

Anno Accademico 2008 - 2009

UNIVERSITA’ DEGLI STUDI DI TRENTO
Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Specialistica in Informatica

within European Master in Informatics

__

Final Thesis

Implementation and Evaluation of
a Scalable, Network-Supported

Mobile video Push Service

Relatore/1st Reader: Laureando/Graduant:

Name Name
Institution

ControRelatore/ 2nd Reader:

Name
Institution

Analyzing Causes of Privacy
Mismatches in Service Oriented

Architecture

Master Thesis
September 2010

(within European Master in Informatics, EuMI)

Chair of IT-Security

RWTH Aachen University

School of Informatics

The University of Edinburgh

carried out at

European Microsoft Innovation Center, EMIC

by
Sharif Tanvir Rahman

Industry Supervisors:

Dr.-Ing. Laurent Bussard
Microsoft

Dr.-Ing. Ulrich Pinsdorf
Microsoft

University Supervisors:

Prof. Dr.-Ing. Ulrike Meyer
RWTH Aachen, Germany

Dr. Massimo Felici
The University of Edinburgh, UK

This thesis has been submitted in partial fulfillment of the
requirements for the degree of Master of Science at the

RWTH Aachen University and The University of Edinburgh.
September, 2010.

Signature of author
Sharif Tanvir Rahman

Signature of university supervisor
Prof. Dr. -Ing. Ulrike Meyer

Signature of university supervisor
Dr. Massimo Felici

I hereby declare that, this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for the
award of any other degree or diploma of a university or other institute of higher
learning, except where due acknowledgment has been made in the text.

Signature of author:

Abstract

Internet users want controlled disclosure of their private data. They are concerned
about what personal information they may reveal inadvertently while accessing web-
sites. Intelligent systems can alleviate user’s concern by assessing website’s data
practices automatically, assuming machine readable privacy policies. In case of mis-
match with user expectations, these systems can also help both parties reviewing
their privacy statements by providing useful information.

In the context of the collaborative research project PrimeLife (Privacy and Identity
Management for Europe in Life), IBM, SAP, ULD, W3C and European Microsoft
Innovation Center (EMIC) are working on new languages to define privacy policies.
Specifying logic-based languages is important to enable reasoning on mismatches, i.e.
understanding why service’s privacy policy does not match user’s privacy preferences.

This master thesis, done with EMIC, uses domain specific language to specify pri-
vacy and focuses on mechanisms to analyze mismatches and to propose modifications
for getting a match, at a higher abstraction level, e.g. DSL. In case of mismatch,
this guidance permits the user judging the required amendments and make the right
choice thereby, i.e. reject service’s policy or modify her preference accordingly. An-
other concern of this work is separating different aspects of a privacy management
system and link them effectively as required.

The proposed approach is validated by developing a proof-of-concept prototype im-
plementation with Microsoft’s textual DSL tool, MGrammar and an existing formal
language, Formula.

Contents

1 Introduction 3

1.1 Motivation . 3

1.1.1 Need for intelligent tools . 3

1.1.2 Tools for Whom? . 4

1.1.3 Tools need to intend end-users 4

1.1.4 User needs guided assistance 5

1.1.5 Usability enhancement needs supporting information 6

1.2 Objective . 7

1.3 Structure of the Thesis . 7

2 Requirements and Scope 9

2.1 Example User Scenario . 9

2.2 Thesis Scope and Requirements . 11

2.2.1 Privacy Document Perspective 11

2.2.2 Privacy Compliance Perspective 13

2.2.3 Reusing components: Privacy-system architect perspective . . 14

3 Related Work 15

3.1 User Interaction Aspects . 15

3.1.1 User experience: Privacy point of view 15

3.1.2 Use of Natural Language in Privacy Documents 16

3.1.3 Policy Presentation . 16

3.2 System Design Perspective . 17

3.2.1 Translation of Privacy Document 17

3.2.2 Debugging High Level Language 17

3.3 User-controlled Privacy Platforms . 19

3.3.1 Compliance Checker . 19

3.3.2 Related work at EMIC . 20

3.4 Summary . 20

ii Contents

4 Design 23

4.1 Domain-Driven Design . 23

4.2 Reusing Components: Link by Translation 25

4.3 Debugging Perspective . 27

5 Implementation 31

5.1 Technologies in Use . 31

5.1.1 DSL Technology . 31

5.1.2 XML based technologies . 32

5.1.3 Logical Analysis: Matching Engine 32

5.1.4 Policy Editor . 33

5.2 Relevant Technical Details . 34

5.2.1 Translation components . 34

5.2.2 Matching and Suggestion . 36

6 Conclusion and Future Work 43

A Glossary 49

B Demonstration Walkthrough 51

B.1 Selecting Active Settings . 51

B.2 Translation . 51

B.3 Matching and Suggestion . 55

References 57

List of Figures

2.1 End-to-end scenario dealing privacy in service compositions 10

2.2 Matching privacy documents . 11

2.3 Requirement scenario . 12

4.1 Domain-driven architecture: Metamodels drive the implementation . 24

4.2 Towards (re)using existing components: link by Translation 26

4.3 Debugging Aspect in a Policy Editing Tool 28

5.1 Example Policy DSL . 34

5.2 Translation in different representation: Keeping mapping information 35

5.3 Intermediate XAML file, annotated with mapping information 36

5.4 Formula Domain knowledge . 37

5.5 Translation module . 38

5.6 Insufficient details from Formula output 39

5.7 Additional knowledge to gather actual mismatch reasons 40

5.8 Implementation blocks: step by step 41

5.9 Formula Model: Automatically generated 42

B.1 Selecting Active Settings for a customized system 52

B.2 Parsing DSL: Intellipad view . 52

B.3 Translation of Policy DSL to other formats 53

B.4 Highlight mismatch reason . 54

B.5 Highlight mismatch: further suggestion 55

2 List of Figures

1
Introduction

1.1 Motivation

Privacy is a complicated yet valuable concept having various aspects [40]. In the
context of using information and communication technologies, privacy issues may
occur easily because of massive collection, combination, dissemination and perma-
nent storage that these technologies facilitate [19], and because of users’ possibilities
for making or breaking the reputation of others. Individuals using these technologies
leave digital traces, sometimes without knowing they do so and sometimes in full
awareness, and thus leak personal information when they go online. For example,
search engines register the keywords we use to find information, but also the links
we click on and the paths we take while navigating in the online realm; Credit and
debit card details are stored with each of our purchases.

1.1.1 Need for intelligent tools

Given the established fact that internet society is concerned with protecting personal
information [19], it is surprising as well as worrying that “the average citizen or con-
sumer” has “a serious lack of awareness” with respect to the technical possibilities
for gathering, storing and processing her private data [42]. Moreover, the extent to
which privacy of internet users is protected is poor and we witness mistrusted rela-
tionship between internet businesses and internet users [36]. One way of addressing
the problem of building trustworthy relationship is designing intelligent tools that
enables data practices of the service transparent to user. The key aspect is, user
knows beforehand what she permits is really what is going to happen to her data.

In privacy management context, users define their preferences regarding the disclo-
sure of their personal data whereas in the counterpart policy service specifies how
and what data it processes 1. If personal data are requested by a service provider, we

1For a definition of ’User Preference’, ’Personal Data’ and ’Service Policy’, see Appendix A

4 1. Introduction

need a matching system which may stay in either side and performs the comparison
between both side’s privacy document and inform the user in case of a mismatch.

Support for retrieving and analyzing privacy policy. However, deter-
mining whether the website’s privacy policy is in compliance is cumbersome and
disliked by users [20]. Users either accept the policy without reading or stays away
from online being worried if her personal information is not protected while sharing.
More powerful online privacy tools can retrieve both party’s policies and analyze
thereby. This way, personal information which is being revealed, when the user is
going online, remains transparent to her and she is in complete control of where that
information might end-up.

1.1.2 Tools for Whom?

Data owner wants the control. While vast amount of issues exist related to
privacy and the surrounding management [40], the primary stakeholder to consider
while analyzing privacy issues needs to be the data owner, i.e the user. Respecting a
user-control in privacy management system means is that, to put simply, information
that individuals want to keep private, or only wish to share with a limited area,
should not spread further than they had originally intended. This implies keeping
the control in customer’s side so that they can make informed decisions about the
release of personal data.

Concerns exist from organizations as well. Privacy concerns also ex-
ist from company’s point of view. The growing privacy concerns of customers in-
creases pressure to companies, so that their personal information is protected from
both internal and external threats. Organizations if expose user’s private data, ei-
ther accidentally or maliciously, need to bear additional expenses. This requires a
change in the way organizations deals of privacy. The new way includes placing well-
understood and comprehensive sets of security and privacy policies, educate their
staffs on these policies, enforce them, and then audit their enforcement to ensure
compliance [14].

These processes are currently difficult for organizations to implement successfully
and requires long-term goals. One starting point needs to be empowering organiza-
tion’s end-users with the support of working on the same domain they understand.

1.1.3 Tools need to intend end-users

Much of the existing technology (mentioned in section 3.3) is designed for use by
experts. End users like customer or organizational users are not security experts
and its difficult for them to use these tools correctly. This usability issue can make
the situation further complicated as these mechanisms can be used incorrectly [43],
which may lead to a worse scenario than not using them at all. This requirement of
designing of easy-to-use systems for end-users is emphasized even in early literatures
[4].

Need for using Natural Language. Important technical projects, such as
P3P, XACML, EPAL, PPL, address privacy by providing a standard computer-
readable format for privacy policies. But many consumers prefer privacy policies in

1.1. Motivation 5

a standard, easy-to-read format. This contrast suggests supporting human-readable
privacy policy, i.e. a policy written in a spoken language, for instance, English, that
is intended for people, rather than computers, to read.

The organizational policy officers are experts in policy and legislation and need not to
have technical background. Tools they use are simple documents, emails or spread-
sheets. Neither a customer, i.e. internet user of organization’s website, is likely to
feel comfortable with complex presentations of privacy documents. Rather it seems
both parties are most comfortable expressing their statements in a precise language
that is close to natural language, e.g. like plain spoken English. This would en-
able them go through the privacy policies without requiring a technical background.
This would also eliminate the understanding gap between the service and customer.
We believe allowing privacy document dealers writing their specifications naturally
would lead one step ahead in creating usable tools dealing privacy matching and
enforcement.

Enforcement requires translation. While we are motivated using a user-
friendly technical language as close as possible to plain natural language for spec-
ifying the privacy statements, automated enforcement of user’s preference requires
it to be specified in machine readable structured information. This dilemma can be
addressed by supporting transformation of the natural language as needed by the
enforcement engine.

There is extensive research about enforcing privacy policy as agreed by the service,
e.g. enforcing ’sticky’ security policies throughout a distributed application [17],
development of schemas such as XACML, EPAL [7] or recent PrimeLife Policy Lan-
guage(PPL) [8], common specification and enforcement of obligations in the context
of multiple trust domain [6]. Given that there is large body of work in enforcement
specifications, it is necessary to support translation of the highly usable natural lan-
guage specifications in existing enforceable schemas and reusing legacy enforcement
engines thereby.

Besides enforcement, supporting translation would bridge some other missing links
with existing technologies, if natural language is introduced for specifying privacy.
For example, posting privacy practices in natural language has also been found hard
to read and understand for people [28]. This implies keeping provision for user
interfaces to develop based on a structured translation of the natural-like language.
Furthermore, automated agents might fail to digest the language as it contains mix-
up of detailed, unstructured information (from a machine-reading point of view).
These dilemma requires keeping support of translation between policy languages
(e.g. from a human-readable one to a machine-readable one).

1.1.4 User needs guided assistance

For a ordinary internet user, defining and adapting privacy preferences, in a way
that they protect their privacy properly, is a complex and error-prone task which
usually requires some expertise about the domain of basic legal privacy concepts
and principles. As security and privacy protection are often secondary goals for
ordinary computer users [27], it is indeed not realistic to assume that users will
spend enough time and effort to adapt themselves to on privacy configurations [25].

6 1. Introduction

Hence, with the support of Domain Specific Language (DSL) in writing or viewing
privacy documents, another major challenge is supporting user with proper guidance
in the case of a mismatch.

Adapting privacy document for a match is a complex and error-prone task which
usually requires some expertise about basic legal privacy concepts and principles. In
the non-electronic world no equivalent task exists [25], which means without experi-
ence, user’s intuition can not easily comprehend a convergence to match. Without
assistance, most users are very likely not to succeed writing their preferences in a
way that they are compliant with the service without several trials or even being
totally unable to write. To make the situation worse, the user could accidentally
define or choose privacy preferences, which are not as privacy-friendly as the users
would like them to be [25]. This possibility is supported by the the study that online
user’s privacy attitude diverge from behavior, i.e. privacy statements seem to have
no or few impact on behavior [12]. This implies that user needs useful assistance
from writing to reviewing her specifications.

Ackerman et al. summarized this as a customer-driven design implication that users
would likely to benefit from systems that help in reaching agreement [4]. To make
a choice, users need to be informed about mismatches of a site’s policy with their
preferences. This ensures transparency between two parties. Secondly, providing
users an option that allows them to easily preview or edit the specifications and
agree to or reject the transfer of personal information. These are more noticibility
issues (i.e. notices from service provider’s side about their information practices
and customers deciding on that) well addressed even in early guiding principles [1].
However, the necessity of suggesting modification to the user to get a match with
website’s data practices, which remains a major user worry, is not well-addressed to
the best of our knowledge. This way, user would get a set of suggestions instead of
just being informed of a mismatch.

1.1.5 Usability enhancement needs supporting information

For enabling users to make well-informed decisions, there is a need for user interfaces
(UIs) informing them in particular about the privacy policies of their communication
partners, matching information, detail description in case of mismatch, and last but
not least relevant suggestions that can lead to a possible match.

User interfaces, where the user can pick one preference DSL, e.g. graphical or textual,
in order to see and react to mismatches, would be a breakthrough in Privacy UI
design. But this depends whether we can propagate the mismatches back to the
high level domain specific language, in the form of suggestions of modifications.
This issue is closely relevant and should be considered before proposing user friendly
DSL to use in specifying preferences.

However, user interface design is not a central issue for this thesis. Psychological or
behavior studies of user are not performed either. Rather the focus is to provide de-
tails of mismatches that could offer extending research in this direction, i.e. building
user friendly interfaces with high visibility of the reasons of mismatch. Thus the re-
sult of this work lays foundation for UI research. In fact, UI researcher in PrimeLife
took this up and investigating how to visualize policy mismatches to the user [25].
Further user interaction related works are detailed in section 3.1

1.2. Objective 7

1.2 Objective

The above context is further structured as requirements in section 2. Based on the
situation that users are still uncomfortable with present tools to make well-informed
decision in writing their privacy preferences and organizations facing complicacies
implementing their privacy policies, we limit objectives for this works to provide

1. Support of Domain Specific Language in specifying privacy documents.

2. An approach for using the DSL for automated enforcement.

3. Supporting transformation to other representation of the privacy document,
as needed.

4. Propose modifications in privacy documents in order to get a match.

5. Highlight mismatch reasons across different privacy languages.

Research on these objectives would lead us one step ahead in finding better ways so
that end-users are comfortable in creating and managing their privacy policies.

1.3 Structure of the Thesis

The organization of this document is as follows.

Section 2 (“Requirements and Scope”) provides an example scenario and gathers re-
quirements to clearly position the scope and intention of this work in the world of
private data management. Section 3 (“Related Work”) reviews the background liter-
ature from relevant perspectives. This is followed by details of the design concepts of
our approach in section 4 (“Design”). The technologies behind and relevant technical
details are in section 5 (“Implementation”). Finally, this document concludes with
a brief summary of key contributions and mentioning future research opportunities
we see on top of this work.

8 1. Introduction

2
Requirements and Scope

In this chapter, we first introduce a simple user scenario to describe the context of
this work. We present our reduced working context in section 2.2 which gathers
relevant requirements within our scope. First we describe steps required to improve
user-experience from the privacy document perspective. Then we focus on the key
necessities when the user is concerned about matching the policies. Next we collect
the requirements for a flexible system architecture.

2.1 Example User Scenario

Let’s consider a user Alice, who is seeking a travel booking service. She searches
for some suitable services in the web and tries to access one. Alice would share
personal information (e.g. her contact details, credit card information) with the
service. Moreover, this travel service in turn talks to a hotel booking as well as a car
rental service and would disclose part of the information (e.g. her contact phone) it
got from Alice to fulfill the booking.

Alice is concerned about what information she might reveal while making the book-
ing. She also needs a clear picture where those data might end up. To make it clear,
she wants complete control of her privacy.

Alice has a document that describes her privacy preferences in a formal way. The
document describes how Alice as a data provider wants her data to be treated once
she disclosed it to a data consumer. Likewise, each of the three service providers
in the scenario has a document expressing their privacy policy. It describes how
personal data of a user would be handled by the service provider.

Figure 2.11 presents a big picture of privacy scenario at multilayer service composi-
tion, which includes the scope of previous related work at EMIC as well as this thesis
work. Here the data subject (or the end user or client) wants control disclosure of

1taken from presentation shown at IEEE Policy 2010 [15]

10 2. Requirements and Scope

1.1) Match (Pref ⊵ Pol) 2.1) Check SP (SP ⊵ Pol)

+

traces

Pref.
Privacy

Preferences Pol.
Privacy

Policy

SPPII

PIIs
+

SP’PII’

Pol2

Pol3

3.1) Traces analysis

(SPs ⊵ Traces)

1.3) Create sticky policy

(Pref ⊵ SP ⊵ Pol)

1.4) Send data + sticky policy

2.2) enforce AuthZ and Obligations

(SP ⊵ behavior)

2.3) Match (SP ⊵ Pol3)

2.4) Create sticky policy

(SP ⊵ SP’ ⊵ Pol3)

2.5) Send data + sticky policy

1.2) UI: Select PII,

update Pref

Alice

Car Rental

Hotel Booking

Travel Booking

Collected PII

Figure 2.1 End-to-end scenario dealing privacy in service compositions

her private data to data controller (service). This data controller discloses user’s
data to two other services, again with agreements complying user’s preference.

To further describe the end to end scenario of figure 2.1, the privacy policy, Pol is
sent by the data consumer (travel booking service) to the data subject (user, Alice)
to match against her privacy preference, Pref. The subject, if finds Pol compliant,
sends her Personally Identifiable Information (PII) along with the sticky policy, SP.
The sticky policy is the mutual agreement between the user and the service provider.
It contains all the rights and obligations the service provider agreed to with respect
to the information the user just sent. The data controller stores the agreement, SP,
for this specific set of PII.

The data controller’s responsibility is to enforce all obligations it agrees with various
users. Here, the travel booking service checks SP whether it is indeed the agreements
he made with Alice and if found compliant the service enforces it’s promises. If this
travel booking service shares parts of the data, PII’, with a third party (Car rental),
it has to verify that the sticky policy of the data, SP, is equally or more permissive
than privacy policy, Pol3 exposed by this third party. In essence, this is the same
matching step as Alice did with the travel booking service, only that the travel
booking service is now in Alice’s position of providing data and car rental service is
the data consumer. If this matching is successful, the travel booking creates sticky
policy with their mutual agreement, SP’ and sends it along with PII’.

All services may log their enforcement information (all their details of dealing with
user’s data) and let these traces audit by another party to prove whether their
commitments were actually kept. This proof of compliance is a business advantage
for that service achieving customer’s trust.

2.2. Thesis Scope and Requirements 11

Travel Booking

PPL Preferences:

// Privacy Preferences of Alice

Applicability: email

 AC:

 if <Service> certified as BookingService by CAx

 UC:

 Obligations:

 Delete it within 365 days

 AuthZ:

 Use it for { "statistics", "contact", "delivery" }

 Send it downstream

PPL Policy:

// Policy of Travel Booking

Applicability: email
 AC:
 Credential: Certified as BookingService by CAx
 UC:
 Obligations:
 Delete this PII within 180 days
 Notify <User> when this PII is used for "statistics"
 AuthZ:
 Use this PII for {"statistics", "contact"}
 Send this PII to RentalService

Match

Figure 2.2 Matching privacy documents

2.2 Thesis Scope and Requirements

Whereas previous section describes an end to end scenario of the problem, here we
limit our discussion to what is intended to solve in the scope of this thesis and collect
the requirements in our problem domain.

Whereas the broader picture covers several important aspects of privacy, e.g., en-
forcing the agreement the service made to user or verifying whether the promise
actually maintained by any auditor, the scope of this thesis looks at the scenario
from a matching perspective and the focus is on proposing useful suggestion in case
of a mismatch.

We gather the requirements from following point of views:

2.2.1 Privacy Document Perspective

It is obligatory to mention details about the nature of personal information that
is collected, for what purpose the information will be used, mentioning who would
have access to the data, and for how long the information would be retained by
the site. However, this section does not intend to provide a check-list of the topics
that should be contained inside a privacy document, rather the discussion is reduced
only to usability-experience with the document, from both user and agent-developer
point of view.

• First of all, a privacy document needs to be written in a simple, easy-to-read
language. Moreover, the presentation of the document should be user-friendly.

• Using a natural-like language to specify/write the privacy document. Us-
ing controlled phrases from a spoken-language, for example in plain English,

12 2. Requirements and Scope

Language

Match Logic-based
Language

Translator

Suggestion(s)

Edit

Write

Policy and
Preference

Analyzer

Feedback provider

Mismatch
results

Legend

Generation of file/info

Information flow

G
en

er
at

in
g

p
ri

va
cy

 d
o

cu
m

en
t

in

o
th

er
 la

n
gu

ag
e(

s)

Figure 2.3 Requirement scenario

2.2. Thesis Scope and Requirements 13

would make the awkward task of writing far comfortable. This way the user
can customize her preference naturally, instead of using the configuration tools
included by user-agents. However, analyzing natural language to understand
policy rules is a difficult task [16]. Neither it is desirable from a privacy docu-
ment writer to be completely ignorant about domain knowledge and not using
controlled vocabulary from privacy domain. Moreover, few guidelines can keep
the language linguistically simple. This lays the basis for using a precise, con-
trolled natural-like technical language, e.g. domain-specific language (DSL)
for privacy documents.

• Visualizing the privacy document naturally. This keeps the policies promi-
nently clear and human-readable. Better visualization is helpful to understand
what the other party specifies and what needs to change to get a match. The
policy writers may still write their documents in other technical, e.g. any
XML-like languages, but they also need a better visualization model, e.g. in
DSL. This raises another requirement of supporting translation to DSL from
other languages. Having same expressiveness between supporting languages is
a constraint here.

• The policy language needs to be either logic-based that allows formal matching
or should support being translated to a more expressive logic-based language.
This is to support automatic agents to read the policy, understand, extract
rights and obligations as well as reason there-on.

• Having same policy language on both user’s and service’s side is another re-
quirement. However, translation between languages overcomes this constraint
if they are with same expressiveness.

• Privacy specification architecture should regard downstream data sharing right
from the start. Because privacy is usually not something between two parties,
but real world scenarios involve sharing over multiple hops, across different
trust domains and involve individual policies for each party. For example, in
the scenario in section 2.1, the travel booking service downstreams personal
information to hotel booking and car rental service.

• Need for a privacy document editor which allows users as well as the service
provider to write and configure their specifications in a user-friendly way.

To draw a summary; Communication, between the privacy domain experts, cus-
tomers, organization policy writers and solution architects, needs to be in an ubiqui-
tous language. We suggest DSL to be the backbone language used by all parties, for
example, instead of a technical specification like <delete> <start> Now </start>
<within> 30d </within> </delete> using a natural-like data retention statement,
I want to delete within 30 days.

2.2.2 Privacy Compliance Perspective

A user needs good reasons to trust the service provider’s way of processing her
information. She can be sure about the compliance after matching service’s policy
against her preference setting.

14 2. Requirements and Scope

Checking and generating this assurance information about the trustworthiness re-
quires automatic reasoning on the formal privacy document. As mentioned in section
2.2.1, automatic reasoning can be supported in a high level user-friendly language as
well by translating the document in a more-expressive formal language and reasoning
on the latter one.

Secondly, user should get the ability to review and if feels appropriate, correct her
preferences. This review is closely related with the reasons for mismatch, that’s
why, matching information should contain as detail as possible instead of having
only a yes/no message. This additional detail is to provide users the ability to
review preferences with the support of meaningful suggestions. This feedback with
suggestion can be formulated by analyzing the mismatch information if produced
from an extended reasoner.

Thirdly, the user should be able to review the mismatches at the DSL abstraction
level rather than the translated formal language statements. This transparency
requires hiding the translation gap while preparing suggestions for the user-end from
the lower level debugging information.

Lastly, if possible, decoupling the mismatch information, i.e. from the UI coordinates
of the privacy document to translated lower level languages’ metadata. This would
help compliance checking in one side, say in service, and transferring the resulting
information to the counterpart client. Systems, which allows user to specify the
privacy in multiple language, need to support this feature, e.g. writing the preference
in DSL and getting the suggestion in a XML-like representation of the DSL.

2.2.3 Reusing components: Privacy-system architect perspec-
tive

From a system developer point of view, it seems a good idea to decouple the privacy
components and wire the dependencies as system requires. It should be interesting to
think, whether we can move towards a well-designed and standardized architecture
that would support integrating existing components to build customized privacy
management solution.

UI separation is realized in previous section as we wanted to decouple mismatch
information if possible. Another aspect of separation is pluggable reasoner support.
This means replacing the mismatch analyzer as needed but using other legacy compo-
nents, e.g. enforcement engine or top-layer privacy languages. Provision of multiple
privacy language is another possible separation. This means allowing user to write
in a new language but using the same underlying privacy management system. This
requires supporting translation to the more expressive legacy language.

We address all these requirements, gathered from different perspectives in section
2.2.1, 2.2.2 and 2.2.3, as the scope of this thesis, illustrated in figure 2.3. To ac-
knowledge, we ourselves have not conducted any survey on client, organization or
system architect experience but the present state of research (see section 3) serves
good reasons for supporting these requirements.

3
Related Work

Given the growing awareness by society of identity theft and other misuse of personal
information, it is not surprising that privacy remains a very active area of research
for current and emerging technology design [5]. However, the world of privacy has
various aspects to care about and we will briefly delineate some which are related
to our approach.

3.1 User Interaction Aspects

3.1.1 User experience: Privacy point of view

There exists a stream of research to connect privacy concerns, companies’ privacy
policy disclosures and customer behavior [22, 13]. For instance, Earp and Baumer
[22] studied consumers’ behavior and online privacy and showed that the willingness
by consumers to provide certain information online greatly depends on who is doing
the asking. Bortiz and Won had a detail examination of the privacy policy state-
ments of existing companies, relating them with user concerns. They revealed a gap
between privacy policy’s individuals value and what companies emphasize in their
privacy policy statements [13]. The study reveals that customers’ privacy concerns
are not adequately addressed in companies’ privacy policy disclosures. The need
for assisting end-users to negotiate their practices can be inferred from this gap of
understanding.

Privacy policies can be posted on websites or contained within contextual texts or
sent to users in other form. This document often include long complicated legal
statements, which are usually not understood or even not read by the end users [25].
Moreover, users experience discomfort determining whether the website’s privacy
policy is in compliance and they find it cumbersome [20]. Making privacy policies
easily understandable and transparent is therefore an important challenge. The need

16 3. Related Work

for simple user-friendly statements is thereby advised even in early guiding principles
(e.g. P3P Guiding Principles Document [1])

Studies exist that investigated customer-driven design issues in privacy protocols
and their user clients, e.g. [4]. Users like to benefit from systems that help in
reaching agreement and then in exchanging data when the agreement is acceptable
in addition with getting assistance in identifying situations where a site’s privacy
practices is counter to their interest [4].

3.1.2 Use of Natural Language in Privacy Documents

Karat et al. conducted research on the range of skills policy authors might possess.
They found some policy authors having a legal and/or business background while
others having some technical background [31]. In practice, these policies are being
expressed in natural language text (common in organizations), in executable code
(common for IT systems), or implicitly (common for individuals) [30]. Reeder et al.
conducted a user study to identify common policy authoring errors [38] and among
other suggestions, the survey urges the need for authoring the policy in natural
language. IBM designed SPARCLE Policy Workbench so that policy authors can
write policy rules in natural language using a rule guide. Using SPARCLE, the
policy author creates policies using their choice of either guided natural language
or structured entry. This system opened research issues in various dimensions for
supporting controlled natural language in policy authoring [14, 31, 41, 30, 38].

3.1.3 Policy Presentation

Present privacy policy frameworks support the services demonstrating their policies
to customers, e.g. publishing on websites or sending the policy in some structured
format (like XACML). But we notice insufficient research on helping better visual-
ization of the privacy documents while the necessity of seamless and non-distracting
presentation instead of showing up an extremely complex information and decision
space, is implied from early user-surveys [3]. Ackerman and Cranor also revealed
that a matrix-style user interface for private information over each of P3P’s ten
dimensions would be overwhelming for most users [3].

Better visualization can benefit the data owner to understand the policies better
whereas the same model can support service side policy officers better design their
documents. On the other hand, improper abstraction of visualization may lead
to incorrect use of the tools. Whitten and Tygar, while studying the use of email
encryption technology, pointed out that security mechanisms are only effective when
used correctly’ and these mechanisms are often not used correctly due to usability
issues [43].

Ghazinour et al. present a policy visualization model to assist understanding, ana-
lyzing the privacy statements. [26]. This also intended to support policy officers to
have a better understanding of the designed policies in order to improve, debug and
optimize them.

PrimeLife’s work-package 4.3 on ’User Interfaces for Policy Display and Adminis-
tration’ addresses the challenge of making privacy policy easily understandable and

3.2. System Design Perspective 17

transparent [25]. This work package investigates user-friendly visualization of policy
mismatches. They provide options of predefined ’standard’ of privacy preferences,
which user can choose or customize on the fly. If for example, a service requests more
data than permitted by the user’s current privacy settings, and the user agrees to it,
the user gets the option of adapting her preferences as well as saving the new one as
another template. This work package addresses challenges of how to make privacy
polices more comprehensible and transparent to end users and how to simplify the
process of privacy preference management for them. They are working on develop-
ing user interfaces, based on PrimeLife Policy Language PPL, that are informative,
comprehensible while legally compliant, but also flexible to handle both simple and
complex interactions involving data disclosures to several data controllers or for sev-
eral purposes and possibly different retention periods. Another contribution of their
package is designing a privacy preference editor that allows the user to specify, on
an attribute level, what the conditions under which they would accept to disclose
the data to a data controller. However, this is still in prototype version and finding
a balance between functionality and ease-of-use would remain as a challenge as they
add more functionality.

Another recent work on ’Nutrition label Label’ for privacy [32], proposes presentation
of information to be displayed in short privacy notices. It uses a visualization tech-
nique for displaying policies in a two-dimensional grid with types of information that
are requested as rows and purposes as columns. Their study shows well-perception
of this visualization from test users.

3.2 System Design Perspective

3.2.1 Translation of Privacy Document

IBM’s SPARCLE Policy Management Workbench allows user to construct service
side’s policies using a natural language interface [14]. SPARCLE enables writing
policies in natural language, parse the policies to identify policy elements and then
generate a machine readable (XML) version of the policy. This is intended to support
mapping of policies to the organization’s configuration in future to provide audit and
compliance tools to ensure that the policy implementation operates as intended.

SPARCLE uses a set of grammars which execute on a parser that are designed to
identify the rule elements in privacy policy rules entered as natural language. These
elements are then used to create policy visualizations and the XACML version of the
policy. However, they moved to using constrained language rather than attempting
to parse completely unconstrained natural language.

3.2.2 Debugging High Level Language

We allow DSL for specifying policy and we want to highlight the reason for mismatch
at this high abstraction level. Similar motivation exists in debugging paradigm
for high level languages. The mismatch reasons are as if the software bugs and

18 3. Related Work

discovering the reasons for a mismatch in policies, is as if finding the bugs. This
analogy leads us to look at researches on high level language debugging.

Debugging environments for high level languages have traditionally used interpreters,
as a classic example, Interlisp provides excellent interpreter-based debugging facili-
ties at the source language level [39]. On the other hand, good debugging facilities
have been developed using a compiler, but at the machine language and not at
the source language level. High level languages if base on an existing complier can
support ideal debugging environment, e.g. stepping through the execution of the
program, to print values selectively, and to warn of uninitialized variables [24].

Cai et al. realized a debugger for Aldor [16], which is a high level symbolic math-
ematical computation language. Aldor provides an optimizing compiler as well as
an interpreter which translates source to an intermediate code, FOAM, using the
front end of the compiler, and then this intermediate code is executed by a software
interpreter. [16] uses this interpretive environment as the context for debugging.

With interpreted and compiled models of execution for modern high-level languages,
a language may also be translated into a low-level programming language for which
native code compilers are already widely available.

Mernik et al. provided an extensive summary of the current practice of DSL im-
plementation [34]. They discussed various patterns, i.e. the most suitable imple-
mentation approach for an executable DSL. The source-to-source transformation,
where the DSL is transformed (translated) into a base language source code is al-
ready existing for DSLs like ADSL, AUI, MSF, SWUL, TVL.A common approach
for implementing DSLs is to create a pre-processor that translates DSL source into a
general purpose language (GPL), such as C, Java or C#. A benefit of the preproces-
sor approach is the potential for reuse of the host GPL development infrastructure
to generate executable code.

However, the preprocessing has a serious disadvantage when it comes to the issue of
debugging . Difficulty arises when debugging the DSL or any high level language is
necessary after translation is done [46], as debugging requires knowledge of both the
domain and the target GPL. This results in a conflict of abstraction levels. In such
case, the programmer must understand the translated code in the GPL, rather than
the higher-level description contained in the DSL, meaning mapping between these
two level of sources need to be carefully generated and intelligently. Otherwise, the
end-user would not be able to debug with higher level domain-specific concepts and
notations, but instead in terms of GPL concepts.

Wu, Gray and Mernik used preprocessing(translating) approach for executing DSL
and suggested using eclipse’s1 debugging framework as an interface to support debug-
ging capabilities (e.g. error reporting and debugging are at the level of the generated
GPL code) for DSL environments[46]. They used ANTLR2 specification to support
automated debugger generation and thus shows the possibility of existing debugging
support. Wu have also research that unites the descriptive power provided by the
Eclipse debugging perspective and the JUnit testing engine 3, in conjunction with

1Open Source IDE, mostly provided in Java
2A language tool for constructing recognizers, compilers, and translators
3JUnit is a framework to write repeatable tests. It is an instance of the xUnit architecture for

unit testing frameworks

3.3. User-controlled Privacy Platforms 19

the invasive modification capabilities of a mature program transformation system
[45].

If the translator approach is advocated, Microsoft Oslo comes up with a set of future
modeling technologies for DSLs [44]. This includes MGrammar i.e. instructions on
how to parse files for the language and a standard methodology to translate the DSL
files to annotated MGraph. These features provide an easy way for keeping mapping
record for debugging information while translating the DSL.

3.3 User-controlled Privacy Platforms

3.3.1 Compliance Checker

Comparing user’s preference with website’s data practices is well-addressed in several
approaches both in literature and practice. Platform for Privacy Preferences(P3P)
is an early recommendation with the goal to inform Web users of the data-collection
practices of Web sites [18]. P3P was adopted early by many service providers [20].A
complimentary specification, conceived by W3C was APPEL which is for describing
collections of preferences regarding P3P policies between P3P agents [33] and pri-
marily intended as a transmission format. IBM’s EPAL was intended for exchanging
privacy policy in a structured format between applications or enterprises [9]. Simply
put, APPEL with P3P is for matching policies whereas EPAL was to locally enforce
what the service is obliged by P3P.

Another work, by Backes et al. [10], examined the comparison of enterprise privacy
policies using a formal abstract syntax and semantics to express the policy contents.
The authors provide formal definitions and rules under which refinement can occur,
and incorporate them in an algorithm for checking refinement for privacy policies ex-
pressed in EPAL. S4P, a declarative language from Microsoft Research [35], specifies
preferences and policies uniformly as assertions and queries written in SecPAL [11]
extended with two modal verbs, may and will. Compliance checking between two
parties’ privacy documents is simple with this language as it only involves evaluating
the queries against the assertions.

Up to now, we looked at matching from service driven perspective. But in some
cases, negotiating policies would serve for a better matching model [21, 23]. Re-
search on how efficient privacy negotiation techniques can lead to efficient contracts
is found in Preibusch’s work [37]. They modeled user’s individual utility maximiza-
tion in multi-dimensionality of privacy, taking into account reducing the negotiation
space in a way that suits the given business scenario. Based on a formalization of
the user’s privacy revelation problem, they modeled the negotiation process as a
Bayesian game where the service faces different types of users. Yee proposed an au-
tomatic privacy policy agreement checker that automatically determines if the user
privacy preference agrees with the corresponding provider privacy policy [50]. The
solution computerizes the privacy policies by expressing them in XML-based AP-
PEL. The work kept provision for incorporating the solution in policy negotiation
[49] by invoking it to check whether a new offer by either party results in agreement.

However, as our scope is only service-driven scenario, we do not make the solution
unnecessarily complex dealing with negotiation techniques.

20 3. Related Work

3.3.2 Related work at EMIC

Under the same context as this thesis work is, a prototype application was developed
at EMIC (shown at IEEE Policy 2010 [15])on privacy policies in multi-layered service
composition scenario, outlined in the figure 2.1.

This prototype facilitated automating data-sharing decision by matching user’s pref-
erence and service’s policy. The work further supported obligation enforcements, i.e.
executing all the promises the service agreed with dealing the private data. Finally,
audit mechanism had been integrated to verify whether the enforcement acted in
compliance with agreed sticky policy. The audit is based on the generated execution
traces.

The purpose for developing enforcement tools was to make the service complying
agreed privacy. The enforcement engine executes all the obligations it agreed upon in
the past and generates meaningful traces for all data related activities. The auditor
verifies these trace messages to track any violation of service’s commitment.

This previous work needed several modules to be developed to provide a unified
logic-based solution for privacy management for the scenario in figure 2.1, e.g. 1.
User interface development, 2. Parsing policy DSL, 3. Parsing rules, 4. Interpreting
rules, 5. Translation to Formula 4, 6. Formula matching domain, 7. Designing
a presentation layer for simulating enforcement scenario based on WWF 5, 8. En-
forcement of authorizations, 9. Enforcement of obligations, 10. Parsing traces, which
are generated while enforcing, to object model 11. Translation of Object model to
Formula for the auditor to verify service’s commitment, 12. Formula audit domain.

3.4 Summary

Other than the ongoing work of SPARCLE [14], none of the previous work we are
aware of is based on natural language to specify the privacy document. Our approach
also resembles this work in that they also separate the policy specification (in nat-
ural language) from the enforcement (translated to XACML). However, the work
presented here significantly differs from their approach as we decouple all domain
specific modules to support a pluggable debugger that provides matching suggestion
at the natural language abstraction level. Moreover, the transformation and rea-
soning modules are pluggable as well, opening the opportunity of translating from
one DSL to other (expressiveness is a concern though) or plugging other reasoner
on-demand. A generic translator is also supplied for generating the model for system
architect to analyze on; from the language, transformation and reasoning domain.

In terms of weaving debugging approach in domain specific language, related works
[46], [47], [48] focus similar concern as us. They advocate generating Eclipse frame-
work tools directly from grammar and take benefit from existing debuggers. How-
ever, their approach is applicable in those cases when an aspect weaver is available
for the generated GPL, whereas we need to translate the DSL for logic based reason-
ers where we do not find aspect oriented design. We followed a complete different

4further details of Formula in section 5.1.3
5Windows Workflow Foundation

3.4. Summary 21

way by generating the debugging information from the low-level reasoners, i.e. mis-
match causes in our case, while generating the result and (re)map the information in
all previous and next abstraction levels accordingly. Moreover, we need to translate
the DSL in multiple layers (translation architecture in section 4.2) for supporting
the requirements (section 2) that introduces complicacies designing the mapping in-
formation and propagating the low-level debugging information back to the topmost
abstraction level.

22 3. Related Work

4
Design

To help fulfilling the requirements we are imposed (gathered in section 2), we have
designed and implemented (section 5) a privacy system architecture from matching
point of view. We followed a generative approach to separate the UI, matching,
enforcement and debugging concerns. We generate intermediate structured repre-
sentations from the policy DSLs. These are further translated to a reasoning model
for analyzing the mismatches. We also support translating the policy DSL to other
DSL, i.e. other structured representation. All these transformations are automati-
cally generated as directed by the knowledge of each domain, i.e. policy language,
transformation rules and reasoning domain. In this chapter, section 4.1 is intended
to outline the design principles, followed by section 4.2 describing our approach to
link different aspects and section 4.3 discusses how we can discover the mismatch
reasons and highlight those in end-user abstraction level.

4.1 Domain-Driven Design

Let the metamodel drive the implementation. It is important that the
metamodel drives the implementation of any DSL. What we mean is, the language
structure, parsing grammar and transformation rules need to be specified a prior
and the implementation of a matching engine should follow this metamodel. To
reflect the DSL in implementation in a very literal way, we designed a domain-
knowledge driven generic parser which translates the DSL in intermediate standard
representation e.g. XAML 1. This XAML is further translated to another DSL, i.e.
PPL 2 and to a reasoning model in Formula 3, to feed them into next abstraction
level modules, e.g. matching and enforcement engine.

Isolation of the domain. Policy DSLs evolve over time and many be defined
differently by different organizations. This is true for reasoning knowledge as well in

1Microsoft’s declarative Extensible Application Markup Language (XAML)
2PrimeLife Policy Language (PPL) is an extension of XACML
3for further details about Formula, see 5.1.3

24 4. Design

Domain Specific
Language

Transformation Rules Reasoning Rules

Schema
(PPL, SecPAL4P)

Transformation Rules
(MGrammar, XSLT)

Reasoning Language
(Formula)

Specified in Specified in Specified in

Domain Expert

Transformation
Expert

Reasoning Expert

Privacy Document

Conforms to

Automated
Parser, Translator, Generator

Designed for

Generated file
(XAML, XML, Formula)

ReasonerReasons on

Uses as Domain

Reasoning result
(mismatch info)Application Code

Solution Architect

analyzes

glues

Policy Writer

Figure 4.1 Domain-driven architecture: Metamodels drive the implementation

4.2. Reusing Components: Link by Translation 25

the case where someone needs to use other matching engine but keeping same upper
layer. This implies the underlying infrastructure to be decoupled from the domain
knowledge. We advocate for supporting intermediate representations to which the
upper layer is translated and which would be used in implementation. This is how
we maintain separation of abstraction. This also makes the architecture reusable; in
the sense that, the same enforcement engine could be used for any different DSL or
reasoned by any other matching engine.

The idea of decoupling different layers via intermediate representation, is popular
for high-level languages, e.g., Common Language Infrastructure (CLI), in which
applications written in multiple high-level languages can be executed in different
system environments without the need to rewrite those applications to take into
consideration the unique characteristics of those environments [2]. Another existing
language is Microsoft’s XAML (XML-based Extensible Application Markup Lan-
guage) 4 which can be easily expressed in more traditional .NET language, e.g. C#.
In our approach, we used XAML as the intermediate representation of policy DSL.

Linking Policy to Implementation. Another motivation discussed in section
1.1 is to link the privacy policy to enforceable information. This addresses the
dilemma that in one perspective, an upper level user is comfortable with natural-
like languages to understand and specify their privacy whereas the automated agents
and enforcement engine are less error-prone if the policy is represented in a struc-
tured machine-readable format. We propose the linking by supporting automated
translation of policy DSL to a structured format.

Figure 4.1 summarizes the domain-driven design principles discussed above. The
high-level language, corresponding translation rules and the reasoning domain are
designed by corresponding experts. A generic parser translates the upper level to
intermediate formats according to the transformation specifications. The system
architect gets the DSL as an enforceable structured format. This way policy DSL
would be automatically and correctly reflected in the enforcement system. The
matching engine also works on the same intermediate representation. The lower
level reasoning model, upon which the reasoner works on, is generated from the
intermediate representation as well. The reasoning domain, which directs the logical
analysis, is also specified by an expert beforehand, in the format needed for this
particular reasoner.

4.2 Reusing Components: Link by Translation

One motivation for this work is designing support for reusing legacy technologies and
systems where possible. As discussed in section 2.2.1 we need a link between human
and machine readable policy languages as users can specify their privacy in either
format and switch to the other format for viewing or editing purpose. Translation to
a machine-readable format is also necessary to automate matching and enforcement.
The policy language can further be translated to a more-expressive reasoning model.
This supports decoupling the matching engine.

4XAML Overview. http://msdn.microsoft.com/en-us/library/ms752059.aspx

26 4. Design

Other Logic-based
Language

TRANSLATION

FORMULA

Legend

What is implemented

Not implemented

Plain English DSL

PPL-like SecPAL4P-like XML-language

Figure 4.2 Towards (re)using existing components: link by Translation

4.3. Debugging Perspective 27

Figure 4.2 gives an illustrative overview of to what extent we support translation.
Here, two natural-like DSLs, i.e. PPL-like [25] and SecPAL4P-like [35], are trans-
lated to a structured machine-readable DSL. This may be required to be done in the
opposite way as well, i.e. user writes in a XML-like language (e.g. PPL, XACML)
and we need to translate it back to the natural-like DSL to give the user a better
visualization. We do not implement this feature due to technological limitation but
keep provision in the design in the way that graphical visualization models could be
easily built on top of our translated structured DSL. Later, policy from both repre-
sentations are further transformed to a logic-based language, in our implementation
which is Formula (more details in section 5.1.3).

4.3 Debugging Perspective

A DSL source-level debugger is a critical tool to assist the user in discovering the rea-
son for mismatch as precise as possible. In general, high level languages, if translated
for execution, makes the debugging support difficult [46]. We address the problem
with additional mapping processes while translating to next abstraction layer and
interpreting this mapping against the mismatch information while generating the
suggestions at topmost abstraction.

An illustrative overview of the debugging perspective is shown in Figure 4.3. The
generic parser generates the intermediate representation as well as mapping infor-
mation with the DSL source. This mapping process keeps track of source code
segment, e.g. line and column number, with the corresponding segment in the inter-
mediate file. Similarly, next level translation to reasoning model is also responsible
for generation of another mapping file. This leads us to a consistent tracking of
the DSL segments as we translate one abstraction layer to other and requires. This
way a transformation domain expert simply writes the rules and additional mapping
information is auto-generated requiring no interaction from the end-user.

The additional details of a mismatch, what we need to enhance usability, should
come from the matching engine. If the reasoner behind the engine does not support
provision of analyzable details we suggest to enhance the reasoning domain knowl-
edge. For instance, the reasoning engine we use (i.e. Formula 5) does not generate
additional information that can be used to pinpoint the reasons. But what we can
always do is to generate some detail level of states from the reasoner and analyze
those with additional domain knowledge. This way, the separation of domain with
the implementation, which is one of our design principle, is maintained. The key
benefit is, we can plug another reasoner and use the same upper components except
the reasoning domain to change. However, as we need to investigate the reasoner
output for analyzing the mismatch reasons, plugging another reasoner implies know-
ing the output format of this reasoner in advance, so that the next layer analyzer
component could be reused.

The mismatch reasons are discovered in the reasoner layer which has no clue about
the existence of upper layers. We re-map the results back in the abstraction level
user expects, i.e. DSL. User may also require step-by-step guidance, e.g. putting

5more details about Formula specification is in section 5.1.3

28 4. Design

Policy Editing Tool UI

Generic Parser

Intermediate
Representation Mapping

Matching Engine/Reasoner

Re-Mapping as Suggestion

Reasoning modelStructured Language
(e.g. XACML)

Translator

Mapping

Mismatch
Information

Analyze for suggestion

DSL

Suggestion

Figure 4.3 Debugging Aspect in a Policy Editing Tool

4.3. Debugging Perspective 29

that suggestion first which requires least modification and moving to next as users
directs. The re-mapping component takes user’s command and maps the mismatch
reasons back to the DSL abstraction level accordingly.

30 4. Design

5
Implementation

We have gathered the requirements for a privacy management system from a match-
ing (i.e. helping user and service achieving an agreement) point of view in section 2
and realized the design issues for such a system in section 4. This chapter describes
the implementation of a proof-of-concept prototype. First we highlight the tech-
nologies behind (section 5.1), following a description of the developed components
(section 5.2). A demonstration walk through the prototype is detailed in appendix
B.

5.1 Technologies in Use

This section introduces the software tools and methodologies, employed to develop
the architecture envisioned in previous chapter.

5.1.1 DSL Technology

There are many tools for building DSL, e.g. ANTLR 1, Boo 2. We used Microsoft’s
SQL Server Modeling platform (former codename, Oslo) 3. The toolkit ships with a
GLR-based text parser 4, named MGrammar, that basically parse text and output
an AST 5 node graph [44]. This supports us creating a general parser mechanism
with .NET framework at the back and generating an in-memory syntax tree. The

1ANTLR (ANother Tool for Language Recognition) provides a framework for constructing rec-
ognizers, interpreters, compilers, and translators

2Boo is a flexible CLR language with an extendible compiler architecture, suitable for DSL
3Data Developer Center. http://msdn.microsoft.com/en-us/data/
4GLR parser (Generalized Left-to-right Rightmost derivation parser) is an extension of an LR

parser algorithm to handle nondeterministic and ambiguous grammars
5AST (Abstract Syntax Tree) is a tree representation of the abstract syntactic structure of

source code written in a programming language)

32 5. Implementation

intermediate representation of the policy DSL is auto-generated by walking the AST,
enabling us maintaining clear separation between the metamodel and implementa-
tion.

MGrammar Language enables information to be represented in a textual form that is
tuned for both the problem domain and the target audience. The language provides
simple constructs for describing the shape of a textual language; that shape includes
the input syntax as well as the structure and contents of the underlying information.
To that end, MGrammar acts as both a schema language that can validate that
textual input conforms to a given language as well as a transformation language
that projects textual input into data structures (i.e. MGraph) that are amenable to
further processing or storage. The latter feature supports us further translating this
structured output to another representation.

One missing feature with MGrammar is that there is no way to automatically go
from the parse tree back into the textual form. However, it supports attaching
annotations (called attributes) to production rules. These annotations can have
structure (the same kind of structure as the parse tree). This enables attaching
source level information, i.e line and column number, as we walk the parse tree.
Another interesting feature of MGrammar is that it has modules. This opens up
the possibility of reusing grammars for languages and fragments of languages. In
practice, this feature helps maintaining consistency in multiple parsing grammars.

5.1.2 XML based technologies

For intermediate representation of the policy DSL we need a language which is
structured enough to be further transformed and which supports transformation
experts independently write their rules. XML languages are suitable for this purpose,
if translation rules, if written in XSLT 6, would keep the domain knowledge not
mixing with the implementation code. XSLT is designed specifically to transform
XML to other XML, in our case to other policy language, e.g. PPL as well as XML
to Text, what we need for translating to a reasoning model, Formula (discussed in
next section). This way the system architect can plug another underlying reasoner
and choose translation stylesheet accordingly for generating model for that platform.

As the need for an XML language for the intermediate representation is clear, we
used Microsoft’s declarative Extensible Application Markup Language (XAML) for
this purpose 7.

5.1.3 Logical Analysis: Matching Engine

The policy language needs to be either formal or should be translated to a formal
language to support automated reasoning. In our approach, a domain expert writes
the XSL transformation sheets that support translating the intermediate language
(i.e XAML) to a formal language. We use Formula(Formal Modeling Using Logic

6XSLT (Extensible Stylesheet Language Transformations) is a declarative transformation pur-
pose XML-based language.

7Microsoft XAML Overview. http://msdn.microsoft.com/en-us/library/ms752059.aspx

5.1. Technologies in Use 33

Analysis)[29] for this purpose. It is a unified framework for specifying DSLs and
model transformations. Formula is a LP language, meaning that the basic constructs
of the language are precise logical statements. This precision makes it useful for
analysis of and code generation from high-level specifications.

Formula specifications are separated into logical units called domainss. A domain
encapsulates a set of data structures and constraints used for modeling some part of
a software system. Declarations within a domain are scoped in a specification, which
acts as a container for declarations. A model is simply a set of data instances built
from the constructors of some domain. Intuitively, a domain represents a family of
models by providing constructors and constraints.

In our approach, a reasoning expert writes the Formula domain and the transforma-
tion expert specifies the corresponding rules for generating the intermediate policy
representation to Formula model. The model is simply a set of data instances built
according to the constructors of the domain and is just another lower-level represen-
tation of the policy document. The model contains important matching information
that must be extracted. This is accomplished by adding rules to the domain.

5.1.4 Policy Editor

Given the policy writers and end-users are assumed to have low technical skills (at
least they need not to be technically sound), they are unlikely to express their own
privacy directly in the XML-based PPL syntax. That’s why, we offered a user-
friendly interface where they can write their appropriate privacy requirements and
fine tune if necessary. Similarly motivated works face a dilemma between simplicity
and expressiveness regarding this issue [25]. We decided a trade-off by allowing
user writing their policies in the DSL. At the same time, she gets a separate UI view
where the automatically translated PPL representation is shown. The user, if possess
technical background, can validate her statements in the PPL view whereas some
more user-friendly view (e.g. graphical), if the user expects along with the natural-
like DSL, could be generated on top of this machine readable PPL representation
(or whatever structured language we target).

We thereby developed a rich text editor that allows users write their privacy as in
a standard text editor. In case of a conflict between user’s expectation and web-
site’s data practice, we highlight corresponding words (i.e. mismatch reasons) in the
editor as a suggestion to edit. For presenting the XML-like PPL representation of
the policy, a simple easy-to-view XML-viewer is developed on top of the structured
policy. We acknowledge the need for a more user-friendly graphical policy viewer
that would hide the XML in background and present the content only for a bet-
ter understanding of the privacy statements. However, our support for automated
translation in XML-like languages lays the foundation for any further development
of smarter UI.

We used Microsoft’s Windows Presentation Foundation (WPF) technology 8 for
developing the Editor and Viewers.

8WPF is a graphical subsystem for rendering user interfaces in Windows-based applications

34 5. Implementation

1. PPL Policy:

2. // Policy of Bookshop_Service

3. Applicability: email

4. AC:

5. Credential: Certified as Bookshop by BusinessAuthority

6. UC:

7. Obligations:

8. Delete this PII within 180 days

9. Notify <User> when this PII is used for "statistics"

10. AuthZ:

11. Use this PII for "statistics", "contact"

12. Send this PII to Shipping_Service

Figure 5.1 Example Policy DSL

5.2 Relevant Technical Details

Our architecture (section 4) follows a generative approach where input files for dif-
ferent modules, which are not predefined by domain experts, are produced by our
system. Domain experts define the MGrammar files for parsing corresponding DSL
policy, XSLT files for transformation and Formula Domain with reasoning knowl-
edge for matching. Our framework supports automated generation of intermediate
representation of the policy DSL (which is fed to matching engine and could be used
for enforcement-purpose systems), transformation to other structured policy DSL
(here PPL, additional stylesheets can support others, e.g. XACML), translating to
a low-level reasoning model (e.g. in our approach, Formula) for logical analysis.
This is how we provide a practical technique of reusing legacy components. The de-
bugging perspective needs mapping files for associating contents of different layers,
which we also generate during the translation processes. An illustrative overview of
our approach is shown in Figure 5.8.

5.2.1 Translation components

Before describing the details of the debugging procedure, we explain the translation
components which provide the base of logical analysis and generating feedback for
top DSL layer. We present a very simple policy DSL that would be used to illustrate
the concepts (Figure 5.1). This is a policy document of a service provider saying
how it will handle user’s personal data. The document is in a higher-level language
inspired by PPL. What the service states is that it collects an email address and
would delete this in half a year. Moreover it would notify the user when her personal
data is used for statistics. It also specifies for what purpose the PII would be used.
It also mentions the possibility of sending the personal information to a third party.

5.2. Relevant Technical Details 35

DSL

XAML

MGraph

PPL

FORMULA

Figure 5.2 Translation in different representation: Keeping mapping information

36 5. Implementation

<AC>

<ca loc="(5,42)#(5,59)">BusinessAuthority</ca>

<role loc="(5,30)#(5,38)">Bookshop</role>

</AC>

...

<piiType loc="(3,16)#(3,21)">email</piiType>

...

<authorizations>

<UseForPurpose>

<String loc="(11,25)#(11,37)">statistics</String>

<String loc="(11,39)#(11,48)">contact</String>

...

Figure 5.3 Intermediate XAML file, annotated with mapping information

Similarly, the user specifies her privacy in DSL. We parse each DSL to MGraph
as specified by the MGrammar. Then the parser walks through the MGraph and
generates the intermediate representation of the policy document, i.e. in XAML.
This XAML is also annotated (a simplified fragment shown in Example 5.3) with
the mapping information with source DSL. This XAML is further translated to
a structured language, PPL as well as a lower-level reasoning model expressed in
Formula. All these representations are automatically generated as directed by the
pre-specified domain knowledge (expressed in XSLT, MGrammar) and we do not
loose mapping information while translating. For example, the line and column
number of “statistics” text in Policy DSL is rightly reflected in the XAML (compare
example5.1 with example5.3). We maintain the consistency of mapping information
in all the representations (figure 5.2 gives an illustration).

Figure 5.5 further explains the above-mentioned procedure step by step. Switching
between different translation views are shown with a walkthrough of the prototype
in Figure B.3.

5.2.2 Matching and Suggestion

The reasoner module requires knowledge for matching the preference and policy
documents. A domain expert incorporates this in Formula domain. The analyzable
model is generated from the translation module (discussed in previous section). We
reason on the model file based on the domain knowledge and get a match result
(yes/no). However, we want more precise mismatch reason(s) to feedback user as
suggestion. Although the our formula engine provides more than a boolean response,
but we need additional details about the mismatch. Therefore, we extended the
reasoning domain incorporating additional rules to generate mismatch reasons, tied
with mapping information, at a meaningful granularity.

5.2. Relevant Technical Details 37

...

//source location in DSL

ElementLocs_Preference: (pref:Preference, LocUser:String, ...

// preferences that apply to parent also apply to children

Preference(user, ApplicabilityType(childType), acuc):-

Preference(user, ApplicabilityType(parentType), acuc),

DataTypeIsType(childType, parentType).

...

CompatibleACUC(acuc_pref, acuc_pol):-

Preference(_, _, acuc_pref), Policy(_, _, acuc_pol),

fail IncompatibleACUC(acuc_pref, acuc_pol).

CompatiblePref(user, appl, acuc_pref, acuc_pol):-

Preference(user,appl,acuc_pref),CompatibleACUC(acuc_pref,acuc_pol).

...

qWrongSend:? Send(user, data, service), DataIsType(data, dataType),

Policy(service, ApplicabilityType(dataType), acuc_pol),

fail CompatiblePref(user,ApplicabilityType(dataType),acuc_pref,...

...

qSendOK:? !qSendWithoutPref & !qSendWithoutPol & !qWrongSend.

conforms:? qSendOK & !qWrongPref & !qWrongPolicy.

Figure 5.4 Formula Domain knowledge

38 5. Implementation

TRANSLATOR

M Translator

Projector

MGrammar

MGraph

 XAML
Source Code

Mapping

XSL Transformer XSL

To Analyzer

ge
n

er
at

ed
 u

se
r-

en
d

 la
n

gu
ag

e

User-end
language

Formula File

Figure 5.5 Translation module

5.2. Relevant Technical Details 39

Figure 5.4 provides an impression of how the domain knowledge is represented in
Formula. We define constructors specific to our domain, provide rules to infer new
knowledge and queries to check conformity of a model. We automatically generate
the basic definitions for the model from the XAML (figure 5.9. The data definitions
include the privacy policy specification formally and contain the mapping informa-
tion as well. We need this mapping details to re-map the mismatch values back to
upper layer DSL.

domain Domain

{

 A:(id: String).

 B:(id: String).

 D:(id: String).

 AA:(id:String).

 c:(id:String).

 c(i) :- D(i), fail B(i).

 q1 :? A(i), AA(i), fail c(i).

 q2 :? D(j), A(j).

 conforms :? !q1 & q2.

}.

model Model1 : Domain

{

 A("test1"),

 A("test2"),

 AA("test1"),

 AA("test2"),

 D("test1"),

 D("test2"),

 //reason for not conforming

 B("test1")

}.

model Model2 : Domain

{

 A("test1")

 //missing definitions

 // D(“test1”)

 // ...

}.

-- Evaluating Model1 ...

Evaluating query "conforms" on model Model1: False

 q1 = True

 q1 :?

 iv0 is A(i), iv2 is AA(i),

 fail iv3 is c(i), AA(i) = iv2, A(i) = iv0.

 Counter Example:

 iv0 = A("test1"), iv2 = AA("test1")

-- Evaluating Model2 ...
Evaluating query "conforms" on model Model2: False

q2 = False

 q2 :?

 iv0 is D(j), iv2 is A(j)

 Counter Example:

 No binding of positive terms

FORMULA DOMAIN FORMULA MODEL 1

FORMULA MODEL 2

Figure 5.6 Insufficient details from Formula output

The Formula engine checks the conformity of the policy model with the domain.
However, in case of a non-conformity (i.e. mismatch of privacy documents) the
engine can not provide enough besides to extract exact mismatch reason(s). To
what extent the formula engine provide additional details is shown in Figure 5.6.
Both Model1 and Model2 are non-conforming with Domain. The Domain insists
(!q1 in conformity) not to have B where there exists a D with same id and to have
D existing (q2 in conformity) when there is a A with same id. The evaluation result
of Model1 does not directly lead to the fact that existence of B(’test1’) is the actual

40 5. Implementation

reason for not conforming. The output is more vague while evaluating Model2 that
gives no idea that adding D would lead us towards a conformity.

IncompatibleACUC(ACUC("ACUC_21U"),ACUC("ACUC_11S"))
IncompatibleACUC(ACUC("ACUC_31U"),ACUC("ACUC_11S"))
...
CompatibleACUC(ACUC("ACUC_11U"),ACUC("ACUC_11S"))

IncompatibleACUC_Issuer(ACUC("ACUC_31U"),ACUC("ACUC_11S"),"HealthAuthority",...
IncompatibleACUC_NotifyWhenUsed(ACUC("ACUC_31U"),ACUC("ACUC_11S"),"research",...
IncompatibleACUC_UseForPurpose(ACUC("ACUC_21U"),ACUC("ACUC_11S"),"contact",...

..
.

In
co

m
p

at
ib

le
A

C
U

C
R

ea
so

n
U

se
Fo

rP
u

rp
o

se
(a

cu
c_

p
re

f,
 a

cu
c_

p
o

l,
p

u
rp

, .
..

):
-

 In

co
m

p
at

ib
le

A
C

U
C

_U
se

Fo
rP

u
rp

o
se

(a
cu

c_
p

re
f,

 a
cu

c_
p

o
l,

p
u

rp
, l

o
c_

ac
u

c_
p

o
l,

lo
c_

p
u

rp
o

se
),

 f
a

il
C

o
m

p
at

ib
le

A
C

U
C

(_
, a

cu
c_

p
o

l)
.

..
.

IncompatibleACUC(ACUC("ACUC_21U"),ACUC("ACUC_11S"))
IncompatibleACUC(ACUC("ACUC_31U"),ACUC("ACUC_11S"))
IncompatibleACUC(ACUC("ACUC_11U"),ACUC("ACUC_11S"))

Pref ACUC_11U, Policy ACUC_11S,
{Reason: DelWithin, what: 2592000, where: (9,24) - (9,26), in block: (4,1) - (12,25) }

Pref ACUC_21U, Policy ACUC_11S,
{Reason: Role, what: Delivery, where: (16,31) - (16,39), in block: (14,1) - (21,46)
| Reason: DelWithin, what: 2592000, where: (19,24) - (19,26), in block: (14,1) - (21,46)
| Reason: UseForPurpose, what: contact, where: (12,39) - (12,48), in block: (4,1) - (13,40) }

Pref ACUC_31U, Policy ACUC_11S,
… … ...

Reasoner state information for
Incompatibility between policies

but we don’t have the actual
reason

Reasoner state information
with actual reason

D
o

m
a

in
 r

u
le

 t
o

 f
ilt

er
 o

n
ly

th

o
se

 in
co

m
p

a
ti

b
ili

ti
es

le

a
d

in
g

 t
o

 a
 m

is
m

a
tc

h

Actual Incompatibilities
(FILTERED)

Formula OUTPUT

ANALYZER OUTPUT

to User Interface

Fo
rm

u
la

 D
o

m
a

in

Figure 5.7 Additional knowledge to gather actual mismatch reasons

We address this problem by incorporating additional rules in the domain to generate
more detail knowledge about non-conformity, i.e. mismatch. In case of a non-
conformity i.e. mismatch, our tool extracts this additional knowledge, process it and
finally associate the reasons with mapping information. Figure 5.7 further depicts
the idea. Although knowing an incompatibility between policy segments are enough
to check conformity, we incorporate additional rules in the domain to generate more
states that contain details about the reason behind. We further filter these extra
states against actual incompatibilities. The analyzer extracts these additional state
information, process those and generate a report (e.g. conforming a schema) with
actual mismatch reasons. This report also contains the information for re-mapping
these low-level outputs back to upper-layer DSL. This report is forwarded to the UI

5.2. Relevant Technical Details 41

REASONER

FormulaFormula Engine

Inferred
Information

Domain Specific
Analyzer

TRANSLATOR TRANSLATOR

PREFERENCE

Plain Preference
 DSL

 XML

POLICY

 XML

Plain Policy
 DSL

Re-Interpreter

Figure 5.8 Implementation blocks: step by step

42 5. Implementation

//User Preferences (Pref_11U)

Pref_11U = Preference(Alice, Appl_11U, ACUC_11U),

AC11U = AC(ACUC_11U, "Bookshop", "BusinessAuthority"),

Appl_11U = ApplicabilityType(email),

auth11U1 = R_UseForPurpose(ACUC_11U, "statistics"),

...

ElementLocs_Role(AC11U, "(6,31)#(6,39)"),

ElementLocs_Issuer(AC11U, "(6,43)#(6,60)"),

ElementLocs_DelWithin(ob11U1, "(9,24)#(9,26)"),

...

//Service Policy (Pol_11S)

Pol_11S = Policy(Service1, Appl_11S, ACUC_11S),

...

Figure 5.9 Formula Model: Automatically generated

component. This structured report could also be sent to the service side so that it
gets informed about a client-side mismatch scenario.

Figure 5.8 further illustrates how different modules in our architecture communicate
and serve the debugging perspective.

Thus in case of a mismatch, this tool automatically guide (by highlighting that
corresponding text) the policy writer to a set of mismatch reason(s) which, if edited,
would lead to a match. We generate all possible sets. However, how user wants the
mismatch combinations to be presented is more a UI concern and we do not address
this issue deeply. What we do, is showing the set with minimal cardinality (i.e. least
number of mismatches) as we find the documents mismatched and wait for user’s
command for showing other suggestions.

6
Conclusion and Future Work

The work accomplished in this thesis is done in the context of PrimeLife project 1.
Research related to this work addresses a long-term goal of empowering end-users
with usable and effective tools. Introducing user-friendly DSL for privacy document,
automated comparison of policy statements to each other and in case of mismatch,
precisely guiding the end-user with conflicts are some important steps towards this
goal.

As the internet continues to evolve, new privacy enabling technologies need to come
up to make it a safer place for transaction and to share personal information. User
needs to trust the web when providing sensitive data. Otherwise the growth in
e-commerce would be slowing because of consumer unwillingness to supply infor-
mation. Similar discomfort also exists from organization point of view. Procedures
they follow are semi-automated and many of them can not verify whether the privacy
policies they publish to user are in fact what they practice. This work is intended to
provide usable tools for end-users in both sides, to create and manage their privacy
policies. Suppose, all services are bound to write their privacy practices in near
future. This would require their business customers specifying their expectations as
well. Both parties need a convenient tool to define their practices. They need help
finding conflicts early and edit the policies if required. Writing in a natural way and
getting guided assistance for detecting mismatch are critical to them.

We gathered related concerns from various aspects and advocated a set of guidelines
which existing approaches need to consider for better usability and effectiveness.
We further developed a proof-of-concept prototype on proposed design. We allow
both parties, i.e. user and service side policy writer, specify their privacy in DSL. In
case of a conflict, we analyze our reasoning model and filter all possible conflicts at
granular level, which if resolved, would lead to a match. We not only make a report
of the mismatches, but also relate them with the end-user’s abstraction level, e.g.

1The research leading to these results has received funding from the European Community’s
Seventh Framework Program (FP7/2007-2013) under grant agreement no. 216483 for the PrimeLife
project.

44 6. Conclusion and Future Work

highlighting in the policy editor. We also consider priority of suggestions and sort
them as the policy writer commands.

We suggest transforming the policy DSL in an intermediate structured representa-
tion. This helps achieving other important usability supports. This representation
can

1. Be transformed in other more-expressive policy language(s) (we translate in
PPL) which may be used either to get a structured visualization of the docu-
ment or any other graphical DSL could be built on top of it. This also enables
reusing a legacy system which uses that structured language on top of it.

2. Be transformed to a formal reasoning model (we translate to Formula) that
could be analyzed for granular mismatch reasons.

3. Link the DSL with the implementable policy. This way the organizations can
make sure what they publish as plain DSL is indeed what they would enforce.

4. Contain the mapping information with source DSL. This association enables us
attach the lower-level mismatch information back to higher level DSL. Thus
the user gets feedback about the conflicts at the same abstraction level he
writes the policy.

Our approach of transforming the policy DSL in intermediate representation, for
linking various layers as well as supporting multiple DSLs and other reasoners, is
not specific for privacy domain only, rather could be generalized for other prob-
lem domains. Moreover, we allow a high level DSL on top of Formula which is a
contribution in the area of improving support for lower level DSL.

We translated the policy DSLs in a reasoning model. In case of a non-conformity
(i.e. mismatch of privacy documents) our Formula engine does not provide enough
besides to extract exact mismatch reason(s). We address this problem by incor-
porating additional rules in the domain to generate more detail knowledge about
non-conformity, i.e. mismatch. In case of a mismatch, our tool extracts this ad-
ditional knowledge. However, this detail information, if not re-mapped with upper
level representation, would have no clue to effectively guide the end-user. Our ap-
proach, while translating to next lower level, does not loose mapping information.
We process the mismatch details, associate the reasons with mapping values, and
finally highlight the conflicts at the end-user abstraction.

We believe that the proposed approach, if taken forward, would open up possibilities
of future work towards user-controlled privacy. From the overall perspective, there
are open research problems which were beyond the scope of the thesis work, but we
summarize some issues that future research and product groups may address before
our work could contribute to a generally useful privacy technology.

Downstreaming Support: An important aspect of usage control (how the data
has to be treated by data collector after it is released) for privacy is downstream
usage i.e. with whom and under which usage control restrictions data can be
shared [15]. This is critical in the composed web service (so called mash-ups)

45

scenario where the primary data controller share user’s data with other parties.
This thesis does not support downstreaming which could be an important
extension to address.

Model Finding: We worked for discovering the conflict(s) behind a mismatch and
highlighting accordingly. However, the policy writer needs guidance for a solu-
tion as well. We highlight conflicts in both side so that the user can get an idea
with what values the conflicts need to be solved, but this is not sufficient in
many cases, e.g. for missing values where the counterpart value is not specified
or where the other party’s policy is not visible. Better guidance need to rely
on model finding for generating a solution (i.e. suggestion to get a match).
The reasoner we used, Formula, enables model finding by executing partial
models 2 [29]. By symbolically executing such models Formula can find valid
bindings for these variables. Using this support, our approach can be extended
to automatically search for alternative solutions and provide further guidance
thereby.

Multiple Facets: Users may augment their preferences for other facets, e.g. for
Service Level Agreement (SLA) 3. Considering different facets is critical for an
end-to-end privacy management system. For instance, the user may specify
her privacy as well as the service quality preference and the system needs find a
matching solution considering multiple dimensions. Our work can be extended
to address such scenario as Formula supports separation of concern.

UI Experience Enhancement: User Interface is what finally going to enable the
client properly visualizing the matching scenario so that she can make well-
informed decision about sharing her personal data. However, UI designers
need enough information from the reasoner to enhance the usability. One of
the intension behind this thesis is to generate as detail information as possible
behind a matching scenario. This way, our work also lays a foundation for
further UI research.

A demonstration of the prototype implementation is given in appendix B.

2A model is called partial if it contains unbound but maybe restricted variables.
3SLA is a common way for establishing business contracts between two parties

46 6. Conclusion and Future Work

Acknowledgements

In delivering this thesis, I am fortunate enough to have been assisted by many
individuals whom I wish to acknowledge here. First and foremost, I am heartily
thankful to Prof. Dr. Ulrike Meyer and Dr. Massimo Felici who kindly accepted me
as an external master thesis student.

I owe my sincere gratitude to my ever smiling supervisor in Microsoft, Dr. Laurent
Bussard. He has been consistently supportive and caring about this work from very
beginning to very end. His research expertise and valuable ideas helped me overcome
various challenges for this work. Alongside, I express my deepest gratitude to my
other supervisor in Microsoft, Dr. Ulrich Pinsdorf, for pointing me towards relevant
literature, reviewing preliminary drafts and above all, always placing encouraging
remarks. This work would not reach to this extent without their support.

I received valuable feedback from the PrimeLife project partners. I am also thankful
to all my colleagues at European Microsoft Innovation Center who provided valuable
opinions on the direction of this work.

48 6. Conclusion and Future Work

A
Glossary

User: An individual (or group of individuals acting as a single entity) on whose
behalf a service is accessed and for which personal data exists.

Service Provider: The person or organization that offers information, products,
or services from a Web site, collects information, and is responsible for the
representations made in a practice statement.

Data Controller: The Data Controller means the entity which alone or jointly
with others determines the purposes and means of the processing of personal
data. The processing of personal data may be carried out by a Data Processor
acting on behalf of the Data Controller. In most scenarios, the Data Controller
is the Service Provider.

Data Subject: The Data Subject is the person whose personal data are collected,
held or processed by the Data Controller. In most scenarios, the Data Subject
is the User.

User Preference: A set of rules that determines what action(s) a user agent will
take or allow when involved in an interaction or negotiation with a service.
Users’ preferences should reflect their attitudes towards the use and disclosure
of their personal information.

User Agent: A program that acts on a Data Subject’s behalf. The agent may act
on preferences (rules) for a broad range of purposes, such as content filtering,
trust decisions, or privacy.

Personal Data: Data privacy issues can arise in response to information from a
wide range of sources, such as: Health-care records, criminal justice investiga-
tions and proceedings, financial institutions and transactions, biological traits,
geographic records and ethnicity.

Personally Identifiable Information (PII): Personally Identifiable Information
(PII) refers to information that can be used to uniquely identify, contact, or

50 A. Glossary

locate a single person or can be used with other sources to uniquely identify a
single individual. PII is a subset of Personal Data.

Service Policy: Data practices of a service. The main content of a privacy policy
includes which information the server stores, use of the collected information,
how long information is stored, whether and how the user can access the stored
information.

Downstream Data Controller: Downstream usage (a PrimeLife Terminology
[15]) means the situation when a Data Controller wants to make a Data Sub-
ject’s personal data available to third parties, so-called downstream Data Con-
trollers. For example, a travel service mash-up may want to forward the Data
Subject’s driver license information to a car rental service to book a car, or
a hospital may want to make patients’ medical records available to its re-
searchers.

Sticky privacy policy: An agreement between Data Subject and Data Controller
on the handling of personal data collected from the Data Subject. This is also
a PrimeLife Terminology [25]. Sticky policies (as well as privacy preferences
and privacy policies) defines how data can be handled. Different aspects are
defined:

Authorizations

• Usage: what the Data Controller can do with collected data (e.g. use
them for a specific purpose).

• Downstream sharing: under which conditions data can be shared with
another Data Controller.

Obligations what the Data Controller must do.

PrimeLife Policy Language (PPL): PPL is an extension of XACML. For more
details, see [25].

B
Demonstration Walkthrough

In this section, we are going to walk through our prototype. We begin by loading
a default project which includes the policy DSLs, MGrammar to parse those DSLs,
XSLT documents to translate to target language and the Formula Domain file.

B.1 Selecting Active Settings

The system, as described in section 4 allows creating different settings (according
to which domain we choose for our system). Figure B.1 shows the menu to load a
combination of different settings or a project.

In addition to specifying domain knowledge (i.e. DSL parsing grammar, Transfor-
mation rules and Reasoning domain), the project also contains predefined templates
of preference and policy. However, the user can edit the DSL or even start writing
from scratch in the policy editor.

B.2 Translation

We provide transformation of the DSL to an intermediate representation, i.e. XAML.
This XAML is further translated to PPL and to lower-level Formula Model. MGram-
mar supports translating the DSL to structured MGraph (see figure B.2). This
MGraph is then automatically transformed to XAML. With the help of XSLT, we
further translate the XAML to PPL and Formula (for an illustrative view, see figure
B.3).

52 B. Demonstration Walkthrough

Figure B.1 Selecting Active Settings for a customized system

Figure B.2 Parsing DSL: Intellipad view

B.2. Translation 53

Figure B.3 Translation of Policy DSL to other formats

54 B. Demonstration Walkthrough

Figure B.4 Highlight mismatch reason

B.3. Matching and Suggestion 55

B.3 Matching and Suggestion

If user’s preference does not match with service’s policy, this tool automatically
guides us to a suggestion (highlighting a set of mismatch reasons) which if taken,
would lead to a match. The user may look for another suggestion (i.e. another set
of mismatch reasons to edit) and does it pressing ’Next Suggestion’ button.

Figure B.5 Highlight mismatch: further suggestion

56 B. Demonstration Walkthrough

References

[1] P3P guiding principles. W3C NOTE, 21 July 1998. Online:
http://www.w3.org/TR/NOTE-P3P10-principles.

[2] Common Language Infrastructure (CLI). Standard ECMA-335. 4th edition,
June 2006.

[3] Mark S. Ackerman and Lorrie Cranor. Privacy critics: UI components to safe-
guard users’ privacy. In CHI ’99: CHI ’99 extended abstracts on Human factors
in computing systems, pages 258–259, New York, NY, USA, 1999. ACM.

[4] Mark S. Ackerman, Lorrie Faith Cranor, and Joseph Reagle. Privacy in e-
commerce: examining user scenarios and privacy preferences. In EC ’99: Pro-
ceedings of the 1st ACM conference on Electronic commerce, pages 1–8, New
York, NY, USA, 1999. ACM.

[5] Mark S. Ackerman and Scott D. Mainwaring. Privacy Issues and Human-
Computer Interaction. O’Reilly Press, Cambridge, MA, 2005.

[6] Muhammad Ali, Laurent Bussard, and Ulrich Pinsdorf. Obligation Language
and Framework to Enable Privacy-Aware SOA. In DPM/SETOP, pages 18–32,
2009.

[7] Anne H. Anderson. A comparison of two privacy policy languages: EPAL and
XACML. In SWS ’06: Proceedings of the 3rd ACM workshop on Secure web
services, pages 53–60, New York, NY, USA, 2006. ACM.

[8] Claudio A. Ardagna, Laurent Bussard, Sabrina De Capitani Di, Gregory Neven,
Stefano Paraboschi, Eros Pedrini, Stefan Preiss, Dave Raggett, Pierangela
Samarati, Slim Trabelsi, and Mario Verdicchio. PrimeLife Policy Language.

[9] Paul Ashley, Satoshi Hada, Günter Karjoth, Calvin Powers, and Matthias
Schunter. Enterprise Privacy Authorization Language (EPAL 1.2). Technical
report, IBM Research Report.

[10] Michael Backes, Günter Karjoth, Walid Bagga, and Matthias Schunter. Efficient
comparison of enterprise privacy policies. In SAC ’04: Proceedings of the 2004
ACM symposium on Applied computing, pages 375–382, New York, NY, USA,
2004. ACM.

[11] Moritz Becker, Cedric Fournet, and Andrew Gordon. Design and Semantics of
a Decentralized Authorization Language. In CSF ’07: Proceedings of the 20th
IEEE Computer Security Foundations Symposium, pages 3–15, Washington,
DC, USA, 2007. IEEE Computer Society.

58 References

[12] Bettina Berendt, Oliver Günther, and Sarah Spiekermann. Privacy in e-
commerce: stated preferences vs. actual behavior. Commun. ACM, 48(4):101–
106, 2005.

[13] E. Boritz and Won Gyun No. A Gap in Perceived Importance of Privacy Policies
between Individuals and Companies. pages 181 –192, aug. 2009.

[14] Carolyn A. Brodie, Clare-Marie Karat, and John Karat. An empirical study
of natural language parsing of privacy policy rules using the SPARCLE policy
workbench. In SOUPS ’06: Proceedings of the second symposium on Usable
privacy and security, pages 8–19, New York, NY, USA, 2006. ACM.

[15] Laurent Bussard, Gregory Neven, and Franz-Stefan Preiss. Downstream Usage
Control. In IEEE POLICY 2010, July 2010.

[16] J. Cai, M.Moreno Maza, S.M. Watt, and M. Dunstan. Debugging A High-
Level Language via a Unified Interpreter and Compiler Runtime Enviroment.
In Proceedings of EACA, Santander, pages 119–124. Universidad de Cantabria,
July 2004.

[17] David W. Chadwick and Stijn F. Lievens. Enforcing ”sticky” security policies
throughout a distributed application. In Proceedings of the 2008 workshop on
Middleware security table of contents, pages 1–6, New York, NY, USA, 2008.
ACM.

[18] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, and Joseph Reagle. The
Platform for Privacy Preferences 1.0 (P3P1.0) Specification. Technical report,
W3C Recommendation, 16 April 2002.

[19] Lorrie Faith Cranor. Putting it together: Internet privacy: a public concern.
netWorker, 2(3):13–18, 1998.

[20] Lorrie Faith Cranor, Manjula Arjula, and Praveen Guduru. Use of a P3P user
agent by early adopters. In WPES ’02: Proceedings of the 2002 ACM workshop
on Privacy in the Electronic Society, pages 1–10, New York, NY, USA, 2002.
ACM.

[21] Lorrie Faith Cranor and Paul Resnick. Protocols for automated negotiations
with buyer anonymity and seller reputations. Netnomics, 2(1):1–23, 2000.

[22] Julia B. Earp and David Baumer. Innovative web use to learn about consumer
behavior and online privacy. Commun. ACM, 46(4):81–83, 2003.

[23] K El-Khatib. A privacy negotiation protocol for web services. pages 85–92,
Halifax, Nova Scotia, Canada.

[24] Jeanne Ferrante. High level language debugging with a compiler. In SIGSOFT
’83: Proceedings of the symposium on High-level debugging, pages 123–129, New
York, NY, USA, 1983. ACM.

[25] Simone Fischer-Hübner and Harald Zwingelberg. UI prototypes: Policy admin-
istration and presentation – version 2. PrimeLife Deliverable D4.3.2, PrimeLife
Consortium, June 29 2010.

References 59

[26] K. Ghazinour, M. Majedi, and K. Barker. A Model for Privacy Policy Visual-
ization. volume 2, pages 335 –340, jul. 2009.

[27] Almut Herzog. Usable Security Policies for Runtime Environments. Linköping
Studies in Science and Technology. Dissertation No. 1075., May 2007.

[28] Donna L. Hoffman, Thomas P. Novak, and Marcos Peralta. Building consumer
trust online. Commun. ACM, 42(4):80–85, 1999.

[29] Ethan K. Jackson, Wolfram Schulte, and Janos Sztipanovits. The Power of
Rich Syntax for Model-based Development. MSR technical report, Microsoft
Research, 2008.

[30] Maritza Johnson, John Karat, Clare-Marie Karat, and Keith Grueneberg. Op-
timizing a policy authoring framework for security and privacy policies. In
SOUPS ’10: Proceedings of the Sixth Symposium on Usable Privacy and Secu-
rity, pages 1–9, New York, NY, USA, 2010. ACM.

[31] John Karat, Clare-Marie Karat, Carolyn Brodie, and Jinjuan Feng. Privacy
in information technology: designing to enable privacy policy management in
organizations. Int. J. Hum.-Comput. Stud., 63(1-2):153–174, 2005.

[32] Patrick Gage Kelley, Joanna Bresee, Lorrie Faith Cranor, and Robert W.
Reeder. A ”nutrition label” for privacy. In SOUPS ’09: Proceedings of the
5th Symposium on Usable Privacy and Security, pages 1–12, New York, NY,
USA, 2009. ACM.

[33] Massimo Marchiori Lorrie Cranor, Marc Langheinrich. A P3P Preference Ex-
change Language 1.0 (APPEL1.0). Technical report, W3C Working Draft, 15
April 2002.

[34] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

[35] Alexander Malkis Moritz Y. Becker and Laurent Bussard. S4P: A Generic
Language for Specifying Privacy Preferences and Policies. Technical report,
Microsoft Research, April 2010.

[36] V. Patel and R. Juric. Internet users and online privacy: a study assessing
whether internet users’ privacy is adequately protected. pages 193 – 200 vol.1,
jun. 2001.

[37] Sören Preibusch. Implementing Privacy Negotiations in E-Commerce. Discus-
sion Papers of DIW Berlin 526, DIW Berlin, German Institute for Economic
Research, 2005.

[38] Robert W. Reeder, Clare-Marie Karat, John Karat, and Carolyn Brodie. Us-
ability challenges in security and privacy policy-authoring interfaces. In IN-
TERACT’07: Proceedings of the 11th IFIP TC 13 international conference
on Human-computer interaction, pages 141–155, Berlin, Heidelberg, 2007.
Springer-Verlag.

60 References

[39] Warren Teitelman. The Interlisp Reference Manual. Technical report, revised
1978.

[40] Bibi van den Berg and Ronald Leenes. Privacy Enables Communities. PrimeLife
Deliverable D1.2.1, PrimeLife Consortium, April 23 2010.

[41] Kami Vaniea, Clare-Marie Karat, Joshua B. Gross, John Karat, and Carolyn
Brodie. Evaluating assistance of natural language policy authoring. In SOUPS
’08: Proceedings of the 4th symposium on Usable privacy and security, pages
65–73, New York, NY, USA, 2008. ACM.

[42] Anton Vedder. Privacy, een conceptuele articulatie. Filosofie & praktijk, vol.30
(2009) nr.5 p.7-19, 2009.

[43] Alma Whitten and J. D. Tygar. Why johnny can’t encrypt: a usability evalu-
ation of PGP 5.0. In SSYM’99: Proceedings of the 8th conference on USENIX
Security Symposium, pages 14–14, Berkeley, CA, USA, 1999. USENIX Associ-
ation.

[44] Shawn Wildermuth. Textual Domain Specific Languages for Developers. Online,
February 2009. Last Updated: February 2010 (for 2009 PDC CTP).

[45] Hui Wu. Grammar-driven generation of domain-specific language testing tools.
In OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages
210–211, New York, NY, USA, 2005. ACM.

[46] Hui Wu, Jeff Gray, and Marjan Mernik. Debugging Domain-Specific Languages
in Eclipse.

[47] Hui Wu, Jeff Gray, and Marjan Mernik. Demonstration of a Domain-Specific
Language Debugging Framework.

[48] Hui Wu, Jeff Gray, Suman Roychoudhury, and Marjan Mernik. Weaving a
debugging aspect into domain-specific language grammars. In SAC ’05: Pro-
ceedings of the 2005 ACM symposium on Applied computing, pages 1370–1374,
New York, NY, USA, 2005. ACM.

[49] George Yee and Larry Korba. Bilateral E-services Negotiation Under Uncer-
tainty. In SAINT ’03: Proceedings of the 2003 Symposium on Applications and
the Internet, page 352, Washington, DC, USA, 2003. IEEE Computer Society.

[50] G.O.M. Yee. An Automatic Privacy Policy Agreement Checker for E-services.
pages 307 –315, March 2009.

	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Need for intelligent tools
	1.1.2 Tools for Whom?
	1.1.3 Tools need to intend end-users
	1.1.4 User needs guided assistance
	1.1.5 Usability enhancement needs supporting information

	1.2 Objective
	1.3 Structure of the Thesis

	2 Requirements and Scope
	2.1 Example User Scenario
	2.2 Thesis Scope and Requirements
	2.2.1 Privacy Document Perspective
	2.2.2 Privacy Compliance Perspective
	2.2.3 Reusing components: Privacy-system architect perspective

	3 Related Work
	3.1 User Interaction Aspects
	3.1.1 User experience: Privacy point of view
	3.1.2 Use of Natural Language in Privacy Documents
	3.1.3 Policy Presentation

	3.2 System Design Perspective
	3.2.1 Translation of Privacy Document
	3.2.2 Debugging High Level Language

	3.3 User-controlled Privacy Platforms
	3.3.1 Compliance Checker
	3.3.2 Related work at EMIC

	3.4 Summary

	4 Design
	4.1 Domain-Driven Design
	4.2 Reusing Components: Link by Translation
	4.3 Debugging Perspective

	5 Implementation
	5.1 Technologies in Use
	5.1.1 DSL Technology
	5.1.2 XML based technologies
	5.1.3 Logical Analysis: Matching Engine
	5.1.4 Policy Editor

	5.2 Relevant Technical Details
	5.2.1 Translation components
	5.2.2 Matching and Suggestion

	6 Conclusion and Future Work
	A Glossary
	B Demonstration Walkthrough
	B.1 Selecting Active Settings
	B.2 Translation
	B.3 Matching and Suggestion

	References

