from where this claim is being requested and the country of this
institution along with a transaction ID that is automatically generated. The transaction

86 Implementation Details on Data Subject Part

ID is the key that is exchanged between the eCV portal and the claim issuer. This
information is stored in the database in the table "ECVCLAIMREQ".

Receive Claim Policy :
This method receives the Policy of the Claim sent by the claim Issuer. The policy

sent is a PPL Policy. The transaction ID is also sent by the claim issuer. The user’s
response is awaited and if the user agrees (or disagrees) to the policy, the response is sent
back to the claim Issuer. The transaction ID is used by the eCV portal to retrieve the
requested claim data from the ECVCLAIMREQ table and display the policy for that
request. This method does not alter the tables of the database.

Receive Claim:
This method receives the requested claim along with the agreed policy and also the

transaction ID. This information is then displayed (Display Claim) to the user. The user
can then choose to save the claim (Save Claim) in his profile.

Save Claim:
This method receives the claim along with the policy. The claim is stored in the claims

table (ECVCLAIM) while the policy is stored in the ECVCLAIMPOLICY table. This
method parses through the PPL policy and retrieves the relevant attributes (recipients,
retention time, purpose etc) and saves them in the table (ECVCLAIMPOLICY) table.

Display Claim:
This method is used for the Claim Handler UI, it displays the claim it receives from

the claim issuer along with the policy.

10.3.3 Job Handler

The Job Handler web service contains methods that are used to match the available jobs
to the user’s profiles.

It contains the following methods: Match Jobs on Profile; Match Jobs on Policy and
Send Notifications.

Match Jobs on Profile:
This method takes the userid of the user as an input and retrieves the profiles of

the users from the ECVPROFILE table. These attributes in the profiles are matched
against the relevant jobs using a Java Persistance API Query. This query finds the jobs
that meet the specifications of the users profile (salary, functional area, etc).

For each job, the job id and the matched profile id are retrieved and paired together.
These pairs (jobid and profileid) are then returned by this method.

Match Jobs on Policy : This method takes the pairs of profile id and job id. A new
set is now formed, which consists of ProfileID, JobID and the MatchStatus. The match
status is a boolean. For each pair, the profile policy is retrieved and the job policy is
retrieved and compared. Only if the policies of both match or if the profile policy is a
superset of the job policy, it is considered as a match and the value of MatchStatus is
set to true. If there is any mismatch between the policies the MatchStatus is set to false.
After processing all the pairs and generating the corresponding sets, this method returns
the sets.

Send Notifications: This method receives the sets which contain the profileid, jobid
and the matchstatus. It then adds this information in a database table, MATCHJOBS,

Section 10.3: Web Services descriptions 87

and the column "MATCH" is set to the value contained in the field "matchstatus" of
the set.

10.3.4 Profile Handler

The Profile Handler web service contains methods that are used to manage the profiles
of the user

It contains the following methods: a) List Profiles b) List Profile Claims c) List
Claims d) Create Profile e) Delete Profile f) Publish Profile g) Add Claim to Profile h)
Remove Claim from Profile i) Display Claim Details

List Profiles:
This method retrieves the profiles created by the user and displays them. It takes as

an input the userid of the user and searches the table ECVPROFILE for all the profiles
of that user. It then displays the profile name, profile id and the status of the profile.

List Profile Claims:
This method retrieves the claims that have been added to the profile and displays

them. It takes as an input a profile ID and searches the table ECVPROFILECLAIM
and finds all the claims that are added to this profile. It displays the claim name and
claim ID.

List Claims:
This method retrieves all the claims that have not been added to the profile and

displays them to the user. It takes as an input the profile ID. It performs a search on the
database using a query that joins the ECVPROFILE and ECVPROFILECLAIM tables
and retrieves the claims that have not yet been added to the ECVPROFILECLAIM
table for the selected profile. It displays the Claim name and the Claim ID.

Create Profile:
This method takes the details of the profile that have been filled by the user using the

form provided in the UI of the profile handler and adds this record in the ECVPROFILE
table. It returns a boolean value indicating the success or failure of this operation.

Delete Profile:
This method takes the profile ID and deletes all occurences of it in the database tables.

It clears the ECVPROFILE, ECVPROFILECLAIM and the ECVUCLAIM tables of any
records containing this profileID. It returns a boolean value indicating the success or
failure of the operation.

Publish Profile:
This method takes the profile ID as an input and publishes the profile. Publishing

the profile indicates that the profile has been complete and can be used for matching
against available jobs. This method generates a policy considering all the claim policies
of the claims that are added to the profile. The policy satisfies the most restrictive policy
in the collection of the policies considered. In other words, it has the most restrictive
policy among the claims that are added to the profile. It then adds this policy in the
ECVPROFILEPOLICY table. Also it updates the ECVPROFILE table, marking the
profile as published. It returns a boolean value indicating the the success or failure of
this operation.

Add Claim to Profile:

88 Implementation Details on Data Subject Part

This method takes the profile id and the claim id as an input. This information is
then added to the ECVPROFILECLAIM table. It returns a true or false, indicating the
success or failure respectively.

Remove Claim From Profile:
This method takes the profile id and the claim id as an input. This information is

then used to delete the record from the ECVPROFILECLAIM table. It returns a true
or false, indicating the success or failure respectively.

Display Claim Details: This method takes the claim id as an input and displays the
claim details. It uses the claimid to retrieve the details of the claim from the ECV-
CLAIMS table and also from the ECVCLAIMPOLICY table and displays it to the user.

10.3.5 Application Handler

The Application Handler web service contains methods that are used to manage the
applications of the user. It contains the following methods: View Jobs; User Action and
Send Applications.

View Jobs:
This method takes input as the user ID and displays the jobs that have been matched

to the user’s profiles. The userid is used to retrieve all the profiles of the user from the
ECVPROFILE table and for each profile that is retrieved, the MATCHJOBS table is
searched if it contains a record that contains that profile id. These records contain both
the matches and mismatched jobs (on policy). These jobs are then displayed to the user.

User Action:
This method takes the MATCHJOBID and the userchoice as an input. Userchoice

is an integer value that indicates the choice of the user.
-1 indicates that the user has deleted the job.
0 indicates no change.
1 indicates that the user has applied for the job, if it is a matched job.
2 indicates that the user has applied for the job, by overriding the mismatch that

occured.
Finally, it updates the MATCHJOB table with the userAction in the column of the

same name.
Send Applications:
This takes as an input the user ID and sends applications to the headhunter. The

userid is used to retrieve all the profiles of the user from the ECVPROFILE table and for
each profile that is retrieved, the MATCHJOBS table is searched if it contains a record
that contains that profile id and containing the useraction as 1 or 2. It then invokes
the client of the headhunter and sets the data accordingly to the application format of
the headhunter. Subsequently it dispatches the contents to the headhunter. Finally,
this method updates the MATCHJOB table by setting the headhunterAction set to 1,
indicating that the application has been sent.

Section 10.4: Technology Used 89

10.4 Technology Used

10.4.1 Introduction

The ECV portal is designed using SAP Netweaver BPM to design the business processes
and Web Dynpro for developing the User Interfaces. Web services are used extensively
to provide functionality to the User Interfaces and to use them in a business process.

The SAP NetWeaver Composite Environment (CE) 7.1 version provides tools for de-
veloping, running and managing composite applications based on SOA principles. SAP
NetWeaver CE uses proven technologies and integrates them to provide greater function-
ality.

The NetWeaver CE suite is divided into three parts:

• The process composer in the NetWeaver Developer Studio (NWDS), an Eclipse-
based environment with a special perspective for creating and deploying processes
and applications.

• The process server running on the NetWeaver Composition Environment (CE), a
Java application server.

• The process desk running on the NetWeaver portal with the universal work list
and task execution.

The application is built using SAP Netweaver 7.1 package. There are many different
perspectives available in the NWDS, however, the five major perspectives that have been
used in the development of the prototype are shown below:

• Development Infrastructure: Used for creating Development Components (ejb and
ear).

• Java EE: Used for creating web services, web service clients, java bean skeletons
and entities.

• Web Dynpro: Used for creating User Interfaces.

• Process Composer: Used for creating the BPM (Business Process Management)
process.

• Dictionary: Used for creating Tables.

The database used to store and retrieve data is MaxDB. We connect to the database
using the dictionary component in the NWDS. We use the JPA API to read and write
data to the database.

Chapter 11
Conclusions

This report describes our research results from two different points of view. Part I de-
scribes our architectural consideration for a privacy-enhanced SOA. We noted them in
a technology agnostic way, so that they can be applied on a large variety of technolo-
gies. In Part II we summarized our practical experiences with making a service-oriented
architecture privacy-friendly.

This report offers three main takeaways:

1. First, it gives very precise, yet technology agnostic hints how to build a privacy
friendly service-oriented architecture. These findings are very generic and can be
applied on a wide range of concrete implementations. We describe the abstract
privacy policy framework in Chapters 3 to 6.

2. The second takeaway is the detailed analysis of existing privacy-enhancing tech-
nologies against the abstract privacy policy framework. We compare to what ex-
tend today’s solution fulfill or not fulfill the technical demands of a privacy-friendly
SOA. We present a summary in Chapter 6 and an extended evaluation in Appendix
A.

3. Thirdly, this report gives details about design and architecture of a privacy-friendly
SOA application. This eCV (electronic curriculum vitae) is also a showcase for the
PrimeLife Policy Language (PPL). Chapters 7 to 10 and Appendix B give details.

We showed that more privacy-friendly SOA are achievable with today’s technology.
The use privacy policies exposed as service meta-data, a decent privacy policy language,
and the notion of sticky policies traveling with personal data would allow users to keep
control over already disclosed data.

91

Chapter A
Detailed Comparison of Privacy
Policy Technologies in SOA

This appendix describes how table 2 of Chapter 6 has been filled. The remaining of
this appendix provides for each evaluation criteria: 1) description of the criteria, 2)
description of possible values for the evaluation of the implementation, 3) description
of possible values for the evaluation of possible extensions, 4) the evaluation of each
technology according to those criteria.

A.1 PII Provider’s Preferences (Sect. 3.3)

A.1.1 Simple Syntax

Privacy preferences are expressed in a human-readable language. Syntax and semantics
are well defined and can be processed by machines.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The language to express privacy pref-
erences has a short syntax, which is close to natural language, e.g. “this PII must
be deleted within 6 months”. The language semantics is not ambiguous.

- Partial implementation (G#) is defined as: The language to express privacy pref-
erences is human-readable (e.g. XML) but not intuitive. For instance “Obliga-
tion(ActionDelete(...), TriggerAtTime(Now, P0Y6M0DT0H0M0S))”.

- No implementation (#) is defined as: Privacy preferences are expressed in a binary
format. Or privacy preferences are out of scope: the current implementation does
not provide a language to express privacy preferences.

93

94 Detailed Comparison of Privacy Policy Technologies in SOA

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: A language close to natural lan-
guage can be implemented on top of the existing language. The implementation is
straightforward, has been prototyped, or is specified.

- Possible partial support (G#) is defined as: A human-readable language can be
defined for the specific technology. The implementation is straightforward, has
been prototyped, or specified.

- Cannot be supported (#) is defined as: Defining privacy preferences is out of the
scope of this specific technology. Defining such a language would require major
extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as . The syntax of APPEL is easy to read.
However, note that this is mainly due to the low expressiveness of APPEL and
P3P.

- Possible extensions are evaluated as . The syntax is already simple. Further sim-
plification (e.g. list, graphical representation) can be integrated in web browsers.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. PPL expresses privacy preferences in a com-
plex XML dialect extending XACML. This language can be used by IT specialists
but not by end users.

- Possible extensions are evaluated as G#. A prototype translating a high-level do-
main specific language to PPL preferences has been implemented (see [Rah10]).
However, this work only covers a subset of the language.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . S4P defines privacy preferences as “will”
queries and “may” assertions in an easy to read language. This language is directly
translated into Datalog with constraints and can be serialized as XML.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Privacy preferences are out of the scope
of this approach. Specifying preferences to automate the remote configuration of
access control would require new mechanisms and languages.

Section A.1: PII Provider’s Preferences (Sect. 3.3) 95

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Privacy preferences are not supported by
PRIME-DHP. However, the choice of the PII Provider is simplified by “templates”:
the PII Consumer provides a template of its privacy policies, and the PII Provider
can accept and customize it or stop the communication.

- Possible extensions are evaluated as G#. Even if privacy preferences are out of
the scope of PRIME-DHP, different prototypes using PRIME-DHP did implement
ad-hoc preference languages. This could be reused.

A.1.2 Can Express Access Control

The language used to express privacy preferences supports access control, i.e. the data
subject can specify which (or what kind of) data controllers can get a given type of
personal data.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The evaluated technology supports
claim-based access control: privacy preferences express rules taking into account
certified attributes of data controllers and the context.

- Partial implementation (G#) is defined as: The evaluated technology supports role-
based access control (RBAC): privacy preferences express the list of data controller
types (i.e. roles or identities) that can get personal data.

- No implementation (#) is defined as: The evaluated technology only supports
identity-based access control or does no support access control at all.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Claim-based access control could be
combined with existing preference language.

- Possible partial support (G#) is defined as: Role-based access control could be
combined with existing preference language.

- Cannot be supported (#) is defined as: Support for access control is out of scope
and would require major extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. APPEL can handle attributes: X.509
certificate (issuer, attributes) of the PII Consumer can be taken into account.

- Possible extensions are evaluated as G#. Further support for access control would
be difficult to add. No extension is foreseen.

96 Detailed Comparison of Privacy Policy Technologies in SOA

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . The full expressiveness of XACML can be
used to specify access control in PPL privacy preferences.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . The full expressiveness of SecPAL can be
used to specify access control in S4P privacy preferences.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Access control in privacy preferences is out
of scope since this approach does not address privacy preferences.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Access control in privacy preferences is out
of scope since PRIME-DHP does not address privacy preferences.

- Possible extensions are evaluated as G#. PRIME-DHP could be combined with a
legacy access control technology at data subject side. Moreover, basic support for
access control exists in prototypes that specified ad-hoc preferences language.

A.1.3 Can Express Expected Data Handling

The language used to express privacy preferences lets the PII Provider specify how
collected data must be handled by the PII Consumer.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Privacy preferences express complex
data handling expected by the PII Provider including rights (e.g. use for purpose)
and obligations (e.g. log usage).

- Partial implementation (G#) is defined as: Privacy preferences express basic data
handling, e.g. a flat list of purposes and data retention time.

- No implementation (#) is defined as: Privacy preferences cannot express how the
PII Provider expect her personal data to be handled.

Section A.1: PII Provider’s Preferences (Sect. 3.3) 97

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The privacy preferences language
provides extension points to define complex data handling.

- Possible partial support (G#) is defined as: The privacy preferences language could
be extended with basic data handling.

- Cannot be supported (#) is defined as: Expressing data handling is out of scope
and would require major extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. APPEL lets define primary and secondary
purpose as well as data retention.

- Possible extensions are evaluated as G#. Further support for data handling would
be difficult to add. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . PPL defines data handling in terms of
rights and obligations. Usual rights and obligations are part of the language and
moreover both rights and obligations can be extended.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . S4P defines data handling in privacy prefer-
ences in terms of authorizations (“may” assertions) and obligations (“will” queries).
New types of rights and obligations can be defined.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Data handling in privacy preferences is out
of scope since this approach does not address privacy preferences.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Data Handling in privacy preferences is
out of scope since PRIME-DHP does not address privacy preferences.

- Possible extensions are evaluated as G#. Basic support for data handling has been
implemented in prototypes that define ad-hoc preferences language.

98 Detailed Comparison of Privacy Policy Technologies in SOA

A.1.4 Can Express Expected Downstream Access Control

The preferences can express access control constraints on third parties. In other words,
the preferences specify with what kind of third parties the data controller is authorized
to share collected data.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Downstream access control takes into
account claims of third parties: privacy preferences express rules on certified at-
tributes of third parties.

- Partial implementation (G#) is defined as: Role-based or identity-based access con-
trol: privacy preferences express the list of third parties (e.g. roles or identities)
with which the data controller may share collected data.

- No implementation (#) is defined as: Privacy preferences cannot express access
control on third parties.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Downstream claim-based access con-
trol could be combined with the existing privacy preferences language but is not
yet implemented.

- Possible partial support (G#) is defined as: Downstream role-based or identity-based
access control could be combined with existing privacy preferences language but is
not yet implemented.

- Cannot be supported (#) is defined as: Support for downstream access control is
out of scope and would require major extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. APPEL can take attributes of third parties
into account.

- Possible extensions are evaluated as G#. Further support for downstream access
control would be difficult to add. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . The current implementation is based on
“lazy matching”, which lets define the access control (XACML) to be enforced by
the PII Consumer.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension. Note that “Pro-active” matching change the creation
of the sticky policy but not the preferences.

Section A.1: PII Provider’s Preferences (Sect. 3.3) 99

SecPAL for Privacy (S4P):

- The implementation is evaluated as . Conditions and constraints associated with
“may send” assertions can be used to specify arbitrary properties of third parties.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Downstream access control in privacy
preferences is out of scope since this approach does not address privacy preferences.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Downstream access control in privacy
preferences is out of scope since PRIME-DHP does not address privacy preferences.

- Possible extensions are evaluated as G#. Basic support for data handling has been
implemented in prototypes that define ad-hoc preferences language. Note that
downstream access control is fully supported by PRIME-DHP policies and sticky
policies.

A.1.5 Can Express Expected Downstream Data Handling

The preferences can express data handling constraints on third parties. In other words
the preferences specify how third parties are expected to handle data they would get
from data controllers.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The privacy preferences can specify
complex downstream data handling including rights (e.g. use for purpose) and
obligations (e.g. log usage).

- Partial implementation (G#) is defined as: The privacy preferences can specify basic
downstream data handling, e.g. flat list of purposes and data retention.

- No implementation (#) is defined as: The privacy preferences cannot specify ex-
pected data handling on third parties.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The language could be extended to
specify complex data handling that is expected downstream but this is not yet
implemented.

100 Detailed Comparison of Privacy Policy Technologies in SOA

- Possible partial support (G#) is defined as: The language could be extended to
express minimum downstream data handling but this is not yet implemented.

- Cannot be supported (#) is defined as: Expressing expected downstream data
handling is out of scope and would require major extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. It is possible to specify different data han-
dling for third parties. However this is complex and requires multiple preferences.

- Possible extensions are evaluated as G#. Further support for downstream data
handling would be difficult to add. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . The current implementation is based on
“lazy matching”, which lets define how third parties must handle collected data.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . S4P defines data handling in privacy pref-
erences for any PII Consumer including downstream.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Downstream data handling in privacy
preferences is out of scope since this approach does not address privacy preferences.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Downstream data handling in privacy
preferences is out of scope since PRIME-DHP does not address privacy preferences.

- Possible extensions are evaluated as #. Downstream data handling is out of scope.

A.1.6 Can Take Downstream Path into Account

Privacy constraints that apply to data controllers downstream depend on the path. In
other words, it is possible to have different privacy constraints for personal data d at
service S when S is a data controller directly collecting d, when S acts as downstream
data controller and gets d from data controller S1, or from data controller S2.

Section A.1: PII Provider’s Preferences (Sect. 3.3) 101

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Data handling for a given piece of
personal data and for a given third party can be specified differently depending on
which PII Consumer provided the data.

- Partial implementation (G#) is defined as: Some aspects of Data handling can be
different depending on the path.

- No implementation (#) is defined as: The path does not impact the data handling.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The language could be extended to
take the path into account but this is not yet implemented.

- Possible partial support (G#) is defined as: Mechanisms could be built on top of the
existing language to take some aspects of the path into account.

- Cannot be supported (#) is defined as: Taking path into account is out of scope
and would require major extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. Data handling depends on the path since a
third party has equivalent or stricter constraints than the data controller (i.e. PII
Consumer).

- Possible extensions are evaluated as G#. Full support for downstream path would
be difficult to add. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . The current implementation is based on
“lazy matching”, which lets specify a chain of nested data handling preferences.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as G#. By default, preferences regarding a how
a given party must handle a given piece of personal data is expressed one. How-
ever, path could be taken into account with additional conditions on “may send”
assertions.

- Possible extensions are evaluated as G#. Full support for downstream paths would
be difficult to add. No extension is foreseen.

102 Detailed Comparison of Privacy Policy Technologies in SOA

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Specifying downstream path in privacy
preferences is out of scope since this approach does not address privacy preferences.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Specifying downstream path in privacy
preferences is out of scope since PRIME-DHP does not address privacy preferences.

- Possible extensions are evaluated as #. Downstream paths are out of scope.

A.1.7 Can Retrieve Applicable Preferences (Sect. 3.6)

This technology provides a mechanism to get the privacy preferences that apply to a piece
of personal data. This mechanism supports different types of personal data: retrieved
from a PII Store (e.g. a database), dynamically created by the user (e.g. free text in a
HTML Form), or certified (e.g. attributes of credentials).

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: It is possible to automatically query
(and combine) privacy preferences related to a type of personal data or a given
piece of data.

- Partial implementation (G#) is defined as: Preferences can be specified per personal
data but there is no grouping mechanism (e.g. no way to refer to "all e-mail
addresses").

- No implementation (#) is defined as: No mechanism to query preferences.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: It would be possible to build complex
preference queries but this is not available in current implementation.

- Possible partial support (G#) is defined as: It would be possible to build basic
preference queries but this is not available in current implementation.

- Cannot be supported (#) is defined as: Querying privacy preferences is out of
scope and would require major extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope. APPEL lets the
client technology (e.g. Web Browser) make the link between personal data and
preferences.

- Possible extensions are evaluated as G#. Ad hoc mechanisms exist to query prefer-
ences.

Section A.2: PII Consumer’s Policy (Sect. 3.4) 103

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. Basic mechanism has been implemented to
get the preference that applies to personal data including credentials.

- Possible extensions are evaluated as . The language let’s define complex applica-
bility for preferences that can be used to query preferences.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Out of the scope of the current implemen-
tation.

- Possible extensions are evaluated as . A prototype preference language associates
pieces of preferences (mainly “may” assertions and “will” queries) with description
of PII. This could be used to select relevant assertions and queries.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Querying preferences is out of scope since
this approach does not address privacy preferences.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Querying preferences is out of scope since
PRIME-DHP does not address privacy preferences.

- Possible extensions are evaluated as G#. There are prototypes associating ad-hoc
preferences with personal data in a databases.

A.2 PII Consumer’s Policy (Sect. 3.4)

A.2.1 Simple Syntax

Privacy policies are expressed in a human-readable language. Syntax and semantics are
well defined and can be processed by machines.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The language to express privacy poli-
cies has a short syntax, which is close to natural language, e.g. “Commit to delete
this collected PII within 6 months”. The language semantics is not ambiguous.

- Partial implementation (G#) is defined as: The language to express privacy policies
is human-readable (e.g. XML) but not intuitive. For instance “Obligation(ActionDelete(...),
TriggerAtTime(Now, P0Y6M0DT0H0M0S))”.

- No implementation (#) is defined as: privacy policies are expressed in a binary
format or are out of scope and cannot be expressed.

104 Detailed Comparison of Privacy Policy Technologies in SOA

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: A language close to natural language
could be defined on top of the existing language. The implementation is straight-
forward, has been prototyped, or specified.

- Possible partial support (G#) is defined as: A human-readable language can be
defined for the specific technology. The implementation is straightforward, has
been prototyped, or specified.

- Cannot be supported (#) is defined as: Defining privacy policy is out of the scope of
this specific technology. Defining such a language would require major extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. P3P policies are readable. However, this
is mainly due to low expressiveness.

- Possible extensions are evaluated as . A prototype [Rag10] using a subset of P3P
feature serialized in JSON proposes an easy to read privacy policy.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. PPL expresses privacy policies in a complex
XML dialect extending XACML.

- Possible extensions are evaluated as G#. Prototype translating a high-level domain
specific language to PPL policies exists (see [Rah10]). However, this work only
covers a subset of the language.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . S4P defines privacy policies as “may” queries
and “will” assertions in an easy to read language.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Privacy policies are out of the scope of this
approach. Specifying policies to restrict the remote configuration of access control
would require new mechanisms and languages.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. PRIME-DHP provides an XML-based
privacy policy language.

- Possible extensions are evaluated as G#. No higher-level language does exist.

Section A.2: PII Consumer’s Policy (Sect. 3.4) 105

A.2.2 Can Express Claims (Credentials)

The policy language can describe trust level and certification of PII Consumers. For
instance, it is possible to link Public Key Infrastructure to the policy.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The language lets link policies with
complex claims. Different trust models (e.g. reputation, web of trust, PKI) and
different mechanisms (e.g. X.509, anonymous credential) are supported.

- Partial implementation (G#) is defined as: The language lets link policies with
usual mechanisms (e.g. Public Key Infrastructure) but other mechanisms are not
supported.

- No implementation (#) is defined as: The language does not handle credentials.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Support for different trust models and
mechanisms is possible but is not implemented.

- Possible partial support (G#) is defined as: Support for basic certification is possible
but is not yet be implemented.

- Cannot be supported (#) is defined as: Support for credentials is out of scope or
would require major modifications

APPEL + P3P (A+P):

- The implementation is evaluated as G#. Full support for PKI and X.509.

- Possible extensions are evaluated as G#. Adding support for other trust models and
other types of credentials would require major changes.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . X.509 as well as anonymous credentials
can be specified in the policy.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . Credentials are translated into assertions
that are taken into account when evaluating the policy.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

106 Detailed Comparison of Privacy Policy Technologies in SOA

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Expressing attributes of parties in policies
is out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . DHP can express conditions over data in
credentials (i.e., credential/declaration predicates).

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

A.2.3 Can Express Data Handling

Privacy policies can express proposed data handling in terms of purpose, obligations,
etc. In other words, PII Consumers express how collected data will be handled.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Privacy policies express complex data
handling that are enforced by the PII Consumer. This includes rights (e.g. use for
purpose) and obligations (e.g. log usage).

- Partial implementation (G#) is defined as: Privacy policies express basic data han-
dling, e.g. a flat list of purposes and data retention time.

- No implementation (#) is defined as: Cannot specify proposed data handling.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: This privacy policy language provides
extension points to define complex data handling.

- Possible partial support (G#) is defined as: This privacy policy language could be
extended with basic data handling.

- Cannot be supported (#) is defined as: Expressing data handling is out of scope
and would require major modifications.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. P3P lets define primary and secondary
purposes as well as data retention.

- Possible extensions are evaluated as G#. Full support for data handling would be
difficult to add. No extension is foreseen.

Section A.2: PII Consumer’s Policy (Sect. 3.4) 107

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . PPL defines data handling in privacy
policies in terms of rights and obligations. Both rights and obligations can be
extended.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . S4P defines data handling in privacy policies
in terms of rights (“may” queries) and obligations (“will” assertions). New types of
rights and obligations can be defined.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Privacy policies are out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . The language defines complex data handling
including conditions, obligations, and data sharing.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

A.2.4 Can Express Downstream Claims (Credentials)

The policies can express credentials of third parties. In other words the policy specifies
with what kind of third parties the data controller may share collected data.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Policies express complex certification
of third parties: different claims, different trust models (e.g. reputation, web of
trust, PKI) and different mechanisms (e.g. X.509, anonymous credential).

- Partial implementation (G#) is defined as: Policies express basic certification of
third parties: only identity-based or only usual mechanisms (e.g. Public Key
Infrastructure).

- No implementation (#) is defined as: No support for certification of third parties.

108 Detailed Comparison of Privacy Policy Technologies in SOA

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Reference to complex certification
of third parties could be combined with existing policy language but is not yet
implemented.

- Possible partial support (G#) is defined as: Reference to basic certification of third
parties could be combined with existing policy language but is not yet implemented.

- Cannot be supported (#) is defined as: Support for downstream certification is
out of scope and would require major extensions.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. P3P can specify that personal data may
be shared with specific types of third parties. The actual policy of the third party
is taken into account by the data controller.

- Possible extensions are evaluated as G#. Support for other technologies would re-
quire major changes. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. The current implementation is based on
“lazy matching”. The downstream access control is not part of the policy. However,
the credentials of the third party are taken into account when sharing downstream.

- Possible extensions are evaluated as . Using “proactive” matching algorithm
[BNP10] makes it possible to define nested and recursive policies to define down-
stream access control.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . Downstream access control is handled by
specifying to which third party the data may be forwarded and by importing (or
referencing) the policy of this third party including its attributes.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Privacy policies are out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . PRIME-DHP lets define a complex access
control policy as part of the privacy policy.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

Section A.2: PII Consumer’s Policy (Sect. 3.4) 109

A.2.5 Can Express Downstream Data Handling

The policies can express proposed data handling of third parties. In other words the pol-
icy specifies how third parties would handle data they may get from the data controllers.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Description of complex downstream
data handling including rights (e.g. use for purpose) and obligations (e.g. log
usage).

- Partial implementation (G#) is defined as: Description of minimum downstream
data handling (purposes and data retention).

- No implementation (#) is defined as: This technology cannot specify data handling
of third parties.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The language could be extended to
express complex data handling that is proposed by third parties. This may not yet
be implemented.

- Possible partial support (G#) is defined as: The language could be extended to
express minimum data handling

- Cannot be supported (#) is defined as: Expressing data handling proposed by
third parties is out of scope and would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. Different data handling for third parties
can be expressed but this is complex. This would require multiple policies.

- Possible extensions are evaluated as G#. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. The current implementation is based on
“lazy matching”. The downstream data handling is not part of the policy.

- Possible extensions are evaluated as . Using “proactive” matching algorithm
[BNP10] makes it possible to define nested and recursive policies to define down-
stream data handling.

110 Detailed Comparison of Privacy Policy Technologies in SOA

SecPAL for Privacy (S4P):

- The implementation is evaluated as . Downstream data handling is handled by
specifying to which third party the data may be forwarded and by including (or
referencing) the policy of this third party.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Privacy policies are out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. The sticky policy is forwarded with personal
data downstream. This can be used to have similar privacy constraint downstream.

- Possible extensions are evaluated as G#. Full support would require major changes.
No extension is foreseen.

A.2.6 Can Retrieve Applicable Policy (Sect. 3.7)

There is a mechanism to get or generate the policy applicable to a given parameter,
e.g. one “label” of an HTML Form, one parameter of a Web Service, or one claim of a
requested credential.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Complex generation of privacy policy
taking into account user authentication, choices in interface, etc.

- Partial implementation (G#) is defined as: Static privacy policy describing all pa-
rameters of the PII controller interface.

- No implementation (#) is defined as: No support for parameters.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: More complex mechanisms could be
built on top of existing building blocks but are not available.

- Possible partial support (G#) is defined as: Simple mechanisms could be built on
top of existing building blocks but are not available.

- Cannot be supported (#) is defined as: Issuing Privacy Policy for collected data is
out of scope and would require major changes.

Section A.3: PII Store (Sect. 3.5) 111

APPEL + P3P (A+P):

- The implementation is evaluated as G#. P3P is mainly used to create static policies.

- Possible extensions are evaluated as G#. No extension is foreseen..

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. The current implementation assumes static
policies. Basic mechanisms to retrieve applicable policy are provided.

- Possible extensions are evaluated as . PPL could be extended with more dynamic
mechanisms.

SecPAL for Privacy (S4P):

- The implementation is evaluated as#. Out of the scope of the core implementation.

- Possible extensions are evaluated as . A prototype preferences language does
associate pieces of policies (mainly “may” queries and “will” assertions) with de-
scription of PII. This could be used to select relevant assertions and queries.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Privacy policies are out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . Query mechanisms exist to retrieve policy
from a databases.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

A.3 PII Store (Sect. 3.5)

Personal data are stored in a database and can be queried according to attributes such
as the type of data (e.g. e-mail address) or its certification (e.g. name in identity card).

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Unified PII Store to query different
type of personal data.

- Partial implementation (G#) is defined as: Basic PII store listing existing personal
data.

- No implementation (#) is defined as: No support for querying personal data.

112 Detailed Comparison of Privacy Policy Technologies in SOA

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Unified PII Store to query different
types of personal data could be built on top of existing building blocks but may
not yet be implemented.

- Possible partial support (G#) is defined as: Basic PII Store to query different types
of personal data could be built on top of existing building blocks but may not yet
be implemented.

- Cannot be supported (#) is defined as: Querying personal data is out of scope and
would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. PII storage and query is out of the scope
of P3P and APPEL.

- Possible extensions are evaluated as G#. Different mechanisms have been proposed,
e.g. W3C Device APIs WG [W3C10] proposes mechanisms to get contact infor-
mation.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. PPL’s Credential Handler [Pri09a] provides
an API to retrieve or generate PIIs.

- Possible extensions are evaluated as G#. No extension is foreseen.

SecPAL for Privacy (S4P):

- The implementation is evaluated as#. Out of the scope of the core implementation.

- Possible extensions are evaluated as . Using a legacy databases or building a new
PII store with S4P would be straightforward.

User-Specified Access Control (AC):

- Possible extensions are evaluated as . This solution proposes remote storage of
(personal) data and remote management of related authorizations. It must provide
some way to query data.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is out of the scope of PRIME-DHP.

- Possible extensions are evaluated as . Prototypes using a database to store per-
sonal data have been developed with PRIME-DHP and could be reused and gen-
eralized.

Section A.4: Privacy-Aware Service Discovery (Sect. 4.1) 113

A.4 Privacy-Aware Service Discovery (Sect. 4.1)

This technology provides mechanisms to discover services based on functional properties
and on non-functional properties such as privacy.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: This technology can be used to dis-
cover services (PII Consumers) and to sort results based on matches between pri-
vacy policies and PII Provider’s privacy preferences. Some metrics to order results
exist.

- Partial implementation (G#) is defined as: This technology can be used to discover
services (PII Consumers) fulfilling PII Provider’s privacy preferences.

- No implementation (#) is defined as: No support for privacy-aware discovery.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Complex privacy-aware service dis-
covery can be built on top of existing building blocks.

- Possible partial support (G#) is defined as: Basic privacy-aware service discovery
can be built on top of existing building blocks.

- Cannot be supported (#) is defined as: Privacy-aware discovery is out of scope
and would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Service discovery is out of scope.

- Possible extensions are evaluated asG#. Using P3P withWeb Services (e.g. [W3C03])
is a step towards privacy-aware service discovery.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. In the current implementation, privacy-
aware service discovery is out of scope.

- Possible extensions are evaluated as . A mechanism to “measure” mismatches
have been specified [Pri10a]. This mechanism could be used to sort results of
individual matches.

114 Detailed Comparison of Privacy Policy Technologies in SOA

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Privacy-aware service discovery is out of
the scope of the core implementation.

- Possible extensions are evaluated as G#. Individual matches could be used to get a
list of PII Consumers that satisfy PII Provider’s privacy preferences.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This is out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is out of the scope of PRIME-DHP.

- Possible extensions are evaluated as #. Without specification of preferences and
automatic match, privacy-aware service discovery would require additional work.

A.5 PII Lookup (Sect. 4.2)

This technology offers mechanisms to gather pieces of personal data that are required
by a given interface of the PII Consumer.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Complex PII Lookup: Possibility to
handle optional parameters, disjunction (e.g. prove “age of majority” ∨ “birth
date”).

- Partial implementation (G#) is defined as: Basic PII Lookup: Possibility to match
types of parameters (e.g. e-mail address) with types of personal data (e.g. Al-
ice@Contoso.com).

- No implementation (#) is defined as: No support for specifying and gathering
personal data.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Complex PII Lookup could be built
on top of existing building blocks.

- Possible partial support (G#) is defined as: Basic PII Lookup could be built on top
of existing building blocks.

- Cannot be supported (#) is defined as: PII lookup is out of scope and would
require major changes.

Section A.6: Policy Matching (Sect. 4.3) 115

APPEL + P3P (A+P):

- The implementation is evaluated as #. PII lookup is out of scope.

- Possible extensions are evaluated as G#. Different mechanisms have been proposed,
e.g. W3C Device APIs WG [W3C10] proposes mechanisms to get contact infor-
mation.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. PPL language and Credential Handler
[Pri09a] make it possible to require a proof that the data subject is, for instance,
older than 18. The result may be a specific proof or an X.509 certificate with
additional attributes.

- Possible extensions are evaluated as . More complex mechanisms are foreseen
but not yet implemented. Mechanism to compare matches can help.

SecPAL for Privacy (S4P):

- The implementation is evaluated as#. Out of the scope of the core implementation.

- Possible extensions are evaluated as G#. Analyzing PII Consumer’s API and eval-
uating the impact of different options would be possible on top of S4P.

User-Specified Access Control (AC):

- Possible extensions are evaluated as G#. This is out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is out of the scope of PRIME-DHP.

- Possible extensions are evaluated as G#. Analyzing PII Consumer’s API and eval-
uating the impact of different options would be possible on top of PRIME-DHP.

A.6 Policy Matching (Sect. 4.3)

A.6.1 Has Logic Foundations

The evaluation whether privacy policies do fulfill privacy preferences has logic founda-
tions.

116 Detailed Comparison of Privacy Policy Technologies in SOA

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: It is possible to prove that PII Con-
trollers enforcing their privacy (sticky) policy cannot violate PII Providers’ privacy
preferences.

- Partial implementation (G#) is defined as: Policies and preferences are expressed in
a logic-based language but there is no proof on matching and behavior.

- No implementation (#) is defined as: Matching has no logic-based foundations.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Proof could be added.

- Possible partial support (G#) is defined as: Pieces of policy could be translated into
a logic-based language.

- Cannot be supported (#) is defined as: Out of scope and would require major
changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. No logic foundations. Semantics mis-
matches between APPEL and P3P have been documented [YLA04].

- Possible extensions are evaluated as G#. Some works proposed logic-based repre-
sentation of APPEL and P3P, e.g. [YLA04].

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. PPL does not have logic foundations.

- Possible extensions are evaluated as G#. Parts of PPL have been expressed with
FORmal Modeling Using Logic Programming and Analysis (FORMULA) [JSS08].

SecPAL for Privacy (S4P):

- The implementation is evaluated as . S4P is translated into DataLog before
evaluation of queries. There are proofs that the translation provides expected
properties.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. There is no matching algorithm in those
solutions. Moreover, access control is generally not logic-based.

Section A.6: Policy Matching (Sect. 4.3) 117

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. No logic foundations.

- Possible extensions are evaluated as G#. A specification using Semantic Web triples
(subject-predicate-object) exists.

A.6.2 Takes Data Handling into Account

Expected data handling is expressed by the PII Provider and proposed data handling is
expressed by the PII Consumer. Both aspects are taken into account during match.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Description of complex local data
handling including rights (e.g. use for purpose) and obligations (e.g. log usage) is
defined on both sides and used during match.

- Partial implementation (G#) is defined as: Description of basic data handling (pur-
poses and data retention) is defined on both sides and used during match.

- No implementation (#) is defined as: This technology cannot take data handling
into account during match.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The current implementation could be
extended to take complex local data handling into account when matching policy
and preferences.

- Possible partial support (G#) is defined as: The current implementation could be
extended to take basic local data handling into account when matching policy and
preferences.

- Cannot be supported (#) is defined as: Taking data handling into account during
match is out of scope and would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. Basic data handling (purpose, retention)
are taken into account.

- Possible extensions are evaluated as G#. No extension is foreseen.

118 Detailed Comparison of Privacy Policy Technologies in SOA

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . When matching privacy policy and prefer-
ences, PPL compares rights (e.g. use for purposes) and obligations (e.g. retention
or notifications).

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . When matching privacy policy and pref-
erences, S4P compares rights (by evaluating “may” queries) and obligations (by
evaluating “will” queries).

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This approach does not address matching
algorithms.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. PRIME-DHP does not address matching
algorithms.

- Possible extensions are evaluated as G#. Ad-hoc matching has been defined for
ad-hoc preferences in prototypes.

A.6.3 Takes Obligations into Account

Expected obligations are expressed by the PII Provider and proposed obligations are
expressed by the PII Consumer. Both aspects are taken into account during match.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Complex obligations including log,
access to collected data, retention, notification, etc. are taken into account during
match.

- Partial implementation (G#) is defined as: Basic obligations (data retention) are
taken into account during match.

- No implementation (#) is defined as: This technology cannot take obligations into
account during match.

Section A.6: Policy Matching (Sect. 4.3) 119

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The current implementation could be
extended to support matching complex obligations.

- Possible partial support (G#) is defined as: The current implementation could be
extended to support matching basic obligations.

- Cannot be supported (#) is defined as: Matching obligations is out of scope and
would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. P3P and APPEL mainly support data
retention with a small number of parameters.

- Possible extensions are evaluated as G#. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . A set of obligations have been defined for
usual scenarios (delete, log, notify, etc.). New domain specific obligations can be
introduced.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as G#. Few sample obligations has been defined.
Creating new obligations is a feature of the language.

- Possible extensions are evaluated as . The language lets easily define new obli-
gations. A prototype using obligations similar to the one defined in PPL has been
implemented.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This approach does not address matching
algorithms.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Out of scope. A set of obligations has been
defined but they are not “matched”.

- Possible extensions are evaluated as G#. A set of obligations has been specified and
are taken into account when matching the preference and the policy.

120 Detailed Comparison of Privacy Policy Technologies in SOA

A.6.4 Takes Downstream Properties into Account (One Hop)

Not only the privacy policy of the data controller is taken into account during match but
also the policy of third parties, which may get subsequently access to the personal data.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Preferences express complex descrip-
tion (authorizations, obligations, credentials) of third parties and full privacy poli-
cies of third parties are taken into account during match.

- Partial implementation (G#) is defined as: Preferences express basic description of
third parties and simplified aspects of privacy policy of third parties are taken into
account during match.

- No implementation (#) is defined as: Properties of third parties are not taken into
account.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The current implementation could be
extended to support matching of complex privacy policy of third parties.

- Possible partial support (G#) is defined as: The current implementation could be
extended to support matching simple privacy policy of third parties.

- Cannot be supported (#) is defined as: Matching third parties privacy properties
is out of scope and would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as G#. The policy of a third party can be taken
into account.

- Possible extensions are evaluated as #. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. The current implementation supports “lazy
matching” that results in doing the downstream match when the data is forwarded.

- Possible extensions are evaluated as . Another matching algorithm (“proactive
matching”) has been specified and allow matching nested and recursive preferences
and policies.

Section A.6: Policy Matching (Sect. 4.3) 121

SecPAL for Privacy (S4P):

- The implementation is evaluated as . All relevant PII consumers are taken into
account when evaluating queries.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This approach does not address matching
algorithms.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Out of Scope. Since the privacy policy
defines a full access control policy, matching preferences and policies with down-
stream would end in comparing access control policies, which is a difficult problem.

- Possible extensions are evaluated as #. No extension is foreseen.

A.6.5 Supports Recursive Downstream

Complex chains of downstream data sharing can be expressed in privacy policies and
preferences and can be taken into account during match.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Chains of downstream data sharing
can be specified with delegation mechanisms and/or nested policies.

- Partial implementation (G#) is defined as: Specification of preferences is defined in
a flat way but can be reused recursively.

- No implementation (#) is defined as: Matching algorithm cannot handle complex
data sharing chains.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The current implementation could be
extended to define complex chains of data sharing.

- Possible partial support (G#) is defined as: The current implementation could be
extended to define reusable preferences.

- Cannot be supported (#) is defined as: Recursive match is out of scope and would
require major changes.

122 Detailed Comparison of Privacy Policy Technologies in SOA

APPEL + P3P (A+P):

- The implementation is evaluated as #. Out of scope.

- Possible extensions are evaluated as #. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. The current implementation supports “lazy
matching” that results in doing the downstream match when the data is forwarded.
This works with recursive preferences.

- Possible extensions are evaluated as . Another matching algorithm (“proactive
matching”) has been specified and allow matching nested and recursive preferences
and policies.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . Privacy preferences and policies related to
specific PII Consumer are connected by “may send” and evaluated together.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This approach does not address matching
algorithms.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. PRIME-DHP does not address matching
algorithms.

- Possible extensions are evaluated as #. No extension is foreseen.

A.7 PII Selection (Sect. 4.4)

Privacy-aware identity selection is supported by the protocol (i.e. privacy policies are
specified for all expected claims and privacy preferences are associated with all issued
claims) and by the user interface (i.e. the selection of claims takes privacy into account).

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: It is possible to select different types
of personal data (claim, value, ...) and privacy policies are taken into account. A
user interface is available to handle selection and mismatches.

Section A.7: PII Selection (Sect. 4.4) 123

- Partial implementation (G#) is defined as: Basic selection of different types of per-
sonal data (claim, value, ...) or privacy policies taken into account.

- No implementation (#) is defined as: Selection of personal data is out of scope or
not implemented.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Existing language and mechanisms
could be used to build identity selection. A dedicated user interface or an extension
of an existing identity selection would be possible.

- Possible partial support (G#) is defined as: Existing language and mechanism could
be used to build simple identity selection

- Cannot be supported (#) is defined as: Privacy-aware identity selection is not
supported.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Out of scope.

- Possible extensions are evaluated as #. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . PPL provides an interface to combine
identity selection (with potentially multiple claims from different credentials) and
(mis)match information. See [Pri10b] for more details.

- Possible extensions are evaluated as . This user interface may be extended with
measure of disclosure impact [ADF+10].

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . Integrating identity selection and S4P is
possible but would require some development effort.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. An identity selector have been extended
with support for privacy policies.

- Possible extensions are evaluated as G#. No extension is foreseen.

124 Detailed Comparison of Privacy Policy Technologies in SOA

A.8 Change Preferences (Sect. 4.5)

A.8.1 Can Show Mismatches

In case of mismatch, the root causes of the mismatch can be identified and highlighted.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: All major root cause of mismatch-
ing privacy preferences and policies are available and can be sorted with different
criteria.

- Partial implementation (G#) is defined as: One major root cause of mismatching
privacy preferences and policies is identified.

- No implementation (#) is defined as: Root cause of mismatching privacy prefer-
ences and policies is not available.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Tools to identify and enumerate all
root causes of mismatching preferences and policies could be built on top of existing
language and mechanisms.

- Possible partial support (G#) is defined as: Tools to identify one root cause of
mismatching preferences and policies could be built on top of existing language
and mechanisms

- Cannot be supported (#) is defined as: Analyzing the cause of mismatches is out
of scope and would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Out of scope.

- Possible extensions are evaluated as G#. Privacy Bird [AC] provides an analysis of
mismatches.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. PPL can provide the most relevant root
cause of a given mismatch. Only subset of the policy language is supported.

- Possible extensions are evaluated as G#. No extension is foreseen. Enumerating
causes would be possible.

Section A.8: Change Preferences (Sect. 4.5) 125

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . Query evaluation results in a proof graph
that can be analyzed to identify root causes of a mismatch.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This feature is out of scope because privacy
preferences are not defined in this model.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is out of scope because PRIME-DHP
does not specify preferences.

- Possible extensions are evaluated as #. No extension is foreseen.

A.8.2 Can Suggest Modifications

Privacy preferences can be automatically updated to get a match next time a similar
case occurs. Previous changes, and similarity of preferences can be taken into account.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The modification of preferences can
have different results (e.g. adding an exception or generalizing a rule) that depend
on the PII Provider. This may be achieved by user interactions or by specifying
“meta-preferences”.

- Partial implementation (G#) is defined as: The modification of the preferences is
straightforward. The first privacy-friendly modification is proposed.

- No implementation (#) is defined as: No support for automatic modifications of
preferences.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Tools to specify how the user expect
his preferences to evolve can be built on top of existing language and mechanisms.

- Possible partial support (G#) is defined as: Tools to propose a straightforward
modification (e.g. exception) of a mismatching preference in order to have a match
can be implemented on top of existing language and mechanisms.

- Cannot be supported (#) is defined as: Automatic modifications of the preferences
are out of scope and would require major work.

126 Detailed Comparison of Privacy Policy Technologies in SOA

APPEL + P3P (A+P):

- The implementation is evaluated as #. Out of scope.

- Possible extensions are evaluated asG#. Privacy Bird [AC] can suggest modifications
of preferences.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. PPL proposes the most relevant modifica-
tion of preferences. This only works for a subset of the language.

- Possible extensions are evaluated as G#. No extension is foreseen.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as G#. SecPAL abduction queries [BMD09] can
propose missing assertions. More work would be required to cover the full language.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This feature is out of scope because privacy
preferences are not defined in this model.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is out of scope because PRIME-DHP
does not specify preferences.

- Possible extensions are evaluated as #. No extension is foreseen.

A.9 Sticky Policy (Sect. 4.6)

A.9.1 Optional Sticky Policy

Instead of creating a sticky policy describing agreed privacy constraints on personal data,
a Boolean response can be used to state that the privacy policy is acceptable and must
be enforced. The Boolean response can be implicit, e.g. agree by sending personal data.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The policy can be enforced directly.

- Partial implementation (G#) is defined as: The sticky policy can be a copy of the
policy.

- No implementation (#) is defined as: It is mandatory to match preferences and
policies in order to create a sticky policy.

Section A.9: Sticky Policy (Sect. 4.6) 127

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Enforceable policy may not be imple-
mented but could be done on top of existing mechanisms.

- Possible partial support (G#) is defined as: Enabling the use of a policy as sticky
policy may not be implemented but could be done on top of existing mechanisms.

- Cannot be supported (#) is defined as: Enforcing policies is out of scope and would
require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as . APPEL and P3P do not support sticky
policies and always result in a Boolean response and the enforcement of the privacy
policy.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. Out of scope. The model imposes sticky
policies.

- Possible extensions are evaluated as . The languages to express policies and
sticky policies are almost identical and enforcing policies would be possible.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . The response can be Boolean. Sticky
policies are supported but their generation has not been implemented.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Impossible in this model where the sticky
policy (i.e. policy configured remotely) is the only policy.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. The sticky policy is a “filled” version of the
policy where variables are instantiated.

- Possible extensions are evaluated as G#. No extension is foreseen.

128 Detailed Comparison of Privacy Policy Technologies in SOA

A.9.2 Can be Expressive

The sticky policy can express complex constraints with conditions.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The sticky policy can specify obliga-
tions, rights, access control for downstream, etc.

- Partial implementation (G#) is defined as: The sticky policy can specify basic data
handling.

- No implementation (#) is defined as: Sticky policies are not supported

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Expressive sticky policies can be built
on top of existing mechanisms.

- Possible partial support (G#) is defined as: Basic sticky policies can be built on top
of existing mechanisms.

- Cannot be supported (#) is defined as: Sticky policies are out of scope and would
require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Out of scope: no support for sticky policies

- Possible extensions are evaluated as #. This is out of scope.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . Sticky policies define data handling (obli-
gations and rights) and access control.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (sticky policies are out
of scope of the core language and query evaluation).

- Possible extensions are evaluated as . Sticky policies can be expressed in S4P.
However, mechanisms to create them from preferences and policies are not imple-
mented.

Section A.9: Sticky Policy (Sect. 4.6) 129

User-Specified Access Control (AC):

- Possible extensions are evaluated as . The policy that is remotely configured (e.g.
in XACML) is the sticky policy.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . Sticky policies define data handling (obli-
gations and rights) and access control.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

A.9.3 Supports Signature or Commitment

The sticky policy can be signed by one or more parties to ensure non-repudiation of
agreed privacy constraints.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: A protocol exists to make sure that
no data is communicated before agreeing on a sticky policy. Non-repudiation of all
parties is ensured.

- Partial implementation (G#) is defined as: The sticky policy can be signed.

- No implementation (#) is defined as: Signing sticky policy is not supported.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: A protocol to commit to sticky policy
could be built on top of existing building blocks.

- Possible partial support (G#) is defined as: A mechanism to sign the sticky policies
could be implemented.

- Cannot be supported (#) is defined as: Signing sticky policies is out of scope or
would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope.

- Possible extensions are evaluated as #. XML Signature can be used to sign the
P3P policy in order to ensure PII Consumer side non-repudiation.

130 Detailed Comparison of Privacy Policy Technologies in SOA

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. Not implemented.

- Possible extensions are evaluated as . Adding such a protocol would be easy to
add to the current implementation

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . S4P can be serialized in XML and a
commitment protocol could be added.

User-Specified Access Control (AC):

- Possible extensions are evaluated as G#. The PII Provider could sign the policy she
is issuing.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Not supported in current implementation.

- Possible extensions are evaluated as . Adding a commitment protocol would be
possible.

A.9.4 Can Change Sticky Policy

There is a mechanism to let data subjects modify sticky policies associated with their
own personal data when such an action is authorized.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The PII Provider, if authorized to
do so, can subsequently update sticky policies associated with her data at PII
Consumer.

- Partial implementation (G#) is defined as: The sticky policy can be updated but
authorization to do so is handled with an ad-hoc mechanism.

- No implementation (#) is defined as: Out of scope or sticky cannot be updated.

Section A.9: Sticky Policy (Sect. 4.6) 131

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: It is possible to build on top of the
existing language and mechanisms full support for modification of sticky policies.

- Possible partial support (G#) is defined as: It is possible to build on top of existing
language and mechanisms basic support for sticky policy modification in an ad-hoc
way.

- Cannot be supported (#) is defined as: Modification of sticky policies is out of
scope and would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope.

- Possible extensions are evaluated as #. Modifying the policy (in a less permissive
way) is possible. If the policy must become more permissive, data has to be
collected again.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. Supported by the language specification
but not implemented.

- Possible extensions are evaluated as . The obligation to let modify data and/or
sticky policies has been defined.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as G#. Possible but not straightforward. Would
require new verb “edit Policy” and hook to authorization.

User-Specified Access Control (AC):

- Possible extensions are evaluated as . Supported by default. No difference be-
tween setting policy and editing this one.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Out of scope.

- Possible extensions are evaluated as #. Not documented. Out of scope.

132 Detailed Comparison of Privacy Policy Technologies in SOA

A.9.5 Can Store and Retrieve Sticky Policy (Sect. 3.8)

There is a mechanism to store sticky policies and to query the sticky policy associated
with a given piece of personal data.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Mechanisms to store and retrieve
sticky policies in an efficient way are available.

- Partial implementation (G#) is defined as: Sticky policies are stored in a databases
and can be queried with the identifier of the personal data.

- No implementation (#) is defined as: No mechanism to handle sticky policies is
provided.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Mechanisms to store and retrieve
sticky policies in an efficient way could be built on top of existing building blocks.

- Possible partial support (G#) is defined as: Mechanisms to store sticky policies
and query them with a unique identifier could be built on top of existing building
blocks.

- Cannot be supported (#) is defined as: Storing sticky policies is out of scope or
would require important work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope.

- Possible extensions are evaluated as #. This is out of scope.

PrimeLife Policy Language (PPL):

- The implementation is evaluated asG#. Possibility of querying sticky policy knowing
the unique identifier of the personal data.

- Possible extensions are evaluated as . Optimizing sticky policy storage and com-
plex query could be built on top of existing building blocks.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . Optimizing sticky policy storage and com-
plex query could be built on top of existing building blocks.

Section A.10: Attach Sticky Policy (Sect. 4.7) 133

User-Specified Access Control (AC):

- Possible extensions are evaluated as . Full support from access control infras-
tructure, e.g. XACML.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. Sticky policies are stored in a database and
can be queried by identifier.

- Possible extensions are evaluated as . Optimizing sticky policy storage and com-
plex query could be built on top of existing building blocks.

A.10 Attach Sticky Policy (Sect. 4.7)

Mechanism to attach the sticky policy to data on the wire and in databases. Mechanisms
such as Enterprise Rights Management (e.g. [Mic09]) would be an example where per-
sonal data cannot be decrypted without acknowledging the sticky policy (i.e. licenses).

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Sticky policies are strongly linked to
personal data. Mechanisms like in Enterprise Rights Management (e.g. [Mic09])
make it mandatory to handle the sticky policy before reading the data.

- Partial implementation (G#) is defined as: A basic mechanism to bind personal data
and sticky policy on the wire and in databases exists.

- No implementation (#) is defined as: No mechanism to link data and sticky policy
is provided.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Strong mechanism to link data and
sticky policies could be added independently of the language.

- Possible partial support (G#) is defined as: Basic mechanism to link data and sticky
policies could be added independently of the language.

- Cannot be supported (#) is defined as: Attaching sticky policies to data is out of
scope or would require important work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope since there is no support
for sticky policies.

- Possible extensions are evaluated as #. This is out of scope.

134 Detailed Comparison of Privacy Policy Technologies in SOA

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. Unique identifier is used to keep the link
between data and sticky policies.

- Possible extensions are evaluated as . It would be possible to use a PPL sticky
policy as a “license” attached to personal data (e.g. a document). This usage is
however not specified.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . It would be possible to use a S4P sticky
policy as a “license” attached to personal data (e.g. a document). This usage is
however not specified.

User-Specified Access Control (AC):

- Possible extensions are evaluated as G#. Out of scope

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. Unique identifier is used to keep the link
between data and sticky policies.

- Possible extensions are evaluated as . It would be possible to use a PRIME-DHP
sticky policy as a “license” attached to personal data (e.g. a document). This usage
is however not specified.

A.11 High-Level Policy Language (Sect. 4.8)

A.11.1 Same Language for Preferences and Policies

Privacy preferences, policies, and sticky policies are expressed in a common language
that avoid semantics mismatches.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The languages are identical apart
small details, e.g. preferences specify deletion time relatively to data exchange
instant while sticky policies specify absolute times.

- Partial implementation (G#) is defined as: The language are different dialects with
common syntax and semantics.

- No implementation (#) is defined as: Different languages.

Section A.11: High-Level Policy Language (Sect. 4.8) 135

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: It is possible to specify a unified
language on top of existing building blocks.

- Possible partial support (G#) is defined as: It is possible to specify similar dialects
on top of existing building blocks.

- Cannot be supported (#) is defined as: A common language is out of scope and
would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. APPEL and P3P have different syntaxes.
Semantics issues are highlighted in [YLA04].

- Possible extensions are evaluated as #. No extension is foreseen.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . Same language for a large part of policies,
preferences, and sticky policies.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as G#. Common language for preferences and
policies. However, “will” queries are specific to preferences and “may” queries are
specific to policies.

- Possible extensions are evaluated as G#. Expressing part of the policy and prefer-
ences with symmetric assertions and queries is a key feature of the language.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Out of scope: only one language for sticky
policies.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. Same language for policy and sticky policy.
However there is no language for preferences.

- Possible extensions are evaluated as #. No extension is foreseen.

136 Detailed Comparison of Privacy Policy Technologies in SOA

A.11.2 Language Expressiveness

The common language is expressive and allows the specification of conditions, nested or
recursive policies, and variables.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The language supports conditions,
nested or recursive policies, and variables.

- Partial implementation (G#) is defined as: The language supports conditions and
variables.

- No implementation (#) is defined as: No support for conditions or variables.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Conditions and nested policies could
be added on top of the existing language.

- Possible partial support (G#) is defined as: Conditions could be added on top of the
existing language.

- Cannot be supported (#) is defined as: Conditions and nested policies are out of
scope and would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Basic language without conditions or vari-
ables.

- Possible extensions are evaluated as G#. Combining P3P with semantic web (RDF)
and ontology (OWL) makes it more expressive.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . Support complex conditions (XACML) in
the access control part but not in the data handling part. Support for nested and
recursive policies.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . Support for constraints, conditions, and
delegation. Policies can be chained.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

Section A.11: High-Level Policy Language (Sect. 4.8) 137

User-Specified Access Control (AC):

- Possible extensions are evaluated as . Full expressiveness of access control lan-
guage such as XACML.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . This language supports variables and com-
plex conditions.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

A.11.3 Clear Separation of Obligations and Rights

Obligations and rights are clearly expressed to handle, for instance, the right to store
personal data 3 months, the obligation of storing data 3 months, and the obligation of
deleting data within 3 months.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Rights and obligations are explicitly
separated and do not overlap.

- Partial implementation (G#) is defined as: Rights and obligations are specified
differently but overlaps exist, e.g. to specify rights of executing obligations.

- No implementation (#) is defined as: No clear separation between rights and
obligations.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The language could be used in a way
that clearly separates rights and obligations and avoids overlaps.

- Possible partial support (G#) is defined as: The language could be used in a way
that separates rights and obligations with minimum overlaps.

- Cannot be supported (#) is defined as: The language does not explicitly support
concepts such as rights or obligations. Support would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Even if some rights and obligations are
specified, there are no explicit concepts of rights and obligations.

- Possible extensions are evaluated as #. No extension is foreseen.

138 Detailed Comparison of Privacy Policy Technologies in SOA

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . Rights are defined to authorize local use
of data or to forward data. Obligations are defined for data retention, log, notifi-
cations, etc.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as G#. Modal verbs “will” and “may” specify
obligations and rights respectively. However, the same action can be associated
with both notions (e.g. right to notify and obligation of notifying).

- Possible extensions are evaluated as G#. No extension is foreseen.

User-Specified Access Control (AC):

- Possible extensions are evaluated as . Even if such approaches mainly focus on
rights (access control), some locally defined obligations may be supported (e.g.
XACML let define some obligations). In this case, there is a clear distinction
between rights and obligations.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . Rights and obligations are defined without
overlaps.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

A.12 Check Sticky Policy (Sect. 5.2)

When a sticky policy is pushed to a PII Consumer, this one can check whether the sticky
policy is acceptable, i.e. more permissive than the related policy.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Both PII Provider and PII Consumer
can check that the sticky policy is acceptable.

- Partial implementation (G#) is defined as: The PII Consumer can check that the
sticky policy is acceptable. In other words, a malicious PII Provider cannot inject
unexpected privacy constraints.

- No implementation (#) is defined as: Verifying sticky policies is out of scope or
not implemented.

Section A.12: Check Sticky Policy (Sect. 5.2) 139

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Mutual verification could be imple-
mented with existing mechanisms.

- Possible partial support (G#) is defined as: PII Consumer-side verification of sticky
policies could be implemented with existing building blocks.

- Cannot be supported (#) is defined as: Verification of sticky policies is out of scope
or would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope. The P3P policy is
enforced and thus does not require verification.

- Possible extensions are evaluated as #. This is out of scope.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. Specified but not yet implemented.

- Possible extensions are evaluated as . Straightforward to implement: another
usage of matching algorithm.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . When the sticky policy is evaluated, the
policy is taken into account as well. As a result, a non-acceptable sticky policy
would result in unsuccessful query evaluations.

User-Specified Access Control (AC):

- Possible extensions are evaluated as . The language (and tools) to remotely
specify the policy that applies to data can add constraints.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . The sticky policy is a “filled” version of the
policy where variables are instantiated. As a result, checking the sticky policy is
straightforward.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

140 Detailed Comparison of Privacy Policy Technologies in SOA

A.13 Authorization Decision (Sect. 5.3)

A.13.1 Enforces Local Use, e.g. Purpose (Sect. 5.4)

Before using collected data, the PII Consumer can verify that actions are authorized
according to sticky policies.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: A dynamic authorization decision
based on the sticky policies is performed before using collected data for a specific
purpose. Authorization decision can trigger obligations.

- Partial implementation (G#) is defined as: Static authorization decision. The PII
Consumer and its policy are designed in a way that makes it impossible to violate
the (sticky) policy.

- No implementation (#) is defined as: Authorization decision is not implemented.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Dynamic authorization decision for
local use could be implemented on top of existing building blocks.

- Possible partial support (G#) is defined as: Static Authorization decision for local
use could be implemented on top of existing building blocks.

- Cannot be supported (#) is defined as: Authorization verification for local use is
out of scope and would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Enforcement is out of the scope of P3P
and APPEL.

- Possible extensions are evaluated as . EPAL [AHK+03] can be used to enforce
the (sticky) policy locally.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . An extension of XACML PDP point is
used to make purpose-aware decision based on the sticky policy.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

Section A.13: Authorization Decision (Sect. 5.3) 141

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . Straightforward to implement. A query
specifying the usage has to be evaluated with all assertions of the policy and sticky
policy.

User-Specified Access Control (AC):

- Possible extensions are evaluated as G#. The language (e.g. XACML) and services
(e.g. PEP and PDP) are used to grant or deny access. Support for purpose is
generally lacking.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . Tools exist to decide whether a piece of
personal data can be used for a given purpose.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

A.13.2 Enforces Access Control when Sharing (Sect. 5.5)

Authorization of sharing data with a third party takes into account the sticky policy and
attributes (e.g. certificates) of the third party.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: A dynamic authorization decision
based on the sticky policies is performed before sharing collected data with a third
party. Sharing data can trigger obligations.

- Partial implementation (G#) is defined as: Static authorization decision before shar-
ing. The PII Consumer and its policy are designed in a way that makes it impossible
to share data with an unauthorized third party.

- No implementation (#) is defined as: No authorization decision based on third
party properties is implemented.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Dynamic authorization decision before
data sharing could be implemented on top of existing building blocks.

- Possible partial support (G#) is defined as: Static Authorization decision before
data sharing could be implemented on top of existing building blocks.

142 Detailed Comparison of Privacy Policy Technologies in SOA

- Cannot be supported (#) is defined as: Authorization verification before data
sharing is out of scope and would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Enforcement is out of the scope of P3P
and APPEL.

- Possible extensions are evaluated as G#. EPAL [AHK+03] can be used to enforce
the (sticky) policy and decide to share the data with a third party.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . XACML part of the sticky policy is used
to decide whether data can be shared with a given third party.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . Straightforward to implement. A query
specifying the usage has to be evaluated with all assertions of the policy and sticky
policy.

User-Specified Access Control (AC):

- Possible extensions are evaluated as . The language (e.g. XACML) and services
(e.g. PEP and PDP) are used to grant or deny access to third parties.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as . PRIME-DHP specifies and enforce access
control when third parties access collected personal data.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

A.13.3 Checks Downstream Data Handling when Sharing

Authorization of sharing data with a third party takes into account the sticky policy of
the personal data and the privacy policy of the third party.

Section A.13: Authorization Decision (Sect. 5.3) 143

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Downstream data sharing reuses policy
language and enforcement mechanisms in a recursive way and enables multi-hops
enforcement.

- Partial implementation (G#) is defined as: Downstream data sharing takes into
account the privacy policy of the third party.

- No implementation (#) is defined as: Third party’s policy is not taken into account.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The current language and mechanisms
could be reused recursively.

- Possible partial support (G#) is defined as: The current language could be extended
with basic support to take privacy policy of third parties into account.

- Cannot be supported (#) is defined as: Matching privacy policy of third parties is
out of scope or would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Enforcement is out of the scope of P3P
and APPEL. It is however possible to make sure that data is only shared under
stricter privacy constraints.

- Possible extensions are evaluated as #. EPAL [AHK+03] is mainly targeting single
trust domain.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . PPL sticky policy specifies expected data
handling which is matched with the data handling specified in third party’s policies.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . Straightforward to implement. Queries
from the sticky policy (“will”) and from the policy (“may”) are evaluated with all
assertions.

144 Detailed Comparison of Privacy Policy Technologies in SOA

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This is out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is out of scope. Downstream sharing
is evaluated as a pure access control decision.

- Possible extensions are evaluated as #. Major changes would be required.

A.13.4 Attach (New) Sticky Policy when Sharing

A new sticky policy is created when the personal data is shared with a third party. The
rights and obligations of a third party may be different than the rights and authorizations
of the initial data controller.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: A new sticky policy targeting the ex-
change between the PII Consumer and a given third party is created after matching.

- Partial implementation (G#) is defined as: The sticky policy can be “forwarded”
with personal data when they are shared with third parties.

- No implementation (#) is defined as: No support for sticky policies downstream.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The current language and mechanisms
could be reused to create a new sticky policy.

- Possible partial support (G#) is defined as: Existing mechanisms could be reused to
keep the original sticky policy attached with data when forwarding them to third
parties.

- Cannot be supported (#) is defined as: No support for sticky policies downstream.
This is out of scope or would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Enforcement is out of the scope of P3P
and APPEL.

- Possible extensions are evaluated as #. This is out of scope.

Section A.14: Composing Sticky Policies (Sect. 5.6) 145

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . Matching sticky policy and policy of third
party results in a new sticky policy.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . Mechanism to create a sticky policy from
preferences of the PII Provider and the policy of PII Consumer could be reused to
create a “downstream sticky policy” from the original sticky policy and the policy
of the third party.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. This is out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. The original sticky policy is forwarded
downstream.

- Possible extensions are evaluated as G#. Further support would require major
changes.

A.14 Composing Sticky Policies (Sect. 5.6)

Possibility of computing the resulting sticky policy sp1,2 of personal data pii1,2 resulting
from the combination of multiple personal data. In other words, defining each sp1,2 =
F (sp1, sp2) for each way of combining pii1,2 = f(pii1, pii2).

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Two sticky policies can be merged
when data are combined.

- Partial implementation (G#) is defined as: The language makes it possible to as-
sociate multiple sticky policy with one piece of data and to interpret it without
violating individual policies.

- No implementation (#) is defined as: No support for composing sticky policies.

146 Detailed Comparison of Privacy Policy Technologies in SOA

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: It is possible to merge policies ex-
pressed in the current language.

- Possible partial support (G#) is defined as: Existing language and enforcement could
be used to support multiple sticky policies associated with one piece of data.

- Cannot be supported (#) is defined as: No support for composing sticky policies.
This is out of scope or would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope.

- Possible extensions are evaluated as G#. This is out of scope.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. This is not implemented.

- Possible extensions are evaluated as G#. Part of the language (especially data
handling) could easily be composed. Other parts (e.g. access control) would be
complex and require more work.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as G#. Associating different sticky policies with
one piece of data would require extra logic to handle it properly.

User-Specified Access Control (AC):

- Possible extensions are evaluated as G#. This is out of scope.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is out of scope.

- Possible extensions are evaluated as #. This is out of scope.

A.15 Obligations (Sect. 5.7)

A.15.1 Supports Enforcement of Obligations

There are mechanisms to automatically enforce obligations that can be specified in
(sticky) policies.

Section A.15: Obligations (Sect. 5.7) 147

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Mechanisms to enforce obligations
have been implemented and can easily be extended to support new obligations and
new legacy systems.

- Partial implementation (G#) is defined as: Basic enforcement mechanisms exist but
cannot be easily extended to other systems.

- No implementation (#) is defined as: Enforcement of obligations is not supported.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Existing language and mechanisms
could be used to enforce obligations. Support for new obligations and legacy sys-
tems would be possible.

- Possible partial support (G#) is defined as: Existing language and mechanisms could
be used for basic enforcement of obligations.

- Cannot be supported (#) is defined as: Enforcement of obligations is out of scope
and would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Enforcement is out of the scope of P3P
and APPEL.

- Possible extensions are evaluated as G#. EPAL [AHK+03] can be used to enforce
the sticky policy. However, the obligations would be restricted to what P3P and
APPEL can express even if EPAL is more expressive.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . The “Obligation Enforcement Engine” is
in charge of enforcing obligations. Plug-ins can be implemented to handle new
obligations or enforcement targeting new systems.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . A prototype enforcing S4P obligations
has been implemented. [BMB10] specifies how sticky policies and policies must be
enforced.

148 Detailed Comparison of Privacy Policy Technologies in SOA

User-Specified Access Control (AC):

- Possible extensions are evaluated as G#. XACML offers a placeholder for simple
obligations triggered by access control decisions. Enforcement is not specified but
implementations do exist.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. PRIME DHP defines a placeholder for
arbitrary obligations. Only a simple subset has been implemented.

- Possible extensions are evaluated as . Enforcement of more complex obligations
could be added.

A.15.2 Checks Rights of Enforcing Obligations

Mechanisms to define lower bound and upper bound of behavior.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The language lets define expected and
committed privacy-relevant behavior in terms of upper bound and lower bound.

- Partial implementation (G#) is defined as: Obligation and rights are specified as
ranges. For instance, it is possible to say that “user must be notified each x” where
x ∈ (week, month).

- No implementation (#) is defined as: Enforcement of obligations is implicitly
granted.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Upper an lower bound of behavior
could be expressed on top of the existing language.

- Possible partial support (G#) is defined as: Parameters in rights and obligations
could be ranges.

- Cannot be supported (#) is defined as: Explicitly granting rights of enforcing
obligations is out of scope and would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope.

- Possible extensions are evaluated as #. This is out of scope.

Section A.15: Obligations (Sect. 5.7) 149

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. Not implemented. The right of enforcing
obligations is implicitly granted.

- Possible extensions are evaluated as G#. An extension of the language to support
ranges is proposed in [BNS10] but would require modifications of the language and
engine.

SecPAL for Privacy (S4P):

- The implementation is evaluated as . To enforce obligations (e.g. “will delete”),
it is mandatory to be authorized to do so (e.g. “may delete”).

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Out of scope

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. PRIME DHP lets define constraints on
variables to be instantiated as sticky policy.

- Possible extensions are evaluated as G#. No extension is foreseen.

A.15.3 Specifies Action Handler (Sect. 5.8)

There are mechanisms to parse and execute actions associated with obligations. It is
possible to extend the set of actions that are handled.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Usual actions (delete, notify, log, etc.)
are provided and can be extended with new actions. Actions can be interpreted by
matching algorithm and can be enforced.

- Partial implementation (G#) is defined as: Usual actions are provided or a place
holder to define actions is provided.

- No implementation (#) is defined as: Actions are out of the scope of this imple-
mentation.

150 Detailed Comparison of Privacy Policy Technologies in SOA

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Any action can be built on top of the
existing framework.

- Possible partial support (G#) is defined as: Existing tools and language could be
extended to support a set of actions.

- Cannot be supported (#) is defined as: Specifying actions is out of scope and
would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of the scope of P3P and APPEL.

- Possible extensions are evaluated as G#. EPAL [AHK+03] can be to define actions
resulting from obligations but this cannot be specified in P3P.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . PPL provides a set of actions and a mech-
anisms to define new actions.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. This is not implemented (out of scope of
the core language and query evaluation).

- Possible extensions are evaluated as . Adding new actions only requires specifying
new verbs. Enforcement has to be implemented.

User-Specified Access Control (AC):

- Possible extensions are evaluated as . Some authorization language, e.g. XACML,
support the definition of arbitrary actions in obligations. The semantics and en-
forcement are locally defined.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. PRIME -DHP provides a policy section
where obligations can be defined. Within PRIME architecture, obligations are
handled by a specific component that is able to manage events and trigger actions.

- Possible extensions are evaluated as G#. Specifying a full set of actions and taking
them into account during match and enforcement would require additional work.

Section A.15: Obligations (Sect. 5.7) 151

A.15.4 Specifies Event Handler (Sect. 5.9)

There are mechanisms to parse triggers and react to specific events (time, event) leading
to the execution of an action. It is possible to extend the set of triggers that are handled.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Usual triggers (scheduled time, data
used for purpose, data deleted, data shared, etc.) are provided and can be extended
with new triggers. Triggers can be interpreted by matching algorithm and can be
enforced.

- Partial implementation (G#) is defined as: Usual triggers are provided or a place
holder to define triggers is provided.

- No implementation (#) is defined as: Triggers are out of the scope of this imple-
mentation.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Any trigger can be built on top of the
existing framework.

- Possible partial support (G#) is defined as: Existing tools and language could be
extended to support a set of triggers.

- Cannot be supported (#) is defined as: Specifying triggers is out of scope and
would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of the scope of P3P and APPEL.

- Possible extensions are evaluated as G#. EPAL [AHK+03] can be used to react to
specific events but this cannot be specified in P3P.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . PLL provides a set of triggers and mecha-
nisms to define new ones.

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

152 Detailed Comparison of Privacy Policy Technologies in SOA

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . Adding new actions only requires specifying
new verbs. Enforcement has to be implemented.

User-Specified Access Control (AC):

- Possible extensions are evaluated asG#. Some authorization language, e.g. XACML,
support specific triggers for obligations. Generally, only triggers related to access
control decision are supported.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. PRIME -DHP provides a policy section
where obligations can be defined. Within PRIME architecture, obligations are
handled by a specific component that is able to manage events and trigger actions.

- Possible extensions are evaluated as G#. Specifying a full set of triggers and taking
them into account during match and enforcement would require additional work

A.16 Log and Audit (Sect. 5.10)

There are mechanisms to log privacy-relevant events such as: use of personal data,
authorization decisions, obligation enforcement, etc. Audit can be based on those traces.

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The semantics of traces and policy is
clear and it is possible to verify that traces fulfill a policy. Tools to log privacy-
relevant events exist.

- Partial implementation (G#) is defined as: Tools to log privacy-relevant events exist.

- No implementation (#) is defined as: Tools to log privacy-relevant events are out
of scope or not implemented.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The semantics of traces and policy is
clear and it is possible to verify that a set of traces fulfill a policy, i.e. traces can
be audited. Tools to log privacy-relevant events could be implemented on top of
existing language and mechanisms.

Section A.17: Trust Model (Sect. 5.11) 153

- Possible partial support (G#) is defined as: Tools to log privacy-relevant events
could be implemented on top of existing language and mechanisms.

- Cannot be supported (#) is defined as: Tools to log privacy-relevant events could
be implemented on top of existing language and mechanisms.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope.

- Possible extensions are evaluated as G#. Not part of the policy but could be enforced
with EPAL.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. PPL specifies the obligation to log specific
events and enforcement mechanisms.

- Possible extensions are evaluated as G#. No extension is foreseen.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . The semantics of traces and of the language
are formally specified. A prototype generating traces and validating them has been
implemented.

User-Specified Access Control (AC):

- Possible extensions are evaluated as G#. Generating traces is generally restricted to
access control decision. Audit of traces is not specified.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. PRIME-DHP can specify which events has
to be logged and provides enforcement mechanisms.

- Possible extensions are evaluated as G#. No extension is foreseen.

A.17 Trust Model (Sect. 5.11)

Support for different trust models such as certification, audit, reputation, and/or trusted
hardware. This makes the link between the committed behavior and the actual behavior.

154 Detailed Comparison of Privacy Policy Technologies in SOA

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: Preferences and policies define the
trust model that is expected and implemented respectively. For instance, properties
of auditors, reputation mechanisms, or certified hardware are taken into account.

- Partial implementation (G#) is defined as: Preferences and policies define classes of
trust model.

- No implementation (#) is defined as: Trust model is out of scope or handled by
external mechanisms.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: Existing mechanisms and language
could be used to take into account properties of different trust models.

- Possible partial support (G#) is defined as: Existing mechanisms and language could
be used to take into account classes of trust models.

- Cannot be supported (#) is defined as: Tackling trust model is out of scope and
would require major changes.

APPEL + P3P (A+P):

- The implementation is evaluated as #. This is out of scope.

- Possible extensions are evaluated as #. This is out of scope.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as #. Not implemented. Certification and repu-
tation is assumed.

- Possible extensions are evaluated as G#. Minor modifications could be implemented
to take such properties into account.

SecPAL for Privacy (S4P):

- The implementation is evaluated as G#. Complex properties of PII Consumer is
supported in preferences and policies. This can be taken into account.

- Possible extensions are evaluated as . Additional work would be required to prove
the claims in policies regarding reputation, trusted hardware and so on.

User-Specified Access Control (AC):

- Possible extensions are evaluated as G#. Mechanisms to specify the trust model can
be added.

Section A.18: Protocol independent (HTTP, WS) 155

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is not implemented. Certification and
reputation is assumed.

- Possible extensions are evaluated as G#. Minor modifications could be implemented
to take such properties into account.

A.18 Protocol independent (HTTP, WS)

It is possible to use the evaluated language and associated mechanisms with different
communication protocols (Web Services, HTTP, etc.) and to define separately protocol-
specific aspects (e.g. cookies).

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The technology is independent of
the protocol (HTTP, Web Services, RPC, etc.). Different prototypes use different
protocols.

- Partial implementation (G#) is defined as: The technology has protocol specific
aspects but can be reused with other protocols. Or, the language is independent
from protocols but was only integrated with one protocol.

- No implementation (#) is defined as: The language is targeting one specific pro-
tocol and cannot be used in another setting.

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The language could be used as it is
with other protocols.

- Possible partial support (G#) is defined as: Support for different protocols could be
implemented with existing language and mechanisms.

- Cannot be supported (#) is defined as: The language is targeting one specific
protocol and cannot be used in another setting. Extension would require major
work.

APPEL + P3P (A+P):

- The implementation is evaluated as #. Protocol specific aspects are part of the
language, e.g. cookies.

- Possible extensions are evaluated as . P3P can be used with other protocols e.g.
Web Services [W3C03].

156 Detailed Comparison of Privacy Policy Technologies in SOA

PrimeLife Policy Language (PPL):

- The implementation is evaluated as . PPL is already used with HTTP (see
[Pri10a]) and Web Services (see Sect. 8).

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

SecPAL for Privacy (S4P):

- The implementation is evaluated as G#. Not implemented (out of scope of the core
language and query evaluation). The language XML serialization is independent
of the protocol.

- Possible extensions are evaluated as . S4P is independent of the protocol. Using
it with Web Services or HTTP is straightforward.

User-Specified Access Control (AC):

- Possible extensions are evaluated as . The protocol used to configure the access
control policy does not have any impact.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as G#. Out of scope. Only HTTP has been used
in prototypes.

- Possible extensions are evaluated as . PRIME-DHP is independent of the proto-
col. Using it with Web Services and HTTP is straightforward.

A.19 Policy for Implicit PII (e.g. IP address)

It is possible to specify how PII Consumer handles personal data that are implicitly
collected (e.g. IP address).

Classification criteria on exiting features. Here is how the existing implementa-
tion of a given technology is evaluated:

- Complete implementation () is defined as: The language can handle personal
data implicitly and explicitly collected in a unified way.

- Partial implementation (G#) is defined as: The language handles both implicit and
explicit data but in different ways.

- No implementation (#) is defined as: The language only targets explicit data
collection.

Section A.19: Policy for Implicit PII (e.g. IP address) 157

Classification criteria on possible extensions. Here is how the possible extensions
of a given technology are evaluated based on specifications and prototypes:

- Possible complete support () is defined as: The language could be used to target
implicit data collection as it is.

- Possible partial support (G#) is defined as: The language could be combined with
other mechanisms to address implicit data collection.

- Cannot be supported (#) is defined as: Implicit data collection is out of scope and
would require major work.

APPEL + P3P (A+P):

- The implementation is evaluated as . P3P supports implicit data collection (e.g.
IP address).

- Possible extensions are evaluated as . This is already supported and does not
require additional extension.

PrimeLife Policy Language (PPL):

- The implementation is evaluated as G#. PPL offers a specific language (subset of
P3P) to target implicit data collection.

- Possible extensions are evaluated as . PPL could be used for implicit data col-
lection as well.

SecPAL for Privacy (S4P):

- The implementation is evaluated as #. Not implemented (out of scope of the core
language and query evaluation).

- Possible extensions are evaluated as . S4P mainly targets explicit data collection
but could be used for implicit data collection.

User-Specified Access Control (AC):

- Possible extensions are evaluated as #. Out of scope. All available data are
explicitly provided in this setting.

PRIME Data Handling Policy (PDH):

- The implementation is evaluated as #. This is not implemented.

- Possible extensions are evaluated as . PRIME-DHP mainly targets explicit data
collection but could be used for implicit data collection.

Chapter B
Demonstrator

B.1 Policy Mismatching Schema

Listing B.1: Schema for a Policy Mismatch

1 ï»¿<?xml version="1.0" encoding="utf-8"?>
2 <xs:schema targetNamespace="http://www.primelife.eu/ecv"
3 elementFormDefault="qualified"
4 xmlns="http://www.primelife.eu/ecv"
5 xmlns:ecvmm="http://www.primelife.eu/ecv"
6 xmlns:mstns="http://tempuri.org/XMLSchema.xsd"
7 xmlns :xs="http://www.w3.org/2001/XMLSchema"
8 xmlns:obmm="http://www.primelife.eu/ppl/obligation/mismatch"
9 >

10 <xs : import namespace="http://www.primelife.eu/ppl/obligation/
mismatch" schemaLocation="./PrimeLifeObligationMismatch.xsd" />

11

12 <xs : e l ement name="EcvMismatchData" type="ecvmm:EcvMismatchData"/>
13 <xs:complexType name="EcvMismatchData">
14 <xs : s equence>
15 <xs : e l ement r e f="ecvmm:ContextData" minOccurs="1" maxOccurs="1"

/>
16 <xs : e l ement r e f="obmm:ObligationsSet" minOccurs="1" maxOccurs="

1" />
17 </ xs : s equence>
18 </xs:complexType>
19

20

21 <xs : e l ement name="ContextData" type="ecvmm:ContextData"/>
22 <xs:complexType name="ContextData">
23 <xs : s equence>
24 <xs : e l ement name="JobId" type="xs:string" minOccurs="1"

maxOccurs="1" />

159

160 Demonstrator

25 <xs : e l ement name="ProfileId" type="xs:string" minOccurs="1"
maxOccurs="1" />

26 <xs : e l ement name="ProfileName" type="xs:string" minOccurs="1"
maxOccurs="1" />

27 <xs : e l ement name="TimeOfOffer" type="xs:dateTime" minOccurs="1"
maxOccurs="1" />

28 <xs : e l ement name="TimeOfMismatchOccurance" type="xs:dateTime"
minOccurs="1" maxOccurs="1" />

29 <xs : e l ement name="DCRole" type="xs:string" minOccurs="1"
maxOccurs="1" />

30 </ xs : s equence>
31 </xs:complexType>
32

33

34 </xs:schema>

B.2 Example Messages of eCV Demonstrator

Listing B.2: Example of a JobApplication message.

1 <?xml version="1.0"?>
2 <JobApplicationSetPPL xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns :x s i="http://www.w3.org/2001/XMLSchema-instance">
3 <JobAppl icat ion xmlns="http://www.primelife.eu/ecv">
4 <JobApplicationPPL>
5 <Pr o f i l e I d>c1cb18bb−5676−4465−8200−c637deaf18b4</ P r o f i l e I d>
6 <JobId>728538059</JobId>
7 <Pr o f i l e>
8 <Profi leName>Al i c e Wonderworks − Academic</Profi leName>
9 <S k i l l>

10 <S k i l l>
11 <Desc r ip t i on>C#</Desc r ip t i on>
12 <Exper ience>3</Exper ience>
13 </ S k i l l>
14 <S k i l l>
15 <Desc r ip t i on>Java</Desc r ip t i on>
16 <Exper ience>4</Exper ience>
17 </ S k i l l>
18 <S k i l l>
19 <Desc r ip t i on>Per l</Desc r ip t i on>
20 <Exper ience>1</Exper ience>
21 </ S k i l l>
22 </ S k i l l>
23 </ P r o f i l e>
24 <ClaimSet>
25 <Claim>
26 <ClaimName>Unive r s i ty Degree</ClaimName>
27 <Subject>
28 <FirstName>Al i c e</FirstName>
29 <LastName>Worderworks</LastName>

Section B.2: Example Messages of eCV Demonstrator 161

30 <Nat i ona l i t y>US</Nat i ona l i t y>
31 <DateOfBirth>0001−01−01T00:00:00</DateOfBirth>
32 </Subject>
33 <I s s u e r>
34 <In s t i t u t i o n>Unive r s i ty o f F l o r i a Keys</ I n s t i t u t i o n>
35 <Address>Holiday Blvd . , F lo r ida Keys , Flor ida , US</

Address>
36 <Contact>Vincent Vacation , Managing Di r e c to r</Contact>
37 </ I s s u e r>
38 </Claim>
39 </ClaimSet>
40 <Pol i cy>
41 <St i ckyPo l i cy xmlns="http://www.primelife.eu/ppl">
42 <Author i za t i onsSe t>
43 <AuthzDownstreamUsage a l lowed="true">
44 <Pol i cy>
45 <Target xmlns="urn:oasis:names:tc:xacml:2.0

:policy:schema:os">
46 <Subjec t s>
47 <Subject>
48 <SubjectMatch>
49 <Attr ibuteValue DataType="http://www.w3.org

/2001/XMLSchema#anyURI">ht tp : //www.
p r im e l i f e . eu/ ecv/ pa r t i c i p an t s / r o l e s /
domainexpert</Attr ibuteValue>

50 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="
http://www.primelife.eu/ppl/
DataControllerRole" DataType="http://www.
w3.org/2001/XMLSchema#anyURI" />

51 </SubjectMatch>
52 </Subject>
53 </Subjec t s>
54 </Target>
55 <DataHandl ingPreferences>
56 <Author i za t i onsSe t />
57 <Obl i ga t i on sSe t xmlns="http://www.primelife.eu/ppl/

obligation">
58 <Obl igat ion>
59 <Tr igge r sSe t>
60 <TriggerAtTime>
61 <Star t>
62 <StartNow />
63 </Star t>
64 <MaxDelay>
65 <Duration>PT30S</Duration>
66 </MaxDelay>
67 </TriggerAtTime>
68 </Tr igge r sSe t>
69 <ActionDeletePersonalData />
70 </Obl igat ion>
71 </Obl i ga t i on sSe t>
72 </DataHandl ingPreferences>

162 Demonstrator

73 <Prov i s i ona lAc t i on s />
74 </Pol i cy>
75 </AuthzDownstreamUsage>
76 </Author i za t i onsSet>
77 <Obl i ga t i on sSe t xmlns="http://www.primelife.eu/ppl/

obligation">
78 <Obl igat ion>
79 <Tr igge r sSe t>
80 <TriggerAtTime>
81 <Star t>
82 <StartNow />
83 </Star t>
84 <MaxDelay>
85 <Duration>PT1M</Duration>
86 </MaxDelay>
87 </TriggerAtTime>
88 </Tr igge r sSe t>
89 <ActionDeletePersonalData />
90 </Obl igat ion>
91 </Obl i ga t i on sSe t>
92 </ St i ckyPo l i cy>
93 <Prov i s i ona lAc t i on s xmlns="http://www.primelife.eu/ppl" />
94 </Pol i cy>
95 </JobApplicationPPL>
96 </JobAppl icat ion>
97 </JobApplicationSetPPL>

Listing B.3: Example of user preferences; the user has configured only
obligations no access control settings.

1 <?xml version="1.0"?>
2 <Pol i cySe t xmlns :x s i="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.
primelife.eu/ppl">

3 <St i ckyPo l i cy>
4 <Author i za t i onsSe t />
5 <Obl i ga t i on sSe t xmlns="http://www.primelife.eu/ppl/obligation">
6 <Obl igat ion>
7 <Tr igge r sSe t>
8 <TriggerAtTime>
9 <Star t>

10 <StartNow />
11 </Star t>
12 <MaxDelay>
13 <Duration>PT1M</Duration>
14 </MaxDelay>
15 </TriggerAtTime>
16 </Tr igge r sSe t>
17 <ActionDeletePersonalData />
18 </Obl igat ion>
19 </Obl i ga t i on sSe t>

Section B.2: Example Messages of eCV Demonstrator 163

20 </ St i ckyPo l i cy>
21 <Prov i s i ona lAc t i on s />
22 </Po l i cySe t>

Listing B.4: Example of user preferences allowing for downstream data
sharing; the user has configured only obligations no access control settings.

1 <?xml version="1.0"?>
2 <Pol i cySe t xmlns :x s i="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.
primelife.eu/ppl">

3 <DataHandl ingPreferences>
4 <Author i za t i onsSet>
5 <AuthzDownstreamUsage a l lowed="true">
6 <Pol i cy>
7 <Target xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os">
8 <Subjec t s>
9 <Subject>

10 <SubjectMatch>
11 <Attr ibuteValue DataType="http://www.w3.org/2001/XMLSchema#

anyURI">ht tp : //www. p r im e l i f e . eu/ ecv/ pa r t i c i p an t s / r o l e s /
domainexpert</Attr ibuteValue>

12 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="http://www.
primelife.eu/ppl/DataControllerRole" DataType="http://
www.w3.org/2001/XMLSchema#anyURI" />

13 </SubjectMatch>
14 </Subject>
15 </Subjec t s>
16 </Target>
17 <DataHandl ingPreferences>
18 <Author i za t i onsSet />
19 <Obl i ga t i on sSe t xmlns="http://www.primelife.eu/ppl/obligation

">
20 <Obl igat ion>
21 <Tr igge r sSe t>
22 <TriggerAtTime>
23 <Star t>
24 <StartNow />
25 </Star t>
26 <MaxDelay>
27 <Duration>PT30S</Duration>
28 </MaxDelay>
29 </TriggerAtTime>
30 </Tr igge r sSe t>
31 <ActionDeletePersonalData />
32 </Obl igat ion>
33 </Obl i ga t i on sSe t>
34 </DataHandl ingPreferences>
35 <Prov i s i ona lAc t i on s />
36 </Pol i cy>
37 </AuthzDownstreamUsage>

164 Demonstrator

38 </Author i za t i onsSet>
39 <Obl i ga t i on sSe t xmlns="http://www.primelife.eu/ppl/obligation">
40 <Obl igat ion>
41 <Tr igge r sSe t>
42 <TriggerAtTime>
43 <Star t>
44 <StartNow />
45 </Star t>
46 <MaxDelay>
47 <Duration>PT30S</Duration>
48 </MaxDelay>
49 </TriggerAtTime>
50 </Tr igge r sSe t>
51 <ActionDeletePersonalData />
52 </Obl igat ion>
53 </Obl i ga t i on sSe t>
54 </DataHandl ingPreferences>
55 <Prov i s i ona lAc t i on s />
56 </Po l i cySe t>

B.3 Screenshots of eCV Demonstrator

In this section, we will give a brief overview on the user interface of the eCV demo by
describing screenshots that show the processing of an overall privacy policy compliant
case.

Figure 17 shows a job offer being created by the employer tool and that will be send
to headhunter tool next.

Looking at the screenshot in figure 18, it will show the headhunter tool right before
a job offer is being received.

After the headhunter has received a job offer, it will send it to the eCV portal.
In the following three screenshots, we would like to show an emulator for SAP’s eCV
portal we used for demonstrating so far. Being a small and simple placeholder, the eCV
portal emulator is not doing the actual matching but let the user edit its result directly.
That said, figure 19 shows the eCV portal tool emulator in the application view, where
PII data like name, skills, etc. can be edited. The emulator also allows to edit the
applications sticky policy. Figure 20 shows the sticky policy without a permission for the
data controller to use the data for downstream, whereas figure 21 adds this permission.

After the eCV portal tool has sent its applications to the headhunter tool, the head-
hunter tools state will look like as in figure 22. Being in verbose mode, the headhunter
tool is also showing the received application’s sticky policy in its logging area.

To proceed to the next stage successfully, the application’s sticky policy needs to
permit downstream usage and its privacy preferences for that downstream usage should
be compliant to the privacy policy of the domain expert. In that case the headhunter
tool will successfully send the applications to the domain expert and will get the response
quickly. Figure 23 show the state of the headhunter tool after it has received the assessed
applications from the domain expert.

The user interface of the domain expert can be seen at figure 24
Back in the eCV scenario walk-trough, the headhunter tool will send the positive

Section B.3: Screenshots of eCV Demonstrator 165

Figure 17: Employer tool showing a job offer

166 Demonstrator

Figure 18: User interface of the headhunter tool

Section B.3: Screenshots of eCV Demonstrator 167

Figure 19: Emulator for SAP’s eCV portal tool

168 Demonstrator

Figure 20: eCV portal tool emulator showing user’s privacy preferences as
sticky policy. The user does not allow downstream usage control.

Section B.3: Screenshots of eCV Demonstrator 169

Figure 21: eCV portal tool emulator showing user’s privacy preferences as
sticky policy. The user allows downstream usage control.

170 Demonstrator

Figure 22: Headhunter tool UI showing the communicated sticky policy

Section B.3: Screenshots of eCV Demonstrator 171

Figure 23: Headhunter tool after having received assessed applications from
the domain expert

172 Demonstrator

Figure 24: Domain expert tool’s user interface

Section B.3: Screenshots of eCV Demonstrator 173

assessed applications the the employer. Figure 25 will show the employer tool at the
very last step of the scenario, having received and displaying job applications.

Figure 25: Employer tool showing a received job application

Please note that we use a hand-crafted editor to create, modify or view PPL policies.
Figure 26 shows that component explicitly. It also can be found as part of the employer
tool, the domain expert tool and the eCV portal tool emulator, and is discussed in more
detail in section 9.3.1.

On closing this overview of user interface, we also would like to show additional
screens that can be seen on privacy policy mismatching cases.

In case the applicant, which is represented by the eCV portal tool emulator, does

174 Demonstrator

Figure 26: PPL Editor user interface.

not allow downstream sharing its data, the headhunter will not be able to contact any
domain expert and will stop proceeding the particular application any further. This is
illustrated at figure 27.

Besides, it could also be the case that although downstream sharing is allowed the
preference of the applicant does not match with any domain expert’s policy. In that case
the applicants SMD will be triggered while the headhunter shows the screen of figure 28.

For further details on the eCV scenario and its different show cases, please refere to
chapter 7.

Section B.3: Screenshots of eCV Demonstrator 175

Figure 27: Headhunter tool’s UI signaling that applicant does not allow
downstream data sharing

176 Demonstrator

Figure 28: Headhunter tool that needs to contact the applicant to resolve
policy matching conflict

Bibliography

[AC] AT&T Corp and Carnegie Mellon University. Privacy bird.

[ACDCdVS08] C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and
P. Samarati. A privacy-aware access control system. J. Comput. Se-
cur., 16(4):369–397, 2008.

[ADF+10] C.A. Ardagna, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and
P. Samarati. Minimizing disclosure of private information in credential-
based interactions: A graph-based approach. In Proc. of the 2nd IEEE
International Conference on Information Privacy, Security, Risk and
Trust (PASSAT 2010), Minneapolis, Minnesota, USA, August 2010.

[AHK+03] Paul Ashley, Satoshi Hada, Günter Karjoth, Calvin Powers, and
Matthias Schunter. Enterprise privacy authorization language (EPAL
1.2), 2003.

[BFG09] Moritz Y. Becker, Cedric Fournet, and Andrew D. Gordon. SecPAL:
Design and semantics of a decentralized authorization language. Journal
of Computer Security, 2009.

[BGS+07] Johann Bizer, Rüdiger Grimm, Steffen Staab, Sebastian Meissner, Daniel
Pähler, Christoph Rigelstein, Martin Rost, Jan Schallaböck, and Felix
Schwagereit. Chancen und risiken von service-orientierten architekturen
in virtuellen architekturen. Project Report, 2007.

[BMB10] Moritz Y. Becker, Alexander Malkis, and Laurent Bussard. A practical
generic privacy language. In Sixth International Conference on Informa-
tion Systems Security (ICISS 2010). Springer, December 2010.

[BMD09] Moritz Y. Becker, Jason F. Mackay, and Blair Dillaway. Abductive au-
thorization credential gathering. In IEEE International Symposium on
Policies for Distributed Systems and Networks (POLICY), July 2009.

[BNP09] Laurent Bussard, Anna Nano, and Ulrich Pinsdorf. Delegation of access
rights in multi-domain service compositions. Identity in the Information
Society, 2(2):137–154, December 2009.

[BNP10] Laurent Bussard, Gregory Neven, and Franz-Stefan Preiss. Downstream
usage control. In IEEE Policy 2010, July 2010.

177

178 Bibliography

[BNS10] Laurent Bussard, Gregory Neven, and Jan Schallaböck. Data handling:
Dependencies between authorizations and obligations. W3C Workshop
on Privacy and data usage control, October 2010.

[CDK05] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-
tems. Concepts and Design. Addison Wesley, 4 edition, 2005.

[CK05] Luis Felipe Cabrera and Chris Kurt. Web Services Arcitecture and Its
Specifications: Essentials for Understanding WS-*. Microsoft Press,
2005.

[Con02] ContentGuard. XrML 2.0 Technical Overview. http://www.xrml.org/
reference/XrMLTechnicalOverviewV1.pdf, 2002.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, 2000. AAI9980887.

[HL10] Eran Hammer-Lahav. RFC 5849: The OAuth 1.0 Protocol, 2010.

[JSS08] Ethan K. Jackson, Wolfram Schulte, and Janos Sztipanovits. The power
of rich syntax for model-based development. Technical report, 2008.

[KA10] Lalana Kagal and Hal Abelson. Access control is an inadequate frame-
work for privacy protection. W3C Workshop on Privacy for Advanced
Web APIs, July 2010.

[Kan] Kantara Initiative. User managed initiative.

[KWWD08] Christina Köffel, Erik Westlund, Peter Wolkerstorfer, and Sandra Dit-
tenberger. The PrimeLife list of personas. Internal report, PrimeLife
Consortium, 2008.

[Mic09] Microsoft. Rights Management Services, 2009.

[MS09] Sebastian Meissner and Jan Schallaböck. Requirements for privacy-
enhancing service-oriented architectures. Public project deliverable
H6.3.1, PrimeLife Consortium, November 2009.

[ODR02] ODRL. Open Digital Rights Language (ODRL), version 1.1, 2002.

[Pri09a] PrimeLife Consortium. Draft 2nd design for policy languages and proto-
cols (heartbeat: H5.3.2). Technical report, July 2009.

[Pri09b] PrimeLife Consortium. Identity Management Infrastructure Protocols
for Privacy-enabled SOA (D6.1.1). Technical report, September 2009.

[Pri10a] PrimeLife Consortium. Second Release of the Policy Engine (D5.3.2).
Technical report, September 2010.

[Pri10b] PrimeLife Consortium. UI Prototypes: Policy Administration and Pre-
sentation - Version 2 (D4.3.2). Technical report, June 2010.

Bibliography 179

[Pri11] PrimeLife Consortium. Advancement and Integration of Concepts for
Secure and Dynamic Creation of Mobile Services (D6.3.1). Technical
report, January 2011.

[PSSW08] A. Pretschner, F. Schütz, C. Schaefer, and T. Walter. Policy evolution
in distributed usage control. In 4th Intl. Workshop on Security and Trust
Management. Elsevier, June 2008.

[Rag10] Dave Raggett. Machine interpretable privacy policies – a fresh take on
p3p. W3C Workshop on Privacy and data usage control, October 2010.

[Rah10] Sharif Tanvir Rahman. Analyzing causes of privacy mismatches in service
oriented architecture. Master’s thesis, RWTH, 2010.

[Ris10] Erik Rissanen. OASIS eXtensible Access Control Markup Language
(XACML) Version 3.0. OASIS committee specification 01, OASIS, Au-
gust 2010.

[SUN] SUN Microsystems Inc. Model-view-controller.

[W3C02] W3C. A P3P preference exchange language 1.0 (APPEL1.0), 2002.

[W3C03] W3C. P3P: Beyond HTTP, April 2003.

[W3C06] W3C. The platform for privacy preferences 1.1 (P3P1.1) specification,
2006.

[W3C07] W3C. The Simple Object Access Protocoll 1.2 (SOAP1.2) specification,
2007.

[W3C10] W3C. Contacts API, December 2010.

[Wan04] Xin Wang. MPEG-21 Rights Expression Language: Enabling Interoper-
able Digital Rights Management. IEEE MultiMedia, 11(4):84–87, 2004.

[YLA04] Ting Yu, Ninghui Li, and Annie I. Antón. A formal semantics for P3P.
In Proceedings of the 2004 workshop on Secure web service, SWS ’04.
ACM, 2004.

